aboutsummaryrefslogtreecommitdiffstats
path: root/target/arm/mte_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/mte_helper.c')
-rw-r--r--target/arm/mte_helper.c940
1 files changed, 940 insertions, 0 deletions
diff --git a/target/arm/mte_helper.c b/target/arm/mte_helper.c
new file mode 100644
index 000000000..e09b7e46a
--- /dev/null
+++ b/target/arm/mte_helper.c
@@ -0,0 +1,940 @@
+/*
+ * ARM v8.5-MemTag Operations
+ *
+ * Copyright (c) 2020 Linaro, Ltd.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "internals.h"
+#include "exec/exec-all.h"
+#include "exec/ram_addr.h"
+#include "exec/cpu_ldst.h"
+#include "exec/helper-proto.h"
+#include "qapi/error.h"
+#include "qemu/guest-random.h"
+
+
+static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
+{
+ if (exclude == 0xffff) {
+ return 0;
+ }
+ if (offset == 0) {
+ while (exclude & (1 << tag)) {
+ tag = (tag + 1) & 15;
+ }
+ } else {
+ do {
+ do {
+ tag = (tag + 1) & 15;
+ } while (exclude & (1 << tag));
+ } while (--offset > 0);
+ }
+ return tag;
+}
+
+/**
+ * allocation_tag_mem:
+ * @env: the cpu environment
+ * @ptr_mmu_idx: the addressing regime to use for the virtual address
+ * @ptr: the virtual address for which to look up tag memory
+ * @ptr_access: the access to use for the virtual address
+ * @ptr_size: the number of bytes in the normal memory access
+ * @tag_access: the access to use for the tag memory
+ * @tag_size: the number of bytes in the tag memory access
+ * @ra: the return address for exception handling
+ *
+ * Our tag memory is formatted as a sequence of little-endian nibbles.
+ * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
+ * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
+ * for the higher addr.
+ *
+ * Here, resolve the physical address from the virtual address, and return
+ * a pointer to the corresponding tag byte. Exit with exception if the
+ * virtual address is not accessible for @ptr_access.
+ *
+ * The @ptr_size and @tag_size values may not have an obvious relation
+ * due to the alignment of @ptr, and the number of tag checks required.
+ *
+ * If there is no tag storage corresponding to @ptr, return NULL.
+ */
+static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
+ uint64_t ptr, MMUAccessType ptr_access,
+ int ptr_size, MMUAccessType tag_access,
+ int tag_size, uintptr_t ra)
+{
+#ifdef CONFIG_USER_ONLY
+ uint64_t clean_ptr = useronly_clean_ptr(ptr);
+ int flags = page_get_flags(clean_ptr);
+ uint8_t *tags;
+ uintptr_t index;
+
+ if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
+ cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
+ !(flags & PAGE_VALID), ra);
+ }
+
+ /* Require both MAP_ANON and PROT_MTE for the page. */
+ if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
+ return NULL;
+ }
+
+ tags = page_get_target_data(clean_ptr);
+ if (tags == NULL) {
+ size_t alloc_size = TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1);
+ tags = page_alloc_target_data(clean_ptr, alloc_size);
+ assert(tags != NULL);
+ }
+
+ index = extract32(ptr, LOG2_TAG_GRANULE + 1,
+ TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
+ return tags + index;
+#else
+ uintptr_t index;
+ CPUIOTLBEntry *iotlbentry;
+ int in_page, flags;
+ ram_addr_t ptr_ra;
+ hwaddr ptr_paddr, tag_paddr, xlat;
+ MemoryRegion *mr;
+ ARMASIdx tag_asi;
+ AddressSpace *tag_as;
+ void *host;
+
+ /*
+ * Probe the first byte of the virtual address. This raises an
+ * exception for inaccessible pages, and resolves the virtual address
+ * into the softmmu tlb.
+ *
+ * When RA == 0, this is for mte_probe. The page is expected to be
+ * valid. Indicate to probe_access_flags no-fault, then assert that
+ * we received a valid page.
+ */
+ flags = probe_access_flags(env, ptr, ptr_access, ptr_mmu_idx,
+ ra == 0, &host, ra);
+ assert(!(flags & TLB_INVALID_MASK));
+
+ /*
+ * Find the iotlbentry for ptr. This *must* be present in the TLB
+ * because we just found the mapping.
+ * TODO: Perhaps there should be a cputlb helper that returns a
+ * matching tlb entry + iotlb entry.
+ */
+ index = tlb_index(env, ptr_mmu_idx, ptr);
+# ifdef CONFIG_DEBUG_TCG
+ {
+ CPUTLBEntry *entry = tlb_entry(env, ptr_mmu_idx, ptr);
+ target_ulong comparator = (ptr_access == MMU_DATA_LOAD
+ ? entry->addr_read
+ : tlb_addr_write(entry));
+ g_assert(tlb_hit(comparator, ptr));
+ }
+# endif
+ iotlbentry = &env_tlb(env)->d[ptr_mmu_idx].iotlb[index];
+
+ /* If the virtual page MemAttr != Tagged, access unchecked. */
+ if (!arm_tlb_mte_tagged(&iotlbentry->attrs)) {
+ return NULL;
+ }
+
+ /*
+ * If not backed by host ram, there is no tag storage: access unchecked.
+ * This is probably a guest os bug though, so log it.
+ */
+ if (unlikely(flags & TLB_MMIO)) {
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
+ "but is not backed by host ram\n", ptr);
+ return NULL;
+ }
+
+ /*
+ * The Normal memory access can extend to the next page. E.g. a single
+ * 8-byte access to the last byte of a page will check only the last
+ * tag on the first page.
+ * Any page access exception has priority over tag check exception.
+ */
+ in_page = -(ptr | TARGET_PAGE_MASK);
+ if (unlikely(ptr_size > in_page)) {
+ void *ignore;
+ flags |= probe_access_flags(env, ptr + in_page, ptr_access,
+ ptr_mmu_idx, ra == 0, &ignore, ra);
+ assert(!(flags & TLB_INVALID_MASK));
+ }
+
+ /* Any debug exception has priority over a tag check exception. */
+ if (unlikely(flags & TLB_WATCHPOINT)) {
+ int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
+ assert(ra != 0);
+ cpu_check_watchpoint(env_cpu(env), ptr, ptr_size,
+ iotlbentry->attrs, wp, ra);
+ }
+
+ /*
+ * Find the physical address within the normal mem space.
+ * The memory region lookup must succeed because TLB_MMIO was
+ * not set in the cputlb lookup above.
+ */
+ mr = memory_region_from_host(host, &ptr_ra);
+ tcg_debug_assert(mr != NULL);
+ tcg_debug_assert(memory_region_is_ram(mr));
+ ptr_paddr = ptr_ra;
+ do {
+ ptr_paddr += mr->addr;
+ mr = mr->container;
+ } while (mr);
+
+ /* Convert to the physical address in tag space. */
+ tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
+
+ /* Look up the address in tag space. */
+ tag_asi = iotlbentry->attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
+ tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
+ mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
+ tag_access == MMU_DATA_STORE,
+ iotlbentry->attrs);
+
+ /*
+ * Note that @mr will never be NULL. If there is nothing in the address
+ * space at @tag_paddr, the translation will return the unallocated memory
+ * region. For our purposes, the result must be ram.
+ */
+ if (unlikely(!memory_region_is_ram(mr))) {
+ /* ??? Failure is a board configuration error. */
+ qemu_log_mask(LOG_UNIMP,
+ "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
+ "Normal Memory @ 0x%" HWADDR_PRIx "\n",
+ tag_paddr, ptr_paddr);
+ return NULL;
+ }
+
+ /*
+ * Ensure the tag memory is dirty on write, for migration.
+ * Tag memory can never contain code or display memory (vga).
+ */
+ if (tag_access == MMU_DATA_STORE) {
+ ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
+ cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
+ }
+
+ return memory_region_get_ram_ptr(mr) + xlat;
+#endif
+}
+
+uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
+{
+ uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
+ int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
+ int start = extract32(env->cp15.rgsr_el1, 0, 4);
+ int seed = extract32(env->cp15.rgsr_el1, 8, 16);
+ int offset, i, rtag;
+
+ /*
+ * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
+ * deterministic algorithm. Except that with RRND==1 the kernel is
+ * not required to have set RGSR_EL1.SEED != 0, which is required for
+ * the deterministic algorithm to function. So we force a non-zero
+ * SEED for that case.
+ */
+ if (unlikely(seed == 0) && rrnd) {
+ do {
+ Error *err = NULL;
+ uint16_t two;
+
+ if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
+ /*
+ * Failed, for unknown reasons in the crypto subsystem.
+ * Best we can do is log the reason and use a constant seed.
+ */
+ qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
+ error_get_pretty(err));
+ error_free(err);
+ two = 1;
+ }
+ seed = two;
+ } while (seed == 0);
+ }
+
+ /* RandomTag */
+ for (i = offset = 0; i < 4; ++i) {
+ /* NextRandomTagBit */
+ int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
+ extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
+ seed = (top << 15) | (seed >> 1);
+ offset |= top << i;
+ }
+ rtag = choose_nonexcluded_tag(start, offset, exclude);
+ env->cp15.rgsr_el1 = rtag | (seed << 8);
+
+ return address_with_allocation_tag(rn, rtag);
+}
+
+uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
+ int32_t offset, uint32_t tag_offset)
+{
+ int start_tag = allocation_tag_from_addr(ptr);
+ uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
+ int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
+
+ return address_with_allocation_tag(ptr + offset, rtag);
+}
+
+static int load_tag1(uint64_t ptr, uint8_t *mem)
+{
+ int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
+ return extract32(*mem, ofs, 4);
+}
+
+uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
+{
+ int mmu_idx = cpu_mmu_index(env, false);
+ uint8_t *mem;
+ int rtag = 0;
+
+ /* Trap if accessing an invalid page. */
+ mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
+ MMU_DATA_LOAD, 1, GETPC());
+
+ /* Load if page supports tags. */
+ if (mem) {
+ rtag = load_tag1(ptr, mem);
+ }
+
+ return address_with_allocation_tag(xt, rtag);
+}
+
+static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
+{
+ if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
+ arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
+ cpu_mmu_index(env, false), ra);
+ g_assert_not_reached();
+ }
+}
+
+/* For use in a non-parallel context, store to the given nibble. */
+static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
+{
+ int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
+ *mem = deposit32(*mem, ofs, 4, tag);
+}
+
+/* For use in a parallel context, atomically store to the given nibble. */
+static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
+{
+ int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
+ uint8_t old = qatomic_read(mem);
+
+ while (1) {
+ uint8_t new = deposit32(old, ofs, 4, tag);
+ uint8_t cmp = qatomic_cmpxchg(mem, old, new);
+ if (likely(cmp == old)) {
+ return;
+ }
+ old = cmp;
+ }
+}
+
+typedef void stg_store1(uint64_t, uint8_t *, int);
+
+static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
+ uintptr_t ra, stg_store1 store1)
+{
+ int mmu_idx = cpu_mmu_index(env, false);
+ uint8_t *mem;
+
+ check_tag_aligned(env, ptr, ra);
+
+ /* Trap if accessing an invalid page. */
+ mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
+ MMU_DATA_STORE, 1, ra);
+
+ /* Store if page supports tags. */
+ if (mem) {
+ store1(ptr, mem, allocation_tag_from_addr(xt));
+ }
+}
+
+void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
+{
+ do_stg(env, ptr, xt, GETPC(), store_tag1);
+}
+
+void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
+{
+ do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
+}
+
+void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
+{
+ int mmu_idx = cpu_mmu_index(env, false);
+ uintptr_t ra = GETPC();
+
+ check_tag_aligned(env, ptr, ra);
+ probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
+}
+
+static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
+ uintptr_t ra, stg_store1 store1)
+{
+ int mmu_idx = cpu_mmu_index(env, false);
+ int tag = allocation_tag_from_addr(xt);
+ uint8_t *mem1, *mem2;
+
+ check_tag_aligned(env, ptr, ra);
+
+ /*
+ * Trap if accessing an invalid page(s).
+ * This takes priority over !allocation_tag_access_enabled.
+ */
+ if (ptr & TAG_GRANULE) {
+ /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
+ mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
+ TAG_GRANULE, MMU_DATA_STORE, 1, ra);
+ mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
+ MMU_DATA_STORE, TAG_GRANULE,
+ MMU_DATA_STORE, 1, ra);
+
+ /* Store if page(s) support tags. */
+ if (mem1) {
+ store1(TAG_GRANULE, mem1, tag);
+ }
+ if (mem2) {
+ store1(0, mem2, tag);
+ }
+ } else {
+ /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
+ mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
+ 2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
+ if (mem1) {
+ tag |= tag << 4;
+ qatomic_set(mem1, tag);
+ }
+ }
+}
+
+void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
+{
+ do_st2g(env, ptr, xt, GETPC(), store_tag1);
+}
+
+void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
+{
+ do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
+}
+
+void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
+{
+ int mmu_idx = cpu_mmu_index(env, false);
+ uintptr_t ra = GETPC();
+ int in_page = -(ptr | TARGET_PAGE_MASK);
+
+ check_tag_aligned(env, ptr, ra);
+
+ if (likely(in_page >= 2 * TAG_GRANULE)) {
+ probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
+ } else {
+ probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
+ probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
+ }
+}
+
+#define LDGM_STGM_SIZE (4 << GMID_EL1_BS)
+
+uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
+{
+ int mmu_idx = cpu_mmu_index(env, false);
+ uintptr_t ra = GETPC();
+ void *tag_mem;
+
+ ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
+
+ /* Trap if accessing an invalid page. */
+ tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
+ LDGM_STGM_SIZE, MMU_DATA_LOAD,
+ LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
+
+ /* The tag is squashed to zero if the page does not support tags. */
+ if (!tag_mem) {
+ return 0;
+ }
+
+ QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
+ /*
+ * We are loading 64-bits worth of tags. The ordering of elements
+ * within the word corresponds to a 64-bit little-endian operation.
+ */
+ return ldq_le_p(tag_mem);
+}
+
+void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
+{
+ int mmu_idx = cpu_mmu_index(env, false);
+ uintptr_t ra = GETPC();
+ void *tag_mem;
+
+ ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
+
+ /* Trap if accessing an invalid page. */
+ tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
+ LDGM_STGM_SIZE, MMU_DATA_LOAD,
+ LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
+
+ /*
+ * Tag store only happens if the page support tags,
+ * and if the OS has enabled access to the tags.
+ */
+ if (!tag_mem) {
+ return;
+ }
+
+ QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
+ /*
+ * We are storing 64-bits worth of tags. The ordering of elements
+ * within the word corresponds to a 64-bit little-endian operation.
+ */
+ stq_le_p(tag_mem, val);
+}
+
+void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
+{
+ uintptr_t ra = GETPC();
+ int mmu_idx = cpu_mmu_index(env, false);
+ int log2_dcz_bytes, log2_tag_bytes;
+ intptr_t dcz_bytes, tag_bytes;
+ uint8_t *mem;
+
+ /*
+ * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
+ * i.e. 32 bytes, which is an unreasonably small dcz anyway,
+ * to make sure that we can access one complete tag byte here.
+ */
+ log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
+ log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
+ dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
+ tag_bytes = (intptr_t)1 << log2_tag_bytes;
+ ptr &= -dcz_bytes;
+
+ mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
+ MMU_DATA_STORE, tag_bytes, ra);
+ if (mem) {
+ int tag_pair = (val & 0xf) * 0x11;
+ memset(mem, tag_pair, tag_bytes);
+ }
+}
+
+static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
+ uint64_t dirty_ptr, uintptr_t ra)
+{
+ int is_write, syn;
+
+ env->exception.vaddress = dirty_ptr;
+
+ is_write = FIELD_EX32(desc, MTEDESC, WRITE);
+ syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
+ 0x11);
+ raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
+ g_assert_not_reached();
+}
+
+static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
+ uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
+{
+ int select;
+
+ if (regime_has_2_ranges(arm_mmu_idx)) {
+ select = extract64(dirty_ptr, 55, 1);
+ } else {
+ select = 0;
+ }
+ env->cp15.tfsr_el[el] |= 1 << select;
+#ifdef CONFIG_USER_ONLY
+ /*
+ * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
+ * which then sends a SIGSEGV when the thread is next scheduled.
+ * This cpu will return to the main loop at the end of the TB,
+ * which is rather sooner than "normal". But the alternative
+ * is waiting until the next syscall.
+ */
+ qemu_cpu_kick(env_cpu(env));
+#endif
+}
+
+/* Record a tag check failure. */
+static void mte_check_fail(CPUARMState *env, uint32_t desc,
+ uint64_t dirty_ptr, uintptr_t ra)
+{
+ int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
+ ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
+ int el, reg_el, tcf;
+ uint64_t sctlr;
+
+ reg_el = regime_el(env, arm_mmu_idx);
+ sctlr = env->cp15.sctlr_el[reg_el];
+
+ switch (arm_mmu_idx) {
+ case ARMMMUIdx_E10_0:
+ case ARMMMUIdx_E20_0:
+ el = 0;
+ tcf = extract64(sctlr, 38, 2);
+ break;
+ default:
+ el = reg_el;
+ tcf = extract64(sctlr, 40, 2);
+ }
+
+ switch (tcf) {
+ case 1:
+ /* Tag check fail causes a synchronous exception. */
+ mte_sync_check_fail(env, desc, dirty_ptr, ra);
+ break;
+
+ case 0:
+ /*
+ * Tag check fail does not affect the PE.
+ * We eliminate this case by not setting MTE_ACTIVE
+ * in tb_flags, so that we never make this runtime call.
+ */
+ g_assert_not_reached();
+
+ case 2:
+ /* Tag check fail causes asynchronous flag set. */
+ mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
+ break;
+
+ case 3:
+ /*
+ * Tag check fail causes asynchronous flag set for stores, or
+ * a synchronous exception for loads.
+ */
+ if (FIELD_EX32(desc, MTEDESC, WRITE)) {
+ mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
+ } else {
+ mte_sync_check_fail(env, desc, dirty_ptr, ra);
+ }
+ break;
+ }
+}
+
+/**
+ * checkN:
+ * @tag: tag memory to test
+ * @odd: true to begin testing at tags at odd nibble
+ * @cmp: the tag to compare against
+ * @count: number of tags to test
+ *
+ * Return the number of successful tests.
+ * Thus a return value < @count indicates a failure.
+ *
+ * A note about sizes: count is expected to be small.
+ *
+ * The most common use will be LDP/STP of two integer registers,
+ * which means 16 bytes of memory touching at most 2 tags, but
+ * often the access is aligned and thus just 1 tag.
+ *
+ * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
+ * touching at most 5 tags. SVE LDR/STR (vector) with the default
+ * vector length is also 64 bytes; the maximum architectural length
+ * is 256 bytes touching at most 9 tags.
+ *
+ * The loop below uses 7 logical operations and 1 memory operation
+ * per tag pair. An implementation that loads an aligned word and
+ * uses masking to ignore adjacent tags requires 18 logical operations
+ * and thus does not begin to pay off until 6 tags.
+ * Which, according to the survey above, is unlikely to be common.
+ */
+static int checkN(uint8_t *mem, int odd, int cmp, int count)
+{
+ int n = 0, diff;
+
+ /* Replicate the test tag and compare. */
+ cmp *= 0x11;
+ diff = *mem++ ^ cmp;
+
+ if (odd) {
+ goto start_odd;
+ }
+
+ while (1) {
+ /* Test even tag. */
+ if (unlikely((diff) & 0x0f)) {
+ break;
+ }
+ if (++n == count) {
+ break;
+ }
+
+ start_odd:
+ /* Test odd tag. */
+ if (unlikely((diff) & 0xf0)) {
+ break;
+ }
+ if (++n == count) {
+ break;
+ }
+
+ diff = *mem++ ^ cmp;
+ }
+ return n;
+}
+
+/**
+ * mte_probe_int() - helper for mte_probe and mte_check
+ * @env: CPU environment
+ * @desc: MTEDESC descriptor
+ * @ptr: virtual address of the base of the access
+ * @fault: return virtual address of the first check failure
+ *
+ * Internal routine for both mte_probe and mte_check.
+ * Return zero on failure, filling in *fault.
+ * Return negative on trivial success for tbi disabled.
+ * Return positive on success with tbi enabled.
+ */
+static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
+ uintptr_t ra, uint64_t *fault)
+{
+ int mmu_idx, ptr_tag, bit55;
+ uint64_t ptr_last, prev_page, next_page;
+ uint64_t tag_first, tag_last;
+ uint64_t tag_byte_first, tag_byte_last;
+ uint32_t sizem1, tag_count, tag_size, n, c;
+ uint8_t *mem1, *mem2;
+ MMUAccessType type;
+
+ bit55 = extract64(ptr, 55, 1);
+ *fault = ptr;
+
+ /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
+ if (unlikely(!tbi_check(desc, bit55))) {
+ return -1;
+ }
+
+ ptr_tag = allocation_tag_from_addr(ptr);
+
+ if (tcma_check(desc, bit55, ptr_tag)) {
+ return 1;
+ }
+
+ mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
+ type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
+ sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
+
+ /* Find the addr of the end of the access */
+ ptr_last = ptr + sizem1;
+
+ /* Round the bounds to the tag granule, and compute the number of tags. */
+ tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
+ tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
+ tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
+
+ /* Round the bounds to twice the tag granule, and compute the bytes. */
+ tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
+ tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
+
+ /* Locate the page boundaries. */
+ prev_page = ptr & TARGET_PAGE_MASK;
+ next_page = prev_page + TARGET_PAGE_SIZE;
+
+ if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
+ /* Memory access stays on one page. */
+ tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
+ mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
+ MMU_DATA_LOAD, tag_size, ra);
+ if (!mem1) {
+ return 1;
+ }
+ /* Perform all of the comparisons. */
+ n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
+ } else {
+ /* Memory access crosses to next page. */
+ tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
+ mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
+ MMU_DATA_LOAD, tag_size, ra);
+
+ tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
+ mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
+ ptr_last - next_page + 1,
+ MMU_DATA_LOAD, tag_size, ra);
+
+ /*
+ * Perform all of the comparisons.
+ * Note the possible but unlikely case of the operation spanning
+ * two pages that do not both have tagging enabled.
+ */
+ n = c = (next_page - tag_first) / TAG_GRANULE;
+ if (mem1) {
+ n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
+ }
+ if (n == c) {
+ if (!mem2) {
+ return 1;
+ }
+ n += checkN(mem2, 0, ptr_tag, tag_count - c);
+ }
+ }
+
+ if (likely(n == tag_count)) {
+ return 1;
+ }
+
+ /*
+ * If we failed, we know which granule. For the first granule, the
+ * failure address is @ptr, the first byte accessed. Otherwise the
+ * failure address is the first byte of the nth granule.
+ */
+ if (n > 0) {
+ *fault = tag_first + n * TAG_GRANULE;
+ }
+ return 0;
+}
+
+uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
+{
+ uint64_t fault;
+ int ret = mte_probe_int(env, desc, ptr, ra, &fault);
+
+ if (unlikely(ret == 0)) {
+ mte_check_fail(env, desc, fault, ra);
+ } else if (ret < 0) {
+ return ptr;
+ }
+ return useronly_clean_ptr(ptr);
+}
+
+uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
+{
+ return mte_check(env, desc, ptr, GETPC());
+}
+
+/*
+ * No-fault version of mte_check, to be used by SVE for MemSingleNF.
+ * Returns false if the access is Checked and the check failed. This
+ * is only intended to probe the tag -- the validity of the page must
+ * be checked beforehand.
+ */
+bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
+{
+ uint64_t fault;
+ int ret = mte_probe_int(env, desc, ptr, 0, &fault);
+
+ return ret != 0;
+}
+
+/*
+ * Perform an MTE checked access for DC_ZVA.
+ */
+uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
+{
+ uintptr_t ra = GETPC();
+ int log2_dcz_bytes, log2_tag_bytes;
+ int mmu_idx, bit55;
+ intptr_t dcz_bytes, tag_bytes, i;
+ void *mem;
+ uint64_t ptr_tag, mem_tag, align_ptr;
+
+ bit55 = extract64(ptr, 55, 1);
+
+ /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
+ if (unlikely(!tbi_check(desc, bit55))) {
+ return ptr;
+ }
+
+ ptr_tag = allocation_tag_from_addr(ptr);
+
+ if (tcma_check(desc, bit55, ptr_tag)) {
+ goto done;
+ }
+
+ /*
+ * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
+ * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
+ * sure that we can access one complete tag byte here.
+ */
+ log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
+ log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
+ dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
+ tag_bytes = (intptr_t)1 << log2_tag_bytes;
+ align_ptr = ptr & -dcz_bytes;
+
+ /*
+ * Trap if accessing an invalid page. DC_ZVA requires that we supply
+ * the original pointer for an invalid page. But watchpoints require
+ * that we probe the actual space. So do both.
+ */
+ mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
+ (void) probe_write(env, ptr, 1, mmu_idx, ra);
+ mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
+ dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
+ if (!mem) {
+ goto done;
+ }
+
+ /*
+ * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
+ * it is quite easy to perform all of the comparisons at once without
+ * any extra masking.
+ *
+ * The most common zva block size is 64; some of the thunderx cpus use
+ * a block size of 128. For user-only, aarch64_max_initfn will set the
+ * block size to 512. Fill out the other cases for future-proofing.
+ *
+ * In order to be able to find the first miscompare later, we want the
+ * tag bytes to be in little-endian order.
+ */
+ switch (log2_tag_bytes) {
+ case 0: /* zva_blocksize 32 */
+ mem_tag = *(uint8_t *)mem;
+ ptr_tag *= 0x11u;
+ break;
+ case 1: /* zva_blocksize 64 */
+ mem_tag = cpu_to_le16(*(uint16_t *)mem);
+ ptr_tag *= 0x1111u;
+ break;
+ case 2: /* zva_blocksize 128 */
+ mem_tag = cpu_to_le32(*(uint32_t *)mem);
+ ptr_tag *= 0x11111111u;
+ break;
+ case 3: /* zva_blocksize 256 */
+ mem_tag = cpu_to_le64(*(uint64_t *)mem);
+ ptr_tag *= 0x1111111111111111ull;
+ break;
+
+ default: /* zva_blocksize 512, 1024, 2048 */
+ ptr_tag *= 0x1111111111111111ull;
+ i = 0;
+ do {
+ mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
+ if (unlikely(mem_tag != ptr_tag)) {
+ goto fail;
+ }
+ i += 8;
+ align_ptr += 16 * TAG_GRANULE;
+ } while (i < tag_bytes);
+ goto done;
+ }
+
+ if (likely(mem_tag == ptr_tag)) {
+ goto done;
+ }
+
+ fail:
+ /* Locate the first nibble that differs. */
+ i = ctz64(mem_tag ^ ptr_tag) >> 4;
+ mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
+
+ done:
+ return useronly_clean_ptr(ptr);
+}