diff options
Diffstat (limited to 'target/arm/sve_helper.c')
-rw-r--r-- | target/arm/sve_helper.c | 7654 |
1 files changed, 7654 insertions, 0 deletions
diff --git a/target/arm/sve_helper.c b/target/arm/sve_helper.c new file mode 100644 index 000000000..07be55b7e --- /dev/null +++ b/target/arm/sve_helper.c @@ -0,0 +1,7654 @@ +/* + * ARM SVE Operations + * + * Copyright (c) 2018 Linaro, Ltd. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "internals.h" +#include "exec/exec-all.h" +#include "exec/cpu_ldst.h" +#include "exec/helper-proto.h" +#include "tcg/tcg-gvec-desc.h" +#include "fpu/softfloat.h" +#include "tcg/tcg.h" +#include "vec_internal.h" + + +/* Return a value for NZCV as per the ARM PredTest pseudofunction. + * + * The return value has bit 31 set if N is set, bit 1 set if Z is clear, + * and bit 0 set if C is set. Compare the definitions of these variables + * within CPUARMState. + */ + +/* For no G bits set, NZCV = C. */ +#define PREDTEST_INIT 1 + +/* This is an iterative function, called for each Pd and Pg word + * moving forward. + */ +static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags) +{ + if (likely(g)) { + /* Compute N from first D & G. + Use bit 2 to signal first G bit seen. */ + if (!(flags & 4)) { + flags |= ((d & (g & -g)) != 0) << 31; + flags |= 4; + } + + /* Accumulate Z from each D & G. */ + flags |= ((d & g) != 0) << 1; + + /* Compute C from last !(D & G). Replace previous. */ + flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0); + } + return flags; +} + +/* This is an iterative function, called for each Pd and Pg word + * moving backward. + */ +static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags) +{ + if (likely(g)) { + /* Compute C from first (i.e last) !(D & G). + Use bit 2 to signal first G bit seen. */ + if (!(flags & 4)) { + flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */ + flags |= (d & pow2floor(g)) == 0; + } + + /* Accumulate Z from each D & G. */ + flags |= ((d & g) != 0) << 1; + + /* Compute N from last (i.e first) D & G. Replace previous. */ + flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0); + } + return flags; +} + +/* The same for a single word predicate. */ +uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g) +{ + return iter_predtest_fwd(d, g, PREDTEST_INIT); +} + +/* The same for a multi-word predicate. */ +uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words) +{ + uint32_t flags = PREDTEST_INIT; + uint64_t *d = vd, *g = vg; + uintptr_t i = 0; + + do { + flags = iter_predtest_fwd(d[i], g[i], flags); + } while (++i < words); + + return flags; +} + +/* + * Expand active predicate bits to bytes, for byte elements. + * (The data table itself is in vec_helper.c as MVE also needs it.) + */ +static inline uint64_t expand_pred_b(uint8_t byte) +{ + return expand_pred_b_data[byte]; +} + +/* Similarly for half-word elements. + * for (i = 0; i < 256; ++i) { + * unsigned long m = 0; + * if (i & 0xaa) { + * continue; + * } + * for (j = 0; j < 8; j += 2) { + * if ((i >> j) & 1) { + * m |= 0xfffful << (j << 3); + * } + * } + * printf("[0x%x] = 0x%016lx,\n", i, m); + * } + */ +static inline uint64_t expand_pred_h(uint8_t byte) +{ + static const uint64_t word[] = { + [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000, + [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000, + [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000, + [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000, + [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000, + [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000, + [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000, + [0x55] = 0xffffffffffffffff, + }; + return word[byte & 0x55]; +} + +/* Similarly for single word elements. */ +static inline uint64_t expand_pred_s(uint8_t byte) +{ + static const uint64_t word[] = { + [0x01] = 0x00000000ffffffffull, + [0x10] = 0xffffffff00000000ull, + [0x11] = 0xffffffffffffffffull, + }; + return word[byte & 0x11]; +} + +#define LOGICAL_PPPP(NAME, FUNC) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + uintptr_t opr_sz = simd_oprsz(desc); \ + uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \ + uintptr_t i; \ + for (i = 0; i < opr_sz / 8; ++i) { \ + d[i] = FUNC(n[i], m[i], g[i]); \ + } \ +} + +#define DO_AND(N, M, G) (((N) & (M)) & (G)) +#define DO_BIC(N, M, G) (((N) & ~(M)) & (G)) +#define DO_EOR(N, M, G) (((N) ^ (M)) & (G)) +#define DO_ORR(N, M, G) (((N) | (M)) & (G)) +#define DO_ORN(N, M, G) (((N) | ~(M)) & (G)) +#define DO_NOR(N, M, G) (~((N) | (M)) & (G)) +#define DO_NAND(N, M, G) (~((N) & (M)) & (G)) +#define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G))) + +LOGICAL_PPPP(sve_and_pppp, DO_AND) +LOGICAL_PPPP(sve_bic_pppp, DO_BIC) +LOGICAL_PPPP(sve_eor_pppp, DO_EOR) +LOGICAL_PPPP(sve_sel_pppp, DO_SEL) +LOGICAL_PPPP(sve_orr_pppp, DO_ORR) +LOGICAL_PPPP(sve_orn_pppp, DO_ORN) +LOGICAL_PPPP(sve_nor_pppp, DO_NOR) +LOGICAL_PPPP(sve_nand_pppp, DO_NAND) + +#undef DO_AND +#undef DO_BIC +#undef DO_EOR +#undef DO_ORR +#undef DO_ORN +#undef DO_NOR +#undef DO_NAND +#undef DO_SEL +#undef LOGICAL_PPPP + +/* Fully general three-operand expander, controlled by a predicate. + * This is complicated by the host-endian storage of the register file. + */ +/* ??? I don't expect the compiler could ever vectorize this itself. + * With some tables we can convert bit masks to byte masks, and with + * extra care wrt byte/word ordering we could use gcc generic vectors + * and do 16 bytes at a time. + */ +#define DO_ZPZZ(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + TYPE mm = *(TYPE *)(vm + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, mm); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +/* Similarly, specialized for 64-bit operands. */ +#define DO_ZPZZ_D(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPE *d = vd, *n = vn, *m = vm; \ + uint8_t *pg = vg; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPE nn = n[i], mm = m[i]; \ + d[i] = OP(nn, mm); \ + } \ + } \ +} + +#define DO_AND(N, M) (N & M) +#define DO_EOR(N, M) (N ^ M) +#define DO_ORR(N, M) (N | M) +#define DO_BIC(N, M) (N & ~M) +#define DO_ADD(N, M) (N + M) +#define DO_SUB(N, M) (N - M) +#define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) +#define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) +#define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N)) +#define DO_MUL(N, M) (N * M) + + +/* + * We must avoid the C undefined behaviour cases: division by + * zero and signed division of INT_MIN by -1. Both of these + * have architecturally defined required results for Arm. + * We special case all signed divisions by -1 to avoid having + * to deduce the minimum integer for the type involved. + */ +#define DO_SDIV(N, M) (unlikely(M == 0) ? 0 : unlikely(M == -1) ? -N : N / M) +#define DO_UDIV(N, M) (unlikely(M == 0) ? 0 : N / M) + +DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND) +DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND) +DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND) +DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND) + +DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR) +DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR) +DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR) +DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR) + +DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR) +DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR) +DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR) +DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR) + +DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC) +DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC) +DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC) +DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC) + +DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD) +DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD) +DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD) +DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD) + +DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB) +DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB) +DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB) +DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB) + +DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX) +DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX) +DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX) +DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX) + +DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX) +DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX) +DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX) +DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX) + +DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN) +DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN) +DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN) +DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN) + +DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN) +DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN) +DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN) +DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN) + +DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD) +DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD) +DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD) +DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD) + +DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD) +DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD) +DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD) +DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD) + +/* Because the computation type is at least twice as large as required, + these work for both signed and unsigned source types. */ +static inline uint8_t do_mulh_b(int32_t n, int32_t m) +{ + return (n * m) >> 8; +} + +static inline uint16_t do_mulh_h(int32_t n, int32_t m) +{ + return (n * m) >> 16; +} + +static inline uint32_t do_mulh_s(int64_t n, int64_t m) +{ + return (n * m) >> 32; +} + +static inline uint64_t do_smulh_d(uint64_t n, uint64_t m) +{ + uint64_t lo, hi; + muls64(&lo, &hi, n, m); + return hi; +} + +static inline uint64_t do_umulh_d(uint64_t n, uint64_t m) +{ + uint64_t lo, hi; + mulu64(&lo, &hi, n, m); + return hi; +} + +DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL) +DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL) +DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL) +DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL) + +DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b) +DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h) +DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s) +DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d) + +DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b) +DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h) +DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s) +DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d) + +DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_SDIV) +DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_SDIV) + +DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_UDIV) +DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_UDIV) + +/* Note that all bits of the shift are significant + and not modulo the element size. */ +#define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1)) +#define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0) +#define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0) + +DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR) +DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR) +DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL) + +DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR) +DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR) +DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL) + +DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR) +DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR) +DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL) + +DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR) +DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR) +DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL) + +static inline uint16_t do_sadalp_h(int16_t n, int16_t m) +{ + int8_t n1 = n, n2 = n >> 8; + return m + n1 + n2; +} + +static inline uint32_t do_sadalp_s(int32_t n, int32_t m) +{ + int16_t n1 = n, n2 = n >> 16; + return m + n1 + n2; +} + +static inline uint64_t do_sadalp_d(int64_t n, int64_t m) +{ + int32_t n1 = n, n2 = n >> 32; + return m + n1 + n2; +} + +DO_ZPZZ(sve2_sadalp_zpzz_h, int16_t, H1_2, do_sadalp_h) +DO_ZPZZ(sve2_sadalp_zpzz_s, int32_t, H1_4, do_sadalp_s) +DO_ZPZZ_D(sve2_sadalp_zpzz_d, int64_t, do_sadalp_d) + +static inline uint16_t do_uadalp_h(uint16_t n, uint16_t m) +{ + uint8_t n1 = n, n2 = n >> 8; + return m + n1 + n2; +} + +static inline uint32_t do_uadalp_s(uint32_t n, uint32_t m) +{ + uint16_t n1 = n, n2 = n >> 16; + return m + n1 + n2; +} + +static inline uint64_t do_uadalp_d(uint64_t n, uint64_t m) +{ + uint32_t n1 = n, n2 = n >> 32; + return m + n1 + n2; +} + +DO_ZPZZ(sve2_uadalp_zpzz_h, uint16_t, H1_2, do_uadalp_h) +DO_ZPZZ(sve2_uadalp_zpzz_s, uint32_t, H1_4, do_uadalp_s) +DO_ZPZZ_D(sve2_uadalp_zpzz_d, uint64_t, do_uadalp_d) + +#define do_srshl_b(n, m) do_sqrshl_bhs(n, m, 8, true, NULL) +#define do_srshl_h(n, m) do_sqrshl_bhs(n, m, 16, true, NULL) +#define do_srshl_s(n, m) do_sqrshl_bhs(n, m, 32, true, NULL) +#define do_srshl_d(n, m) do_sqrshl_d(n, m, true, NULL) + +DO_ZPZZ(sve2_srshl_zpzz_b, int8_t, H1, do_srshl_b) +DO_ZPZZ(sve2_srshl_zpzz_h, int16_t, H1_2, do_srshl_h) +DO_ZPZZ(sve2_srshl_zpzz_s, int32_t, H1_4, do_srshl_s) +DO_ZPZZ_D(sve2_srshl_zpzz_d, int64_t, do_srshl_d) + +#define do_urshl_b(n, m) do_uqrshl_bhs(n, (int8_t)m, 8, true, NULL) +#define do_urshl_h(n, m) do_uqrshl_bhs(n, (int16_t)m, 16, true, NULL) +#define do_urshl_s(n, m) do_uqrshl_bhs(n, m, 32, true, NULL) +#define do_urshl_d(n, m) do_uqrshl_d(n, m, true, NULL) + +DO_ZPZZ(sve2_urshl_zpzz_b, uint8_t, H1, do_urshl_b) +DO_ZPZZ(sve2_urshl_zpzz_h, uint16_t, H1_2, do_urshl_h) +DO_ZPZZ(sve2_urshl_zpzz_s, uint32_t, H1_4, do_urshl_s) +DO_ZPZZ_D(sve2_urshl_zpzz_d, uint64_t, do_urshl_d) + +/* + * Unlike the NEON and AdvSIMD versions, there is no QC bit to set. + * We pass in a pointer to a dummy saturation field to trigger + * the saturating arithmetic but discard the information about + * whether it has occurred. + */ +#define do_sqshl_b(n, m) \ + ({ uint32_t discard; do_sqrshl_bhs(n, m, 8, false, &discard); }) +#define do_sqshl_h(n, m) \ + ({ uint32_t discard; do_sqrshl_bhs(n, m, 16, false, &discard); }) +#define do_sqshl_s(n, m) \ + ({ uint32_t discard; do_sqrshl_bhs(n, m, 32, false, &discard); }) +#define do_sqshl_d(n, m) \ + ({ uint32_t discard; do_sqrshl_d(n, m, false, &discard); }) + +DO_ZPZZ(sve2_sqshl_zpzz_b, int8_t, H1_2, do_sqshl_b) +DO_ZPZZ(sve2_sqshl_zpzz_h, int16_t, H1_2, do_sqshl_h) +DO_ZPZZ(sve2_sqshl_zpzz_s, int32_t, H1_4, do_sqshl_s) +DO_ZPZZ_D(sve2_sqshl_zpzz_d, int64_t, do_sqshl_d) + +#define do_uqshl_b(n, m) \ + ({ uint32_t discard; do_uqrshl_bhs(n, (int8_t)m, 8, false, &discard); }) +#define do_uqshl_h(n, m) \ + ({ uint32_t discard; do_uqrshl_bhs(n, (int16_t)m, 16, false, &discard); }) +#define do_uqshl_s(n, m) \ + ({ uint32_t discard; do_uqrshl_bhs(n, m, 32, false, &discard); }) +#define do_uqshl_d(n, m) \ + ({ uint32_t discard; do_uqrshl_d(n, m, false, &discard); }) + +DO_ZPZZ(sve2_uqshl_zpzz_b, uint8_t, H1_2, do_uqshl_b) +DO_ZPZZ(sve2_uqshl_zpzz_h, uint16_t, H1_2, do_uqshl_h) +DO_ZPZZ(sve2_uqshl_zpzz_s, uint32_t, H1_4, do_uqshl_s) +DO_ZPZZ_D(sve2_uqshl_zpzz_d, uint64_t, do_uqshl_d) + +#define do_sqrshl_b(n, m) \ + ({ uint32_t discard; do_sqrshl_bhs(n, m, 8, true, &discard); }) +#define do_sqrshl_h(n, m) \ + ({ uint32_t discard; do_sqrshl_bhs(n, m, 16, true, &discard); }) +#define do_sqrshl_s(n, m) \ + ({ uint32_t discard; do_sqrshl_bhs(n, m, 32, true, &discard); }) +#define do_sqrshl_d(n, m) \ + ({ uint32_t discard; do_sqrshl_d(n, m, true, &discard); }) + +DO_ZPZZ(sve2_sqrshl_zpzz_b, int8_t, H1_2, do_sqrshl_b) +DO_ZPZZ(sve2_sqrshl_zpzz_h, int16_t, H1_2, do_sqrshl_h) +DO_ZPZZ(sve2_sqrshl_zpzz_s, int32_t, H1_4, do_sqrshl_s) +DO_ZPZZ_D(sve2_sqrshl_zpzz_d, int64_t, do_sqrshl_d) + +#undef do_sqrshl_d + +#define do_uqrshl_b(n, m) \ + ({ uint32_t discard; do_uqrshl_bhs(n, (int8_t)m, 8, true, &discard); }) +#define do_uqrshl_h(n, m) \ + ({ uint32_t discard; do_uqrshl_bhs(n, (int16_t)m, 16, true, &discard); }) +#define do_uqrshl_s(n, m) \ + ({ uint32_t discard; do_uqrshl_bhs(n, m, 32, true, &discard); }) +#define do_uqrshl_d(n, m) \ + ({ uint32_t discard; do_uqrshl_d(n, m, true, &discard); }) + +DO_ZPZZ(sve2_uqrshl_zpzz_b, uint8_t, H1_2, do_uqrshl_b) +DO_ZPZZ(sve2_uqrshl_zpzz_h, uint16_t, H1_2, do_uqrshl_h) +DO_ZPZZ(sve2_uqrshl_zpzz_s, uint32_t, H1_4, do_uqrshl_s) +DO_ZPZZ_D(sve2_uqrshl_zpzz_d, uint64_t, do_uqrshl_d) + +#undef do_uqrshl_d + +#define DO_HADD_BHS(n, m) (((int64_t)n + m) >> 1) +#define DO_HADD_D(n, m) ((n >> 1) + (m >> 1) + (n & m & 1)) + +DO_ZPZZ(sve2_shadd_zpzz_b, int8_t, H1, DO_HADD_BHS) +DO_ZPZZ(sve2_shadd_zpzz_h, int16_t, H1_2, DO_HADD_BHS) +DO_ZPZZ(sve2_shadd_zpzz_s, int32_t, H1_4, DO_HADD_BHS) +DO_ZPZZ_D(sve2_shadd_zpzz_d, int64_t, DO_HADD_D) + +DO_ZPZZ(sve2_uhadd_zpzz_b, uint8_t, H1, DO_HADD_BHS) +DO_ZPZZ(sve2_uhadd_zpzz_h, uint16_t, H1_2, DO_HADD_BHS) +DO_ZPZZ(sve2_uhadd_zpzz_s, uint32_t, H1_4, DO_HADD_BHS) +DO_ZPZZ_D(sve2_uhadd_zpzz_d, uint64_t, DO_HADD_D) + +#define DO_RHADD_BHS(n, m) (((int64_t)n + m + 1) >> 1) +#define DO_RHADD_D(n, m) ((n >> 1) + (m >> 1) + ((n | m) & 1)) + +DO_ZPZZ(sve2_srhadd_zpzz_b, int8_t, H1, DO_RHADD_BHS) +DO_ZPZZ(sve2_srhadd_zpzz_h, int16_t, H1_2, DO_RHADD_BHS) +DO_ZPZZ(sve2_srhadd_zpzz_s, int32_t, H1_4, DO_RHADD_BHS) +DO_ZPZZ_D(sve2_srhadd_zpzz_d, int64_t, DO_RHADD_D) + +DO_ZPZZ(sve2_urhadd_zpzz_b, uint8_t, H1, DO_RHADD_BHS) +DO_ZPZZ(sve2_urhadd_zpzz_h, uint16_t, H1_2, DO_RHADD_BHS) +DO_ZPZZ(sve2_urhadd_zpzz_s, uint32_t, H1_4, DO_RHADD_BHS) +DO_ZPZZ_D(sve2_urhadd_zpzz_d, uint64_t, DO_RHADD_D) + +#define DO_HSUB_BHS(n, m) (((int64_t)n - m) >> 1) +#define DO_HSUB_D(n, m) ((n >> 1) - (m >> 1) - (~n & m & 1)) + +DO_ZPZZ(sve2_shsub_zpzz_b, int8_t, H1, DO_HSUB_BHS) +DO_ZPZZ(sve2_shsub_zpzz_h, int16_t, H1_2, DO_HSUB_BHS) +DO_ZPZZ(sve2_shsub_zpzz_s, int32_t, H1_4, DO_HSUB_BHS) +DO_ZPZZ_D(sve2_shsub_zpzz_d, int64_t, DO_HSUB_D) + +DO_ZPZZ(sve2_uhsub_zpzz_b, uint8_t, H1, DO_HSUB_BHS) +DO_ZPZZ(sve2_uhsub_zpzz_h, uint16_t, H1_2, DO_HSUB_BHS) +DO_ZPZZ(sve2_uhsub_zpzz_s, uint32_t, H1_4, DO_HSUB_BHS) +DO_ZPZZ_D(sve2_uhsub_zpzz_d, uint64_t, DO_HSUB_D) + +static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max) +{ + return val >= max ? max : val <= min ? min : val; +} + +#define DO_SQADD_B(n, m) do_sat_bhs((int64_t)n + m, INT8_MIN, INT8_MAX) +#define DO_SQADD_H(n, m) do_sat_bhs((int64_t)n + m, INT16_MIN, INT16_MAX) +#define DO_SQADD_S(n, m) do_sat_bhs((int64_t)n + m, INT32_MIN, INT32_MAX) + +static inline int64_t do_sqadd_d(int64_t n, int64_t m) +{ + int64_t r = n + m; + if (((r ^ n) & ~(n ^ m)) < 0) { + /* Signed overflow. */ + return r < 0 ? INT64_MAX : INT64_MIN; + } + return r; +} + +DO_ZPZZ(sve2_sqadd_zpzz_b, int8_t, H1, DO_SQADD_B) +DO_ZPZZ(sve2_sqadd_zpzz_h, int16_t, H1_2, DO_SQADD_H) +DO_ZPZZ(sve2_sqadd_zpzz_s, int32_t, H1_4, DO_SQADD_S) +DO_ZPZZ_D(sve2_sqadd_zpzz_d, int64_t, do_sqadd_d) + +#define DO_UQADD_B(n, m) do_sat_bhs((int64_t)n + m, 0, UINT8_MAX) +#define DO_UQADD_H(n, m) do_sat_bhs((int64_t)n + m, 0, UINT16_MAX) +#define DO_UQADD_S(n, m) do_sat_bhs((int64_t)n + m, 0, UINT32_MAX) + +static inline uint64_t do_uqadd_d(uint64_t n, uint64_t m) +{ + uint64_t r = n + m; + return r < n ? UINT64_MAX : r; +} + +DO_ZPZZ(sve2_uqadd_zpzz_b, uint8_t, H1, DO_UQADD_B) +DO_ZPZZ(sve2_uqadd_zpzz_h, uint16_t, H1_2, DO_UQADD_H) +DO_ZPZZ(sve2_uqadd_zpzz_s, uint32_t, H1_4, DO_UQADD_S) +DO_ZPZZ_D(sve2_uqadd_zpzz_d, uint64_t, do_uqadd_d) + +#define DO_SQSUB_B(n, m) do_sat_bhs((int64_t)n - m, INT8_MIN, INT8_MAX) +#define DO_SQSUB_H(n, m) do_sat_bhs((int64_t)n - m, INT16_MIN, INT16_MAX) +#define DO_SQSUB_S(n, m) do_sat_bhs((int64_t)n - m, INT32_MIN, INT32_MAX) + +static inline int64_t do_sqsub_d(int64_t n, int64_t m) +{ + int64_t r = n - m; + if (((r ^ n) & (n ^ m)) < 0) { + /* Signed overflow. */ + return r < 0 ? INT64_MAX : INT64_MIN; + } + return r; +} + +DO_ZPZZ(sve2_sqsub_zpzz_b, int8_t, H1, DO_SQSUB_B) +DO_ZPZZ(sve2_sqsub_zpzz_h, int16_t, H1_2, DO_SQSUB_H) +DO_ZPZZ(sve2_sqsub_zpzz_s, int32_t, H1_4, DO_SQSUB_S) +DO_ZPZZ_D(sve2_sqsub_zpzz_d, int64_t, do_sqsub_d) + +#define DO_UQSUB_B(n, m) do_sat_bhs((int64_t)n - m, 0, UINT8_MAX) +#define DO_UQSUB_H(n, m) do_sat_bhs((int64_t)n - m, 0, UINT16_MAX) +#define DO_UQSUB_S(n, m) do_sat_bhs((int64_t)n - m, 0, UINT32_MAX) + +static inline uint64_t do_uqsub_d(uint64_t n, uint64_t m) +{ + return n > m ? n - m : 0; +} + +DO_ZPZZ(sve2_uqsub_zpzz_b, uint8_t, H1, DO_UQSUB_B) +DO_ZPZZ(sve2_uqsub_zpzz_h, uint16_t, H1_2, DO_UQSUB_H) +DO_ZPZZ(sve2_uqsub_zpzz_s, uint32_t, H1_4, DO_UQSUB_S) +DO_ZPZZ_D(sve2_uqsub_zpzz_d, uint64_t, do_uqsub_d) + +#define DO_SUQADD_B(n, m) \ + do_sat_bhs((int64_t)(int8_t)n + m, INT8_MIN, INT8_MAX) +#define DO_SUQADD_H(n, m) \ + do_sat_bhs((int64_t)(int16_t)n + m, INT16_MIN, INT16_MAX) +#define DO_SUQADD_S(n, m) \ + do_sat_bhs((int64_t)(int32_t)n + m, INT32_MIN, INT32_MAX) + +static inline int64_t do_suqadd_d(int64_t n, uint64_t m) +{ + uint64_t r = n + m; + + if (n < 0) { + /* Note that m - abs(n) cannot underflow. */ + if (r > INT64_MAX) { + /* Result is either very large positive or negative. */ + if (m > -n) { + /* m > abs(n), so r is a very large positive. */ + return INT64_MAX; + } + /* Result is negative. */ + } + } else { + /* Both inputs are positive: check for overflow. */ + if (r < m || r > INT64_MAX) { + return INT64_MAX; + } + } + return r; +} + +DO_ZPZZ(sve2_suqadd_zpzz_b, uint8_t, H1, DO_SUQADD_B) +DO_ZPZZ(sve2_suqadd_zpzz_h, uint16_t, H1_2, DO_SUQADD_H) +DO_ZPZZ(sve2_suqadd_zpzz_s, uint32_t, H1_4, DO_SUQADD_S) +DO_ZPZZ_D(sve2_suqadd_zpzz_d, uint64_t, do_suqadd_d) + +#define DO_USQADD_B(n, m) \ + do_sat_bhs((int64_t)n + (int8_t)m, 0, UINT8_MAX) +#define DO_USQADD_H(n, m) \ + do_sat_bhs((int64_t)n + (int16_t)m, 0, UINT16_MAX) +#define DO_USQADD_S(n, m) \ + do_sat_bhs((int64_t)n + (int32_t)m, 0, UINT32_MAX) + +static inline uint64_t do_usqadd_d(uint64_t n, int64_t m) +{ + uint64_t r = n + m; + + if (m < 0) { + return n < -m ? 0 : r; + } + return r < n ? UINT64_MAX : r; +} + +DO_ZPZZ(sve2_usqadd_zpzz_b, uint8_t, H1, DO_USQADD_B) +DO_ZPZZ(sve2_usqadd_zpzz_h, uint16_t, H1_2, DO_USQADD_H) +DO_ZPZZ(sve2_usqadd_zpzz_s, uint32_t, H1_4, DO_USQADD_S) +DO_ZPZZ_D(sve2_usqadd_zpzz_d, uint64_t, do_usqadd_d) + +#undef DO_ZPZZ +#undef DO_ZPZZ_D + +/* + * Three operand expander, operating on element pairs. + * If the slot I is even, the elements from from VN {I, I+1}. + * If the slot I is odd, the elements from from VM {I-1, I}. + * Load all of the input elements in each pair before overwriting output. + */ +#define DO_ZPZZ_PAIR(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + TYPE n0 = *(TYPE *)(vn + H(i)); \ + TYPE m0 = *(TYPE *)(vm + H(i)); \ + TYPE n1 = *(TYPE *)(vn + H(i + sizeof(TYPE))); \ + TYPE m1 = *(TYPE *)(vm + H(i + sizeof(TYPE))); \ + if (pg & 1) { \ + *(TYPE *)(vd + H(i)) = OP(n0, n1); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + if (pg & 1) { \ + *(TYPE *)(vd + H(i)) = OP(m0, m1); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +/* Similarly, specialized for 64-bit operands. */ +#define DO_ZPZZ_PAIR_D(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPE *d = vd, *n = vn, *m = vm; \ + uint8_t *pg = vg; \ + for (i = 0; i < opr_sz; i += 2) { \ + TYPE n0 = n[i], n1 = n[i + 1]; \ + TYPE m0 = m[i], m1 = m[i + 1]; \ + if (pg[H1(i)] & 1) { \ + d[i] = OP(n0, n1); \ + } \ + if (pg[H1(i + 1)] & 1) { \ + d[i + 1] = OP(m0, m1); \ + } \ + } \ +} + +DO_ZPZZ_PAIR(sve2_addp_zpzz_b, uint8_t, H1, DO_ADD) +DO_ZPZZ_PAIR(sve2_addp_zpzz_h, uint16_t, H1_2, DO_ADD) +DO_ZPZZ_PAIR(sve2_addp_zpzz_s, uint32_t, H1_4, DO_ADD) +DO_ZPZZ_PAIR_D(sve2_addp_zpzz_d, uint64_t, DO_ADD) + +DO_ZPZZ_PAIR(sve2_umaxp_zpzz_b, uint8_t, H1, DO_MAX) +DO_ZPZZ_PAIR(sve2_umaxp_zpzz_h, uint16_t, H1_2, DO_MAX) +DO_ZPZZ_PAIR(sve2_umaxp_zpzz_s, uint32_t, H1_4, DO_MAX) +DO_ZPZZ_PAIR_D(sve2_umaxp_zpzz_d, uint64_t, DO_MAX) + +DO_ZPZZ_PAIR(sve2_uminp_zpzz_b, uint8_t, H1, DO_MIN) +DO_ZPZZ_PAIR(sve2_uminp_zpzz_h, uint16_t, H1_2, DO_MIN) +DO_ZPZZ_PAIR(sve2_uminp_zpzz_s, uint32_t, H1_4, DO_MIN) +DO_ZPZZ_PAIR_D(sve2_uminp_zpzz_d, uint64_t, DO_MIN) + +DO_ZPZZ_PAIR(sve2_smaxp_zpzz_b, int8_t, H1, DO_MAX) +DO_ZPZZ_PAIR(sve2_smaxp_zpzz_h, int16_t, H1_2, DO_MAX) +DO_ZPZZ_PAIR(sve2_smaxp_zpzz_s, int32_t, H1_4, DO_MAX) +DO_ZPZZ_PAIR_D(sve2_smaxp_zpzz_d, int64_t, DO_MAX) + +DO_ZPZZ_PAIR(sve2_sminp_zpzz_b, int8_t, H1, DO_MIN) +DO_ZPZZ_PAIR(sve2_sminp_zpzz_h, int16_t, H1_2, DO_MIN) +DO_ZPZZ_PAIR(sve2_sminp_zpzz_s, int32_t, H1_4, DO_MIN) +DO_ZPZZ_PAIR_D(sve2_sminp_zpzz_d, int64_t, DO_MIN) + +#undef DO_ZPZZ_PAIR +#undef DO_ZPZZ_PAIR_D + +#define DO_ZPZZ_PAIR_FP(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \ + void *status, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + TYPE n0 = *(TYPE *)(vn + H(i)); \ + TYPE m0 = *(TYPE *)(vm + H(i)); \ + TYPE n1 = *(TYPE *)(vn + H(i + sizeof(TYPE))); \ + TYPE m1 = *(TYPE *)(vm + H(i + sizeof(TYPE))); \ + if (pg & 1) { \ + *(TYPE *)(vd + H(i)) = OP(n0, n1, status); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + if (pg & 1) { \ + *(TYPE *)(vd + H(i)) = OP(m0, m1, status); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_h, float16, H1_2, float16_add) +DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_s, float32, H1_4, float32_add) +DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_d, float64, H1_8, float64_add) + +DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_h, float16, H1_2, float16_maxnum) +DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_s, float32, H1_4, float32_maxnum) +DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_d, float64, H1_8, float64_maxnum) + +DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_h, float16, H1_2, float16_minnum) +DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_s, float32, H1_4, float32_minnum) +DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_d, float64, H1_8, float64_minnum) + +DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_h, float16, H1_2, float16_max) +DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_s, float32, H1_4, float32_max) +DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_d, float64, H1_8, float64_max) + +DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_h, float16, H1_2, float16_min) +DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_s, float32, H1_4, float32_min) +DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_d, float64, H1_8, float64_min) + +#undef DO_ZPZZ_PAIR_FP + +/* Three-operand expander, controlled by a predicate, in which the + * third operand is "wide". That is, for D = N op M, the same 64-bit + * value of M is used with all of the narrower values of N. + */ +#define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \ + TYPEW mm = *(TYPEW *)(vm + i); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, mm); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 7); \ + } \ +} + +DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR) +DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR) +DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL) + +DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR) +DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR) +DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL) + +DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR) +DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR) +DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL) + +#undef DO_ZPZW + +/* Fully general two-operand expander, controlled by a predicate. + */ +#define DO_ZPZ(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +/* Similarly, specialized for 64-bit operands. */ +#define DO_ZPZ_D(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPE *d = vd, *n = vn; \ + uint8_t *pg = vg; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPE nn = n[i]; \ + d[i] = OP(nn); \ + } \ + } \ +} + +#define DO_CLS_B(N) (clrsb32(N) - 24) +#define DO_CLS_H(N) (clrsb32(N) - 16) + +DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B) +DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H) +DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32) +DO_ZPZ_D(sve_cls_d, int64_t, clrsb64) + +#define DO_CLZ_B(N) (clz32(N) - 24) +#define DO_CLZ_H(N) (clz32(N) - 16) + +DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B) +DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H) +DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32) +DO_ZPZ_D(sve_clz_d, uint64_t, clz64) + +DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8) +DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16) +DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32) +DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64) + +#define DO_CNOT(N) (N == 0) + +DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT) +DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT) +DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT) +DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT) + +#define DO_FABS(N) (N & ((__typeof(N))-1 >> 1)) + +DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS) +DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS) +DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS) + +#define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1)) + +DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG) +DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG) +DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG) + +#define DO_NOT(N) (~N) + +DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT) +DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT) +DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT) +DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT) + +#define DO_SXTB(N) ((int8_t)N) +#define DO_SXTH(N) ((int16_t)N) +#define DO_SXTS(N) ((int32_t)N) +#define DO_UXTB(N) ((uint8_t)N) +#define DO_UXTH(N) ((uint16_t)N) +#define DO_UXTS(N) ((uint32_t)N) + +DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB) +DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB) +DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH) +DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB) +DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH) +DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS) + +DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB) +DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB) +DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH) +DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB) +DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH) +DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS) + +#define DO_ABS(N) (N < 0 ? -N : N) + +DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS) +DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS) +DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS) +DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS) + +#define DO_NEG(N) (-N) + +DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG) +DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG) +DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG) +DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG) + +DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16) +DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32) +DO_ZPZ_D(sve_revb_d, uint64_t, bswap64) + +DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32) +DO_ZPZ_D(sve_revh_d, uint64_t, hswap64) + +DO_ZPZ_D(sve_revw_d, uint64_t, wswap64) + +DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8) +DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16) +DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32) +DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64) + +#define DO_SQABS(X) \ + ({ __typeof(X) x_ = (X), min_ = 1ull << (sizeof(X) * 8 - 1); \ + x_ >= 0 ? x_ : x_ == min_ ? -min_ - 1 : -x_; }) + +DO_ZPZ(sve2_sqabs_b, int8_t, H1, DO_SQABS) +DO_ZPZ(sve2_sqabs_h, int16_t, H1_2, DO_SQABS) +DO_ZPZ(sve2_sqabs_s, int32_t, H1_4, DO_SQABS) +DO_ZPZ_D(sve2_sqabs_d, int64_t, DO_SQABS) + +#define DO_SQNEG(X) \ + ({ __typeof(X) x_ = (X), min_ = 1ull << (sizeof(X) * 8 - 1); \ + x_ == min_ ? -min_ - 1 : -x_; }) + +DO_ZPZ(sve2_sqneg_b, uint8_t, H1, DO_SQNEG) +DO_ZPZ(sve2_sqneg_h, uint16_t, H1_2, DO_SQNEG) +DO_ZPZ(sve2_sqneg_s, uint32_t, H1_4, DO_SQNEG) +DO_ZPZ_D(sve2_sqneg_d, uint64_t, DO_SQNEG) + +DO_ZPZ(sve2_urecpe_s, uint32_t, H1_4, helper_recpe_u32) +DO_ZPZ(sve2_ursqrte_s, uint32_t, H1_4, helper_rsqrte_u32) + +/* Three-operand expander, unpredicated, in which the third operand is "wide". + */ +#define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + TYPEW mm = *(TYPEW *)(vm + i); \ + do { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, mm); \ + i += sizeof(TYPE); \ + } while (i & 7); \ + } \ +} + +DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR) +DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR) +DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL) + +DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR) +DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR) +DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL) + +DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR) +DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR) +DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL) + +#undef DO_ZZW + +#undef DO_CLS_B +#undef DO_CLS_H +#undef DO_CLZ_B +#undef DO_CLZ_H +#undef DO_CNOT +#undef DO_FABS +#undef DO_FNEG +#undef DO_ABS +#undef DO_NEG +#undef DO_ZPZ +#undef DO_ZPZ_D + +/* + * Three-operand expander, unpredicated, in which the two inputs are + * selected from the top or bottom half of the wide column. + */ +#define DO_ZZZ_TB(NAME, TYPEW, TYPEN, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + int sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ + int sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPEN); \ + for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEN *)(vn + HN(i + sel1)); \ + TYPEW mm = *(TYPEN *)(vm + HN(i + sel2)); \ + *(TYPEW *)(vd + HW(i)) = OP(nn, mm); \ + } \ +} + +DO_ZZZ_TB(sve2_saddl_h, int16_t, int8_t, H1_2, H1, DO_ADD) +DO_ZZZ_TB(sve2_saddl_s, int32_t, int16_t, H1_4, H1_2, DO_ADD) +DO_ZZZ_TB(sve2_saddl_d, int64_t, int32_t, H1_8, H1_4, DO_ADD) + +DO_ZZZ_TB(sve2_ssubl_h, int16_t, int8_t, H1_2, H1, DO_SUB) +DO_ZZZ_TB(sve2_ssubl_s, int32_t, int16_t, H1_4, H1_2, DO_SUB) +DO_ZZZ_TB(sve2_ssubl_d, int64_t, int32_t, H1_8, H1_4, DO_SUB) + +DO_ZZZ_TB(sve2_sabdl_h, int16_t, int8_t, H1_2, H1, DO_ABD) +DO_ZZZ_TB(sve2_sabdl_s, int32_t, int16_t, H1_4, H1_2, DO_ABD) +DO_ZZZ_TB(sve2_sabdl_d, int64_t, int32_t, H1_8, H1_4, DO_ABD) + +DO_ZZZ_TB(sve2_uaddl_h, uint16_t, uint8_t, H1_2, H1, DO_ADD) +DO_ZZZ_TB(sve2_uaddl_s, uint32_t, uint16_t, H1_4, H1_2, DO_ADD) +DO_ZZZ_TB(sve2_uaddl_d, uint64_t, uint32_t, H1_8, H1_4, DO_ADD) + +DO_ZZZ_TB(sve2_usubl_h, uint16_t, uint8_t, H1_2, H1, DO_SUB) +DO_ZZZ_TB(sve2_usubl_s, uint32_t, uint16_t, H1_4, H1_2, DO_SUB) +DO_ZZZ_TB(sve2_usubl_d, uint64_t, uint32_t, H1_8, H1_4, DO_SUB) + +DO_ZZZ_TB(sve2_uabdl_h, uint16_t, uint8_t, H1_2, H1, DO_ABD) +DO_ZZZ_TB(sve2_uabdl_s, uint32_t, uint16_t, H1_4, H1_2, DO_ABD) +DO_ZZZ_TB(sve2_uabdl_d, uint64_t, uint32_t, H1_8, H1_4, DO_ABD) + +DO_ZZZ_TB(sve2_smull_zzz_h, int16_t, int8_t, H1_2, H1, DO_MUL) +DO_ZZZ_TB(sve2_smull_zzz_s, int32_t, int16_t, H1_4, H1_2, DO_MUL) +DO_ZZZ_TB(sve2_smull_zzz_d, int64_t, int32_t, H1_8, H1_4, DO_MUL) + +DO_ZZZ_TB(sve2_umull_zzz_h, uint16_t, uint8_t, H1_2, H1, DO_MUL) +DO_ZZZ_TB(sve2_umull_zzz_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL) +DO_ZZZ_TB(sve2_umull_zzz_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL) + +/* Note that the multiply cannot overflow, but the doubling can. */ +static inline int16_t do_sqdmull_h(int16_t n, int16_t m) +{ + int16_t val = n * m; + return DO_SQADD_H(val, val); +} + +static inline int32_t do_sqdmull_s(int32_t n, int32_t m) +{ + int32_t val = n * m; + return DO_SQADD_S(val, val); +} + +static inline int64_t do_sqdmull_d(int64_t n, int64_t m) +{ + int64_t val = n * m; + return do_sqadd_d(val, val); +} + +DO_ZZZ_TB(sve2_sqdmull_zzz_h, int16_t, int8_t, H1_2, H1, do_sqdmull_h) +DO_ZZZ_TB(sve2_sqdmull_zzz_s, int32_t, int16_t, H1_4, H1_2, do_sqdmull_s) +DO_ZZZ_TB(sve2_sqdmull_zzz_d, int64_t, int32_t, H1_8, H1_4, do_sqdmull_d) + +#undef DO_ZZZ_TB + +#define DO_ZZZ_WTB(NAME, TYPEW, TYPEN, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + int sel2 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ + for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEW *)(vn + HW(i)); \ + TYPEW mm = *(TYPEN *)(vm + HN(i + sel2)); \ + *(TYPEW *)(vd + HW(i)) = OP(nn, mm); \ + } \ +} + +DO_ZZZ_WTB(sve2_saddw_h, int16_t, int8_t, H1_2, H1, DO_ADD) +DO_ZZZ_WTB(sve2_saddw_s, int32_t, int16_t, H1_4, H1_2, DO_ADD) +DO_ZZZ_WTB(sve2_saddw_d, int64_t, int32_t, H1_8, H1_4, DO_ADD) + +DO_ZZZ_WTB(sve2_ssubw_h, int16_t, int8_t, H1_2, H1, DO_SUB) +DO_ZZZ_WTB(sve2_ssubw_s, int32_t, int16_t, H1_4, H1_2, DO_SUB) +DO_ZZZ_WTB(sve2_ssubw_d, int64_t, int32_t, H1_8, H1_4, DO_SUB) + +DO_ZZZ_WTB(sve2_uaddw_h, uint16_t, uint8_t, H1_2, H1, DO_ADD) +DO_ZZZ_WTB(sve2_uaddw_s, uint32_t, uint16_t, H1_4, H1_2, DO_ADD) +DO_ZZZ_WTB(sve2_uaddw_d, uint64_t, uint32_t, H1_8, H1_4, DO_ADD) + +DO_ZZZ_WTB(sve2_usubw_h, uint16_t, uint8_t, H1_2, H1, DO_SUB) +DO_ZZZ_WTB(sve2_usubw_s, uint32_t, uint16_t, H1_4, H1_2, DO_SUB) +DO_ZZZ_WTB(sve2_usubw_d, uint64_t, uint32_t, H1_8, H1_4, DO_SUB) + +#undef DO_ZZZ_WTB + +#define DO_ZZZ_NTB(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + intptr_t sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPE); \ + intptr_t sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPE); \ + for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) { \ + TYPE nn = *(TYPE *)(vn + H(i + sel1)); \ + TYPE mm = *(TYPE *)(vm + H(i + sel2)); \ + *(TYPE *)(vd + H(i + sel1)) = OP(nn, mm); \ + } \ +} + +DO_ZZZ_NTB(sve2_eoril_b, uint8_t, H1, DO_EOR) +DO_ZZZ_NTB(sve2_eoril_h, uint16_t, H1_2, DO_EOR) +DO_ZZZ_NTB(sve2_eoril_s, uint32_t, H1_4, DO_EOR) +DO_ZZZ_NTB(sve2_eoril_d, uint64_t, H1_8, DO_EOR) + +#undef DO_ZZZ_NTB + +#define DO_ZZZW_ACC(NAME, TYPEW, TYPEN, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + intptr_t sel1 = simd_data(desc) * sizeof(TYPEN); \ + for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEN *)(vn + HN(i + sel1)); \ + TYPEW mm = *(TYPEN *)(vm + HN(i + sel1)); \ + TYPEW aa = *(TYPEW *)(va + HW(i)); \ + *(TYPEW *)(vd + HW(i)) = OP(nn, mm) + aa; \ + } \ +} + +DO_ZZZW_ACC(sve2_sabal_h, int16_t, int8_t, H1_2, H1, DO_ABD) +DO_ZZZW_ACC(sve2_sabal_s, int32_t, int16_t, H1_4, H1_2, DO_ABD) +DO_ZZZW_ACC(sve2_sabal_d, int64_t, int32_t, H1_8, H1_4, DO_ABD) + +DO_ZZZW_ACC(sve2_uabal_h, uint16_t, uint8_t, H1_2, H1, DO_ABD) +DO_ZZZW_ACC(sve2_uabal_s, uint32_t, uint16_t, H1_4, H1_2, DO_ABD) +DO_ZZZW_ACC(sve2_uabal_d, uint64_t, uint32_t, H1_8, H1_4, DO_ABD) + +DO_ZZZW_ACC(sve2_smlal_zzzw_h, int16_t, int8_t, H1_2, H1, DO_MUL) +DO_ZZZW_ACC(sve2_smlal_zzzw_s, int32_t, int16_t, H1_4, H1_2, DO_MUL) +DO_ZZZW_ACC(sve2_smlal_zzzw_d, int64_t, int32_t, H1_8, H1_4, DO_MUL) + +DO_ZZZW_ACC(sve2_umlal_zzzw_h, uint16_t, uint8_t, H1_2, H1, DO_MUL) +DO_ZZZW_ACC(sve2_umlal_zzzw_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL) +DO_ZZZW_ACC(sve2_umlal_zzzw_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL) + +#define DO_NMUL(N, M) -(N * M) + +DO_ZZZW_ACC(sve2_smlsl_zzzw_h, int16_t, int8_t, H1_2, H1, DO_NMUL) +DO_ZZZW_ACC(sve2_smlsl_zzzw_s, int32_t, int16_t, H1_4, H1_2, DO_NMUL) +DO_ZZZW_ACC(sve2_smlsl_zzzw_d, int64_t, int32_t, H1_8, H1_4, DO_NMUL) + +DO_ZZZW_ACC(sve2_umlsl_zzzw_h, uint16_t, uint8_t, H1_2, H1, DO_NMUL) +DO_ZZZW_ACC(sve2_umlsl_zzzw_s, uint32_t, uint16_t, H1_4, H1_2, DO_NMUL) +DO_ZZZW_ACC(sve2_umlsl_zzzw_d, uint64_t, uint32_t, H1_8, H1_4, DO_NMUL) + +#undef DO_ZZZW_ACC + +#define DO_XTNB(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ + TYPE nn = *(TYPE *)(vn + i); \ + nn = OP(nn) & MAKE_64BIT_MASK(0, sizeof(TYPE) * 4); \ + *(TYPE *)(vd + i) = nn; \ + } \ +} + +#define DO_XTNT(NAME, TYPE, TYPEN, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc), odd = H(sizeof(TYPEN)); \ + for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ + TYPE nn = *(TYPE *)(vn + i); \ + *(TYPEN *)(vd + i + odd) = OP(nn); \ + } \ +} + +#define DO_SQXTN_H(n) do_sat_bhs(n, INT8_MIN, INT8_MAX) +#define DO_SQXTN_S(n) do_sat_bhs(n, INT16_MIN, INT16_MAX) +#define DO_SQXTN_D(n) do_sat_bhs(n, INT32_MIN, INT32_MAX) + +DO_XTNB(sve2_sqxtnb_h, int16_t, DO_SQXTN_H) +DO_XTNB(sve2_sqxtnb_s, int32_t, DO_SQXTN_S) +DO_XTNB(sve2_sqxtnb_d, int64_t, DO_SQXTN_D) + +DO_XTNT(sve2_sqxtnt_h, int16_t, int8_t, H1, DO_SQXTN_H) +DO_XTNT(sve2_sqxtnt_s, int32_t, int16_t, H1_2, DO_SQXTN_S) +DO_XTNT(sve2_sqxtnt_d, int64_t, int32_t, H1_4, DO_SQXTN_D) + +#define DO_UQXTN_H(n) do_sat_bhs(n, 0, UINT8_MAX) +#define DO_UQXTN_S(n) do_sat_bhs(n, 0, UINT16_MAX) +#define DO_UQXTN_D(n) do_sat_bhs(n, 0, UINT32_MAX) + +DO_XTNB(sve2_uqxtnb_h, uint16_t, DO_UQXTN_H) +DO_XTNB(sve2_uqxtnb_s, uint32_t, DO_UQXTN_S) +DO_XTNB(sve2_uqxtnb_d, uint64_t, DO_UQXTN_D) + +DO_XTNT(sve2_uqxtnt_h, uint16_t, uint8_t, H1, DO_UQXTN_H) +DO_XTNT(sve2_uqxtnt_s, uint32_t, uint16_t, H1_2, DO_UQXTN_S) +DO_XTNT(sve2_uqxtnt_d, uint64_t, uint32_t, H1_4, DO_UQXTN_D) + +DO_XTNB(sve2_sqxtunb_h, int16_t, DO_UQXTN_H) +DO_XTNB(sve2_sqxtunb_s, int32_t, DO_UQXTN_S) +DO_XTNB(sve2_sqxtunb_d, int64_t, DO_UQXTN_D) + +DO_XTNT(sve2_sqxtunt_h, int16_t, int8_t, H1, DO_UQXTN_H) +DO_XTNT(sve2_sqxtunt_s, int32_t, int16_t, H1_2, DO_UQXTN_S) +DO_XTNT(sve2_sqxtunt_d, int64_t, int32_t, H1_4, DO_UQXTN_D) + +#undef DO_XTNB +#undef DO_XTNT + +void HELPER(sve2_adcl_s)(void *vd, void *vn, void *vm, void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int sel = H4(extract32(desc, SIMD_DATA_SHIFT, 1)); + uint32_t inv = -extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint32_t *a = va, *n = vn; + uint64_t *d = vd, *m = vm; + + for (i = 0; i < opr_sz / 8; ++i) { + uint32_t e1 = a[2 * i + H4(0)]; + uint32_t e2 = n[2 * i + sel] ^ inv; + uint64_t c = extract64(m[i], 32, 1); + /* Compute and store the entire 33-bit result at once. */ + d[i] = c + e1 + e2; + } +} + +void HELPER(sve2_adcl_d)(void *vd, void *vn, void *vm, void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int sel = extract32(desc, SIMD_DATA_SHIFT, 1); + uint64_t inv = -(uint64_t)extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint64_t *d = vd, *a = va, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 8; i += 2) { + Int128 e1 = int128_make64(a[i]); + Int128 e2 = int128_make64(n[i + sel] ^ inv); + Int128 c = int128_make64(m[i + 1] & 1); + Int128 r = int128_add(int128_add(e1, e2), c); + d[i + 0] = int128_getlo(r); + d[i + 1] = int128_gethi(r); + } +} + +#define DO_SQDMLAL(NAME, TYPEW, TYPEN, HW, HN, DMUL_OP, SUM_OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + int sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ + int sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPEN); \ + for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEN *)(vn + HN(i + sel1)); \ + TYPEW mm = *(TYPEN *)(vm + HN(i + sel2)); \ + TYPEW aa = *(TYPEW *)(va + HW(i)); \ + *(TYPEW *)(vd + HW(i)) = SUM_OP(aa, DMUL_OP(nn, mm)); \ + } \ +} + +DO_SQDMLAL(sve2_sqdmlal_zzzw_h, int16_t, int8_t, H1_2, H1, + do_sqdmull_h, DO_SQADD_H) +DO_SQDMLAL(sve2_sqdmlal_zzzw_s, int32_t, int16_t, H1_4, H1_2, + do_sqdmull_s, DO_SQADD_S) +DO_SQDMLAL(sve2_sqdmlal_zzzw_d, int64_t, int32_t, H1_8, H1_4, + do_sqdmull_d, do_sqadd_d) + +DO_SQDMLAL(sve2_sqdmlsl_zzzw_h, int16_t, int8_t, H1_2, H1, + do_sqdmull_h, DO_SQSUB_H) +DO_SQDMLAL(sve2_sqdmlsl_zzzw_s, int32_t, int16_t, H1_4, H1_2, + do_sqdmull_s, DO_SQSUB_S) +DO_SQDMLAL(sve2_sqdmlsl_zzzw_d, int64_t, int32_t, H1_8, H1_4, + do_sqdmull_d, do_sqsub_d) + +#undef DO_SQDMLAL + +#define DO_CMLA_FUNC(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \ + int rot = simd_data(desc); \ + int sel_a = rot & 1, sel_b = sel_a ^ 1; \ + bool sub_r = rot == 1 || rot == 2; \ + bool sub_i = rot >= 2; \ + TYPE *d = vd, *n = vn, *m = vm, *a = va; \ + for (i = 0; i < opr_sz; i += 2) { \ + TYPE elt1_a = n[H(i + sel_a)]; \ + TYPE elt2_a = m[H(i + sel_a)]; \ + TYPE elt2_b = m[H(i + sel_b)]; \ + d[H(i)] = OP(elt1_a, elt2_a, a[H(i)], sub_r); \ + d[H(i + 1)] = OP(elt1_a, elt2_b, a[H(i + 1)], sub_i); \ + } \ +} + +#define DO_CMLA(N, M, A, S) (A + (N * M) * (S ? -1 : 1)) + +DO_CMLA_FUNC(sve2_cmla_zzzz_b, uint8_t, H1, DO_CMLA) +DO_CMLA_FUNC(sve2_cmla_zzzz_h, uint16_t, H2, DO_CMLA) +DO_CMLA_FUNC(sve2_cmla_zzzz_s, uint32_t, H4, DO_CMLA) +DO_CMLA_FUNC(sve2_cmla_zzzz_d, uint64_t, H8, DO_CMLA) + +#define DO_SQRDMLAH_B(N, M, A, S) \ + do_sqrdmlah_b(N, M, A, S, true) +#define DO_SQRDMLAH_H(N, M, A, S) \ + ({ uint32_t discard; do_sqrdmlah_h(N, M, A, S, true, &discard); }) +#define DO_SQRDMLAH_S(N, M, A, S) \ + ({ uint32_t discard; do_sqrdmlah_s(N, M, A, S, true, &discard); }) +#define DO_SQRDMLAH_D(N, M, A, S) \ + do_sqrdmlah_d(N, M, A, S, true) + +DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_b, int8_t, H1, DO_SQRDMLAH_B) +DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_h, int16_t, H2, DO_SQRDMLAH_H) +DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_s, int32_t, H4, DO_SQRDMLAH_S) +DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_d, int64_t, H8, DO_SQRDMLAH_D) + +#define DO_CMLA_IDX_FUNC(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t i, j, oprsz = simd_oprsz(desc); \ + int rot = extract32(desc, SIMD_DATA_SHIFT, 2); \ + int idx = extract32(desc, SIMD_DATA_SHIFT + 2, 2) * 2; \ + int sel_a = rot & 1, sel_b = sel_a ^ 1; \ + bool sub_r = rot == 1 || rot == 2; \ + bool sub_i = rot >= 2; \ + TYPE *d = vd, *n = vn, *m = vm, *a = va; \ + for (i = 0; i < oprsz / sizeof(TYPE); i += 16 / sizeof(TYPE)) { \ + TYPE elt2_a = m[H(i + idx + sel_a)]; \ + TYPE elt2_b = m[H(i + idx + sel_b)]; \ + for (j = 0; j < 16 / sizeof(TYPE); j += 2) { \ + TYPE elt1_a = n[H(i + j + sel_a)]; \ + d[H2(i + j)] = OP(elt1_a, elt2_a, a[H(i + j)], sub_r); \ + d[H2(i + j + 1)] = OP(elt1_a, elt2_b, a[H(i + j + 1)], sub_i); \ + } \ + } \ +} + +DO_CMLA_IDX_FUNC(sve2_cmla_idx_h, int16_t, H2, DO_CMLA) +DO_CMLA_IDX_FUNC(sve2_cmla_idx_s, int32_t, H4, DO_CMLA) + +DO_CMLA_IDX_FUNC(sve2_sqrdcmlah_idx_h, int16_t, H2, DO_SQRDMLAH_H) +DO_CMLA_IDX_FUNC(sve2_sqrdcmlah_idx_s, int32_t, H4, DO_SQRDMLAH_S) + +#undef DO_CMLA +#undef DO_CMLA_FUNC +#undef DO_CMLA_IDX_FUNC +#undef DO_SQRDMLAH_B +#undef DO_SQRDMLAH_H +#undef DO_SQRDMLAH_S +#undef DO_SQRDMLAH_D + +/* Note N and M are 4 elements bundled into one unit. */ +static int32_t do_cdot_s(uint32_t n, uint32_t m, int32_t a, + int sel_a, int sel_b, int sub_i) +{ + for (int i = 0; i <= 1; i++) { + int32_t elt1_r = (int8_t)(n >> (16 * i)); + int32_t elt1_i = (int8_t)(n >> (16 * i + 8)); + int32_t elt2_a = (int8_t)(m >> (16 * i + 8 * sel_a)); + int32_t elt2_b = (int8_t)(m >> (16 * i + 8 * sel_b)); + + a += elt1_r * elt2_a + elt1_i * elt2_b * sub_i; + } + return a; +} + +static int64_t do_cdot_d(uint64_t n, uint64_t m, int64_t a, + int sel_a, int sel_b, int sub_i) +{ + for (int i = 0; i <= 1; i++) { + int64_t elt1_r = (int16_t)(n >> (32 * i + 0)); + int64_t elt1_i = (int16_t)(n >> (32 * i + 16)); + int64_t elt2_a = (int16_t)(m >> (32 * i + 16 * sel_a)); + int64_t elt2_b = (int16_t)(m >> (32 * i + 16 * sel_b)); + + a += elt1_r * elt2_a + elt1_i * elt2_b * sub_i; + } + return a; +} + +void HELPER(sve2_cdot_zzzz_s)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + int opr_sz = simd_oprsz(desc); + int rot = simd_data(desc); + int sel_a = rot & 1; + int sel_b = sel_a ^ 1; + int sub_i = (rot == 0 || rot == 3 ? -1 : 1); + uint32_t *d = vd, *n = vn, *m = vm, *a = va; + + for (int e = 0; e < opr_sz / 4; e++) { + d[e] = do_cdot_s(n[e], m[e], a[e], sel_a, sel_b, sub_i); + } +} + +void HELPER(sve2_cdot_zzzz_d)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + int opr_sz = simd_oprsz(desc); + int rot = simd_data(desc); + int sel_a = rot & 1; + int sel_b = sel_a ^ 1; + int sub_i = (rot == 0 || rot == 3 ? -1 : 1); + uint64_t *d = vd, *n = vn, *m = vm, *a = va; + + for (int e = 0; e < opr_sz / 8; e++) { + d[e] = do_cdot_d(n[e], m[e], a[e], sel_a, sel_b, sub_i); + } +} + +void HELPER(sve2_cdot_idx_s)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + int opr_sz = simd_oprsz(desc); + int rot = extract32(desc, SIMD_DATA_SHIFT, 2); + int idx = H4(extract32(desc, SIMD_DATA_SHIFT + 2, 2)); + int sel_a = rot & 1; + int sel_b = sel_a ^ 1; + int sub_i = (rot == 0 || rot == 3 ? -1 : 1); + uint32_t *d = vd, *n = vn, *m = vm, *a = va; + + for (int seg = 0; seg < opr_sz / 4; seg += 4) { + uint32_t seg_m = m[seg + idx]; + for (int e = 0; e < 4; e++) { + d[seg + e] = do_cdot_s(n[seg + e], seg_m, a[seg + e], + sel_a, sel_b, sub_i); + } + } +} + +void HELPER(sve2_cdot_idx_d)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + int seg, opr_sz = simd_oprsz(desc); + int rot = extract32(desc, SIMD_DATA_SHIFT, 2); + int idx = extract32(desc, SIMD_DATA_SHIFT + 2, 2); + int sel_a = rot & 1; + int sel_b = sel_a ^ 1; + int sub_i = (rot == 0 || rot == 3 ? -1 : 1); + uint64_t *d = vd, *n = vn, *m = vm, *a = va; + + for (seg = 0; seg < opr_sz / 8; seg += 2) { + uint64_t seg_m = m[seg + idx]; + for (int e = 0; e < 2; e++) { + d[seg + e] = do_cdot_d(n[seg + e], seg_m, a[seg + e], + sel_a, sel_b, sub_i); + } + } +} + +#define DO_ZZXZ(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \ + intptr_t i, j, idx = simd_data(desc); \ + TYPE *d = vd, *a = va, *n = vn, *m = (TYPE *)vm + H(idx); \ + for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ + TYPE mm = m[i]; \ + for (j = 0; j < segment; j++) { \ + d[i + j] = OP(n[i + j], mm, a[i + j]); \ + } \ + } \ +} + +#define DO_SQRDMLAH_H(N, M, A) \ + ({ uint32_t discard; do_sqrdmlah_h(N, M, A, false, true, &discard); }) +#define DO_SQRDMLAH_S(N, M, A) \ + ({ uint32_t discard; do_sqrdmlah_s(N, M, A, false, true, &discard); }) +#define DO_SQRDMLAH_D(N, M, A) do_sqrdmlah_d(N, M, A, false, true) + +DO_ZZXZ(sve2_sqrdmlah_idx_h, int16_t, H2, DO_SQRDMLAH_H) +DO_ZZXZ(sve2_sqrdmlah_idx_s, int32_t, H4, DO_SQRDMLAH_S) +DO_ZZXZ(sve2_sqrdmlah_idx_d, int64_t, H8, DO_SQRDMLAH_D) + +#define DO_SQRDMLSH_H(N, M, A) \ + ({ uint32_t discard; do_sqrdmlah_h(N, M, A, true, true, &discard); }) +#define DO_SQRDMLSH_S(N, M, A) \ + ({ uint32_t discard; do_sqrdmlah_s(N, M, A, true, true, &discard); }) +#define DO_SQRDMLSH_D(N, M, A) do_sqrdmlah_d(N, M, A, true, true) + +DO_ZZXZ(sve2_sqrdmlsh_idx_h, int16_t, H2, DO_SQRDMLSH_H) +DO_ZZXZ(sve2_sqrdmlsh_idx_s, int32_t, H4, DO_SQRDMLSH_S) +DO_ZZXZ(sve2_sqrdmlsh_idx_d, int64_t, H8, DO_SQRDMLSH_D) + +#undef DO_ZZXZ + +#define DO_ZZXW(NAME, TYPEW, TYPEN, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t i, j, oprsz = simd_oprsz(desc); \ + intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ + intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 1, 3) * sizeof(TYPEN); \ + for (i = 0; i < oprsz; i += 16) { \ + TYPEW mm = *(TYPEN *)(vm + HN(i + idx)); \ + for (j = 0; j < 16; j += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEN *)(vn + HN(i + j + sel)); \ + TYPEW aa = *(TYPEW *)(va + HW(i + j)); \ + *(TYPEW *)(vd + HW(i + j)) = OP(nn, mm, aa); \ + } \ + } \ +} + +#define DO_MLA(N, M, A) (A + N * M) + +DO_ZZXW(sve2_smlal_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MLA) +DO_ZZXW(sve2_smlal_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MLA) +DO_ZZXW(sve2_umlal_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MLA) +DO_ZZXW(sve2_umlal_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MLA) + +#define DO_MLS(N, M, A) (A - N * M) + +DO_ZZXW(sve2_smlsl_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MLS) +DO_ZZXW(sve2_smlsl_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MLS) +DO_ZZXW(sve2_umlsl_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MLS) +DO_ZZXW(sve2_umlsl_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MLS) + +#define DO_SQDMLAL_S(N, M, A) DO_SQADD_S(A, do_sqdmull_s(N, M)) +#define DO_SQDMLAL_D(N, M, A) do_sqadd_d(A, do_sqdmull_d(N, M)) + +DO_ZZXW(sve2_sqdmlal_idx_s, int32_t, int16_t, H1_4, H1_2, DO_SQDMLAL_S) +DO_ZZXW(sve2_sqdmlal_idx_d, int64_t, int32_t, H1_8, H1_4, DO_SQDMLAL_D) + +#define DO_SQDMLSL_S(N, M, A) DO_SQSUB_S(A, do_sqdmull_s(N, M)) +#define DO_SQDMLSL_D(N, M, A) do_sqsub_d(A, do_sqdmull_d(N, M)) + +DO_ZZXW(sve2_sqdmlsl_idx_s, int32_t, int16_t, H1_4, H1_2, DO_SQDMLSL_S) +DO_ZZXW(sve2_sqdmlsl_idx_d, int64_t, int32_t, H1_8, H1_4, DO_SQDMLSL_D) + +#undef DO_MLA +#undef DO_MLS +#undef DO_ZZXW + +#define DO_ZZX(NAME, TYPEW, TYPEN, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, j, oprsz = simd_oprsz(desc); \ + intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \ + intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 1, 3) * sizeof(TYPEN); \ + for (i = 0; i < oprsz; i += 16) { \ + TYPEW mm = *(TYPEN *)(vm + HN(i + idx)); \ + for (j = 0; j < 16; j += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEN *)(vn + HN(i + j + sel)); \ + *(TYPEW *)(vd + HW(i + j)) = OP(nn, mm); \ + } \ + } \ +} + +DO_ZZX(sve2_sqdmull_idx_s, int32_t, int16_t, H1_4, H1_2, do_sqdmull_s) +DO_ZZX(sve2_sqdmull_idx_d, int64_t, int32_t, H1_8, H1_4, do_sqdmull_d) + +DO_ZZX(sve2_smull_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MUL) +DO_ZZX(sve2_smull_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MUL) + +DO_ZZX(sve2_umull_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL) +DO_ZZX(sve2_umull_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL) + +#undef DO_ZZX + +#define DO_BITPERM(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ + TYPE nn = *(TYPE *)(vn + i); \ + TYPE mm = *(TYPE *)(vm + i); \ + *(TYPE *)(vd + i) = OP(nn, mm, sizeof(TYPE) * 8); \ + } \ +} + +static uint64_t bitextract(uint64_t data, uint64_t mask, int n) +{ + uint64_t res = 0; + int db, rb = 0; + + for (db = 0; db < n; ++db) { + if ((mask >> db) & 1) { + res |= ((data >> db) & 1) << rb; + ++rb; + } + } + return res; +} + +DO_BITPERM(sve2_bext_b, uint8_t, bitextract) +DO_BITPERM(sve2_bext_h, uint16_t, bitextract) +DO_BITPERM(sve2_bext_s, uint32_t, bitextract) +DO_BITPERM(sve2_bext_d, uint64_t, bitextract) + +static uint64_t bitdeposit(uint64_t data, uint64_t mask, int n) +{ + uint64_t res = 0; + int rb, db = 0; + + for (rb = 0; rb < n; ++rb) { + if ((mask >> rb) & 1) { + res |= ((data >> db) & 1) << rb; + ++db; + } + } + return res; +} + +DO_BITPERM(sve2_bdep_b, uint8_t, bitdeposit) +DO_BITPERM(sve2_bdep_h, uint16_t, bitdeposit) +DO_BITPERM(sve2_bdep_s, uint32_t, bitdeposit) +DO_BITPERM(sve2_bdep_d, uint64_t, bitdeposit) + +static uint64_t bitgroup(uint64_t data, uint64_t mask, int n) +{ + uint64_t resm = 0, resu = 0; + int db, rbm = 0, rbu = 0; + + for (db = 0; db < n; ++db) { + uint64_t val = (data >> db) & 1; + if ((mask >> db) & 1) { + resm |= val << rbm++; + } else { + resu |= val << rbu++; + } + } + + return resm | (resu << rbm); +} + +DO_BITPERM(sve2_bgrp_b, uint8_t, bitgroup) +DO_BITPERM(sve2_bgrp_h, uint16_t, bitgroup) +DO_BITPERM(sve2_bgrp_s, uint32_t, bitgroup) +DO_BITPERM(sve2_bgrp_d, uint64_t, bitgroup) + +#undef DO_BITPERM + +#define DO_CADD(NAME, TYPE, H, ADD_OP, SUB_OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + int sub_r = simd_data(desc); \ + if (sub_r) { \ + for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) { \ + TYPE acc_r = *(TYPE *)(vn + H(i)); \ + TYPE acc_i = *(TYPE *)(vn + H(i + sizeof(TYPE))); \ + TYPE el2_r = *(TYPE *)(vm + H(i)); \ + TYPE el2_i = *(TYPE *)(vm + H(i + sizeof(TYPE))); \ + acc_r = ADD_OP(acc_r, el2_i); \ + acc_i = SUB_OP(acc_i, el2_r); \ + *(TYPE *)(vd + H(i)) = acc_r; \ + *(TYPE *)(vd + H(i + sizeof(TYPE))) = acc_i; \ + } \ + } else { \ + for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) { \ + TYPE acc_r = *(TYPE *)(vn + H(i)); \ + TYPE acc_i = *(TYPE *)(vn + H(i + sizeof(TYPE))); \ + TYPE el2_r = *(TYPE *)(vm + H(i)); \ + TYPE el2_i = *(TYPE *)(vm + H(i + sizeof(TYPE))); \ + acc_r = SUB_OP(acc_r, el2_i); \ + acc_i = ADD_OP(acc_i, el2_r); \ + *(TYPE *)(vd + H(i)) = acc_r; \ + *(TYPE *)(vd + H(i + sizeof(TYPE))) = acc_i; \ + } \ + } \ +} + +DO_CADD(sve2_cadd_b, int8_t, H1, DO_ADD, DO_SUB) +DO_CADD(sve2_cadd_h, int16_t, H1_2, DO_ADD, DO_SUB) +DO_CADD(sve2_cadd_s, int32_t, H1_4, DO_ADD, DO_SUB) +DO_CADD(sve2_cadd_d, int64_t, H1_8, DO_ADD, DO_SUB) + +DO_CADD(sve2_sqcadd_b, int8_t, H1, DO_SQADD_B, DO_SQSUB_B) +DO_CADD(sve2_sqcadd_h, int16_t, H1_2, DO_SQADD_H, DO_SQSUB_H) +DO_CADD(sve2_sqcadd_s, int32_t, H1_4, DO_SQADD_S, DO_SQSUB_S) +DO_CADD(sve2_sqcadd_d, int64_t, H1_8, do_sqadd_d, do_sqsub_d) + +#undef DO_CADD + +#define DO_ZZI_SHLL(NAME, TYPEW, TYPEN, HW, HN) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + intptr_t sel = (simd_data(desc) & 1) * sizeof(TYPEN); \ + int shift = simd_data(desc) >> 1; \ + for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEN *)(vn + HN(i + sel)); \ + *(TYPEW *)(vd + HW(i)) = nn << shift; \ + } \ +} + +DO_ZZI_SHLL(sve2_sshll_h, int16_t, int8_t, H1_2, H1) +DO_ZZI_SHLL(sve2_sshll_s, int32_t, int16_t, H1_4, H1_2) +DO_ZZI_SHLL(sve2_sshll_d, int64_t, int32_t, H1_8, H1_4) + +DO_ZZI_SHLL(sve2_ushll_h, uint16_t, uint8_t, H1_2, H1) +DO_ZZI_SHLL(sve2_ushll_s, uint32_t, uint16_t, H1_4, H1_2) +DO_ZZI_SHLL(sve2_ushll_d, uint64_t, uint32_t, H1_8, H1_4) + +#undef DO_ZZI_SHLL + +/* Two-operand reduction expander, controlled by a predicate. + * The difference between TYPERED and TYPERET has to do with + * sign-extension. E.g. for SMAX, TYPERED must be signed, + * but TYPERET must be unsigned so that e.g. a 32-bit value + * is not sign-extended to the ABI uint64_t return type. + */ +/* ??? If we were to vectorize this by hand the reduction ordering + * would change. For integer operands, this is perfectly fine. + */ +#define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \ +uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + TYPERED ret = INIT; \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPEELT nn = *(TYPEELT *)(vn + H(i)); \ + ret = OP(ret, nn); \ + } \ + i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \ + } while (i & 15); \ + } \ + return (TYPERET)ret; \ +} + +#define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \ +uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPEE *n = vn; \ + uint8_t *pg = vg; \ + TYPER ret = INIT; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPEE nn = n[i]; \ + ret = OP(ret, nn); \ + } \ + } \ + return ret; \ +} + +DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR) +DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR) +DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR) +DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR) + +DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR) +DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR) +DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR) +DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR) + +DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND) +DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND) +DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND) +DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND) + +DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD) +DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD) +DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD) + +DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD) +DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD) +DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD) +DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD) + +DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX) +DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX) +DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX) +DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX) + +DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX) +DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX) +DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX) +DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX) + +DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN) +DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN) +DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN) +DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN) + +DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN) +DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN) +DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN) +DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN) + +#undef DO_VPZ +#undef DO_VPZ_D + +/* Two vector operand, one scalar operand, unpredicated. */ +#define DO_ZZI(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \ + TYPE s = s64, *d = vd, *n = vn; \ + for (i = 0; i < opr_sz; ++i) { \ + d[i] = OP(n[i], s); \ + } \ +} + +#define DO_SUBR(X, Y) (Y - X) + +DO_ZZI(sve_subri_b, uint8_t, DO_SUBR) +DO_ZZI(sve_subri_h, uint16_t, DO_SUBR) +DO_ZZI(sve_subri_s, uint32_t, DO_SUBR) +DO_ZZI(sve_subri_d, uint64_t, DO_SUBR) + +DO_ZZI(sve_smaxi_b, int8_t, DO_MAX) +DO_ZZI(sve_smaxi_h, int16_t, DO_MAX) +DO_ZZI(sve_smaxi_s, int32_t, DO_MAX) +DO_ZZI(sve_smaxi_d, int64_t, DO_MAX) + +DO_ZZI(sve_smini_b, int8_t, DO_MIN) +DO_ZZI(sve_smini_h, int16_t, DO_MIN) +DO_ZZI(sve_smini_s, int32_t, DO_MIN) +DO_ZZI(sve_smini_d, int64_t, DO_MIN) + +DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX) +DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX) +DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX) +DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX) + +DO_ZZI(sve_umini_b, uint8_t, DO_MIN) +DO_ZZI(sve_umini_h, uint16_t, DO_MIN) +DO_ZZI(sve_umini_s, uint32_t, DO_MIN) +DO_ZZI(sve_umini_d, uint64_t, DO_MIN) + +#undef DO_ZZI + +#undef DO_AND +#undef DO_ORR +#undef DO_EOR +#undef DO_BIC +#undef DO_ADD +#undef DO_SUB +#undef DO_MAX +#undef DO_MIN +#undef DO_ABD +#undef DO_MUL +#undef DO_DIV +#undef DO_ASR +#undef DO_LSR +#undef DO_LSL +#undef DO_SUBR + +/* Similar to the ARM LastActiveElement pseudocode function, except the + result is multiplied by the element size. This includes the not found + indication; e.g. not found for esz=3 is -8. */ +static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz) +{ + uint64_t mask = pred_esz_masks[esz]; + intptr_t i = words; + + do { + uint64_t this_g = g[--i] & mask; + if (this_g) { + return i * 64 + (63 - clz64(this_g)); + } + } while (i > 0); + return (intptr_t)-1 << esz; +} + +uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t pred_desc) +{ + intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8); + uint32_t flags = PREDTEST_INIT; + uint64_t *d = vd, *g = vg; + intptr_t i = 0; + + do { + uint64_t this_d = d[i]; + uint64_t this_g = g[i]; + + if (this_g) { + if (!(flags & 4)) { + /* Set in D the first bit of G. */ + this_d |= this_g & -this_g; + d[i] = this_d; + } + flags = iter_predtest_fwd(this_d, this_g, flags); + } + } while (++i < words); + + return flags; +} + +uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc) +{ + intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8); + intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); + uint32_t flags = PREDTEST_INIT; + uint64_t *d = vd, *g = vg, esz_mask; + intptr_t i, next; + + next = last_active_element(vd, words, esz) + (1 << esz); + esz_mask = pred_esz_masks[esz]; + + /* Similar to the pseudocode for pnext, but scaled by ESZ + so that we find the correct bit. */ + if (next < words * 64) { + uint64_t mask = -1; + + if (next & 63) { + mask = ~((1ull << (next & 63)) - 1); + next &= -64; + } + do { + uint64_t this_g = g[next / 64] & esz_mask & mask; + if (this_g != 0) { + next = (next & -64) + ctz64(this_g); + break; + } + next += 64; + mask = -1; + } while (next < words * 64); + } + + i = 0; + do { + uint64_t this_d = 0; + if (i == next / 64) { + this_d = 1ull << (next & 63); + } + d[i] = this_d; + flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags); + } while (++i < words); + + return flags; +} + +/* + * Copy Zn into Zd, and store zero into inactive elements. + * If inv, store zeros into the active elements. + */ +void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t inv = -(uint64_t)(simd_data(desc) & 1); + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] & (expand_pred_b(pg[H1(i)]) ^ inv); + } +} + +void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t inv = -(uint64_t)(simd_data(desc) & 1); + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] & (expand_pred_h(pg[H1(i)]) ^ inv); + } +} + +void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t inv = -(uint64_t)(simd_data(desc) & 1); + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] & (expand_pred_s(pg[H1(i)]) ^ inv); + } +} + +void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + uint8_t inv = simd_data(desc); + + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] & -(uint64_t)((pg[H1(i)] ^ inv) & 1); + } +} + +/* Three-operand expander, immediate operand, controlled by a predicate. + */ +#define DO_ZPZI(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + TYPE imm = simd_data(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, imm); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +/* Similarly, specialized for 64-bit operands. */ +#define DO_ZPZI_D(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPE *d = vd, *n = vn; \ + TYPE imm = simd_data(desc); \ + uint8_t *pg = vg; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPE nn = n[i]; \ + d[i] = OP(nn, imm); \ + } \ + } \ +} + +#define DO_SHR(N, M) (N >> M) +#define DO_SHL(N, M) (N << M) + +/* Arithmetic shift right for division. This rounds negative numbers + toward zero as per signed division. Therefore before shifting, + when N is negative, add 2**M-1. */ +#define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M) + +static inline uint64_t do_urshr(uint64_t x, unsigned sh) +{ + if (likely(sh < 64)) { + return (x >> sh) + ((x >> (sh - 1)) & 1); + } else if (sh == 64) { + return x >> 63; + } else { + return 0; + } +} + +static inline int64_t do_srshr(int64_t x, unsigned sh) +{ + if (likely(sh < 64)) { + return (x >> sh) + ((x >> (sh - 1)) & 1); + } else { + /* Rounding the sign bit always produces 0. */ + return 0; + } +} + +DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR) +DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR) +DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR) +DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR) + +DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR) +DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR) +DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR) +DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR) + +DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL) +DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL) +DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL) +DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL) + +DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD) +DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD) +DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD) +DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD) + +/* SVE2 bitwise shift by immediate */ +DO_ZPZI(sve2_sqshl_zpzi_b, int8_t, H1, do_sqshl_b) +DO_ZPZI(sve2_sqshl_zpzi_h, int16_t, H1_2, do_sqshl_h) +DO_ZPZI(sve2_sqshl_zpzi_s, int32_t, H1_4, do_sqshl_s) +DO_ZPZI_D(sve2_sqshl_zpzi_d, int64_t, do_sqshl_d) + +DO_ZPZI(sve2_uqshl_zpzi_b, uint8_t, H1, do_uqshl_b) +DO_ZPZI(sve2_uqshl_zpzi_h, uint16_t, H1_2, do_uqshl_h) +DO_ZPZI(sve2_uqshl_zpzi_s, uint32_t, H1_4, do_uqshl_s) +DO_ZPZI_D(sve2_uqshl_zpzi_d, uint64_t, do_uqshl_d) + +DO_ZPZI(sve2_srshr_b, int8_t, H1, do_srshr) +DO_ZPZI(sve2_srshr_h, int16_t, H1_2, do_srshr) +DO_ZPZI(sve2_srshr_s, int32_t, H1_4, do_srshr) +DO_ZPZI_D(sve2_srshr_d, int64_t, do_srshr) + +DO_ZPZI(sve2_urshr_b, uint8_t, H1, do_urshr) +DO_ZPZI(sve2_urshr_h, uint16_t, H1_2, do_urshr) +DO_ZPZI(sve2_urshr_s, uint32_t, H1_4, do_urshr) +DO_ZPZI_D(sve2_urshr_d, uint64_t, do_urshr) + +#define do_suqrshl_b(n, m) \ + ({ uint32_t discard; do_suqrshl_bhs(n, (int8_t)m, 8, false, &discard); }) +#define do_suqrshl_h(n, m) \ + ({ uint32_t discard; do_suqrshl_bhs(n, (int16_t)m, 16, false, &discard); }) +#define do_suqrshl_s(n, m) \ + ({ uint32_t discard; do_suqrshl_bhs(n, m, 32, false, &discard); }) +#define do_suqrshl_d(n, m) \ + ({ uint32_t discard; do_suqrshl_d(n, m, false, &discard); }) + +DO_ZPZI(sve2_sqshlu_b, int8_t, H1, do_suqrshl_b) +DO_ZPZI(sve2_sqshlu_h, int16_t, H1_2, do_suqrshl_h) +DO_ZPZI(sve2_sqshlu_s, int32_t, H1_4, do_suqrshl_s) +DO_ZPZI_D(sve2_sqshlu_d, int64_t, do_suqrshl_d) + +#undef DO_ASRD +#undef DO_ZPZI +#undef DO_ZPZI_D + +#define DO_SHRNB(NAME, TYPEW, TYPEN, OP) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + int shift = simd_data(desc); \ + for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEW *)(vn + i); \ + *(TYPEW *)(vd + i) = (TYPEN)OP(nn, shift); \ + } \ +} + +#define DO_SHRNT(NAME, TYPEW, TYPEN, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + int shift = simd_data(desc); \ + for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEW *)(vn + HW(i)); \ + *(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, shift); \ + } \ +} + +DO_SHRNB(sve2_shrnb_h, uint16_t, uint8_t, DO_SHR) +DO_SHRNB(sve2_shrnb_s, uint32_t, uint16_t, DO_SHR) +DO_SHRNB(sve2_shrnb_d, uint64_t, uint32_t, DO_SHR) + +DO_SHRNT(sve2_shrnt_h, uint16_t, uint8_t, H1_2, H1, DO_SHR) +DO_SHRNT(sve2_shrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_SHR) +DO_SHRNT(sve2_shrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_SHR) + +DO_SHRNB(sve2_rshrnb_h, uint16_t, uint8_t, do_urshr) +DO_SHRNB(sve2_rshrnb_s, uint32_t, uint16_t, do_urshr) +DO_SHRNB(sve2_rshrnb_d, uint64_t, uint32_t, do_urshr) + +DO_SHRNT(sve2_rshrnt_h, uint16_t, uint8_t, H1_2, H1, do_urshr) +DO_SHRNT(sve2_rshrnt_s, uint32_t, uint16_t, H1_4, H1_2, do_urshr) +DO_SHRNT(sve2_rshrnt_d, uint64_t, uint32_t, H1_8, H1_4, do_urshr) + +#define DO_SQSHRUN_H(x, sh) do_sat_bhs((int64_t)(x) >> sh, 0, UINT8_MAX) +#define DO_SQSHRUN_S(x, sh) do_sat_bhs((int64_t)(x) >> sh, 0, UINT16_MAX) +#define DO_SQSHRUN_D(x, sh) \ + do_sat_bhs((int64_t)(x) >> (sh < 64 ? sh : 63), 0, UINT32_MAX) + +DO_SHRNB(sve2_sqshrunb_h, int16_t, uint8_t, DO_SQSHRUN_H) +DO_SHRNB(sve2_sqshrunb_s, int32_t, uint16_t, DO_SQSHRUN_S) +DO_SHRNB(sve2_sqshrunb_d, int64_t, uint32_t, DO_SQSHRUN_D) + +DO_SHRNT(sve2_sqshrunt_h, int16_t, uint8_t, H1_2, H1, DO_SQSHRUN_H) +DO_SHRNT(sve2_sqshrunt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQSHRUN_S) +DO_SHRNT(sve2_sqshrunt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQSHRUN_D) + +#define DO_SQRSHRUN_H(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT8_MAX) +#define DO_SQRSHRUN_S(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT16_MAX) +#define DO_SQRSHRUN_D(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT32_MAX) + +DO_SHRNB(sve2_sqrshrunb_h, int16_t, uint8_t, DO_SQRSHRUN_H) +DO_SHRNB(sve2_sqrshrunb_s, int32_t, uint16_t, DO_SQRSHRUN_S) +DO_SHRNB(sve2_sqrshrunb_d, int64_t, uint32_t, DO_SQRSHRUN_D) + +DO_SHRNT(sve2_sqrshrunt_h, int16_t, uint8_t, H1_2, H1, DO_SQRSHRUN_H) +DO_SHRNT(sve2_sqrshrunt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQRSHRUN_S) +DO_SHRNT(sve2_sqrshrunt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQRSHRUN_D) + +#define DO_SQSHRN_H(x, sh) do_sat_bhs(x >> sh, INT8_MIN, INT8_MAX) +#define DO_SQSHRN_S(x, sh) do_sat_bhs(x >> sh, INT16_MIN, INT16_MAX) +#define DO_SQSHRN_D(x, sh) do_sat_bhs(x >> sh, INT32_MIN, INT32_MAX) + +DO_SHRNB(sve2_sqshrnb_h, int16_t, uint8_t, DO_SQSHRN_H) +DO_SHRNB(sve2_sqshrnb_s, int32_t, uint16_t, DO_SQSHRN_S) +DO_SHRNB(sve2_sqshrnb_d, int64_t, uint32_t, DO_SQSHRN_D) + +DO_SHRNT(sve2_sqshrnt_h, int16_t, uint8_t, H1_2, H1, DO_SQSHRN_H) +DO_SHRNT(sve2_sqshrnt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQSHRN_S) +DO_SHRNT(sve2_sqshrnt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQSHRN_D) + +#define DO_SQRSHRN_H(x, sh) do_sat_bhs(do_srshr(x, sh), INT8_MIN, INT8_MAX) +#define DO_SQRSHRN_S(x, sh) do_sat_bhs(do_srshr(x, sh), INT16_MIN, INT16_MAX) +#define DO_SQRSHRN_D(x, sh) do_sat_bhs(do_srshr(x, sh), INT32_MIN, INT32_MAX) + +DO_SHRNB(sve2_sqrshrnb_h, int16_t, uint8_t, DO_SQRSHRN_H) +DO_SHRNB(sve2_sqrshrnb_s, int32_t, uint16_t, DO_SQRSHRN_S) +DO_SHRNB(sve2_sqrshrnb_d, int64_t, uint32_t, DO_SQRSHRN_D) + +DO_SHRNT(sve2_sqrshrnt_h, int16_t, uint8_t, H1_2, H1, DO_SQRSHRN_H) +DO_SHRNT(sve2_sqrshrnt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQRSHRN_S) +DO_SHRNT(sve2_sqrshrnt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQRSHRN_D) + +#define DO_UQSHRN_H(x, sh) MIN(x >> sh, UINT8_MAX) +#define DO_UQSHRN_S(x, sh) MIN(x >> sh, UINT16_MAX) +#define DO_UQSHRN_D(x, sh) MIN(x >> sh, UINT32_MAX) + +DO_SHRNB(sve2_uqshrnb_h, uint16_t, uint8_t, DO_UQSHRN_H) +DO_SHRNB(sve2_uqshrnb_s, uint32_t, uint16_t, DO_UQSHRN_S) +DO_SHRNB(sve2_uqshrnb_d, uint64_t, uint32_t, DO_UQSHRN_D) + +DO_SHRNT(sve2_uqshrnt_h, uint16_t, uint8_t, H1_2, H1, DO_UQSHRN_H) +DO_SHRNT(sve2_uqshrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_UQSHRN_S) +DO_SHRNT(sve2_uqshrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_UQSHRN_D) + +#define DO_UQRSHRN_H(x, sh) MIN(do_urshr(x, sh), UINT8_MAX) +#define DO_UQRSHRN_S(x, sh) MIN(do_urshr(x, sh), UINT16_MAX) +#define DO_UQRSHRN_D(x, sh) MIN(do_urshr(x, sh), UINT32_MAX) + +DO_SHRNB(sve2_uqrshrnb_h, uint16_t, uint8_t, DO_UQRSHRN_H) +DO_SHRNB(sve2_uqrshrnb_s, uint32_t, uint16_t, DO_UQRSHRN_S) +DO_SHRNB(sve2_uqrshrnb_d, uint64_t, uint32_t, DO_UQRSHRN_D) + +DO_SHRNT(sve2_uqrshrnt_h, uint16_t, uint8_t, H1_2, H1, DO_UQRSHRN_H) +DO_SHRNT(sve2_uqrshrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_UQRSHRN_S) +DO_SHRNT(sve2_uqrshrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_UQRSHRN_D) + +#undef DO_SHRNB +#undef DO_SHRNT + +#define DO_BINOPNB(NAME, TYPEW, TYPEN, SHIFT, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEW *)(vn + i); \ + TYPEW mm = *(TYPEW *)(vm + i); \ + *(TYPEW *)(vd + i) = (TYPEN)OP(nn, mm, SHIFT); \ + } \ +} + +#define DO_BINOPNT(NAME, TYPEW, TYPEN, SHIFT, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \ + TYPEW nn = *(TYPEW *)(vn + HW(i)); \ + TYPEW mm = *(TYPEW *)(vm + HW(i)); \ + *(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, mm, SHIFT); \ + } \ +} + +#define DO_ADDHN(N, M, SH) ((N + M) >> SH) +#define DO_RADDHN(N, M, SH) ((N + M + ((__typeof(N))1 << (SH - 1))) >> SH) +#define DO_SUBHN(N, M, SH) ((N - M) >> SH) +#define DO_RSUBHN(N, M, SH) ((N - M + ((__typeof(N))1 << (SH - 1))) >> SH) + +DO_BINOPNB(sve2_addhnb_h, uint16_t, uint8_t, 8, DO_ADDHN) +DO_BINOPNB(sve2_addhnb_s, uint32_t, uint16_t, 16, DO_ADDHN) +DO_BINOPNB(sve2_addhnb_d, uint64_t, uint32_t, 32, DO_ADDHN) + +DO_BINOPNT(sve2_addhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_ADDHN) +DO_BINOPNT(sve2_addhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_ADDHN) +DO_BINOPNT(sve2_addhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_ADDHN) + +DO_BINOPNB(sve2_raddhnb_h, uint16_t, uint8_t, 8, DO_RADDHN) +DO_BINOPNB(sve2_raddhnb_s, uint32_t, uint16_t, 16, DO_RADDHN) +DO_BINOPNB(sve2_raddhnb_d, uint64_t, uint32_t, 32, DO_RADDHN) + +DO_BINOPNT(sve2_raddhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_RADDHN) +DO_BINOPNT(sve2_raddhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_RADDHN) +DO_BINOPNT(sve2_raddhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_RADDHN) + +DO_BINOPNB(sve2_subhnb_h, uint16_t, uint8_t, 8, DO_SUBHN) +DO_BINOPNB(sve2_subhnb_s, uint32_t, uint16_t, 16, DO_SUBHN) +DO_BINOPNB(sve2_subhnb_d, uint64_t, uint32_t, 32, DO_SUBHN) + +DO_BINOPNT(sve2_subhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_SUBHN) +DO_BINOPNT(sve2_subhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_SUBHN) +DO_BINOPNT(sve2_subhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_SUBHN) + +DO_BINOPNB(sve2_rsubhnb_h, uint16_t, uint8_t, 8, DO_RSUBHN) +DO_BINOPNB(sve2_rsubhnb_s, uint32_t, uint16_t, 16, DO_RSUBHN) +DO_BINOPNB(sve2_rsubhnb_d, uint64_t, uint32_t, 32, DO_RSUBHN) + +DO_BINOPNT(sve2_rsubhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_RSUBHN) +DO_BINOPNT(sve2_rsubhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_RSUBHN) +DO_BINOPNT(sve2_rsubhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_RSUBHN) + +#undef DO_RSUBHN +#undef DO_SUBHN +#undef DO_RADDHN +#undef DO_ADDHN + +#undef DO_BINOPNB + +/* Fully general four-operand expander, controlled by a predicate. + */ +#define DO_ZPZZZ(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \ + void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + TYPE mm = *(TYPE *)(vm + H(i)); \ + TYPE aa = *(TYPE *)(va + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +/* Similarly, specialized for 64-bit operands. */ +#define DO_ZPZZZ_D(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \ + void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPE *d = vd, *a = va, *n = vn, *m = vm; \ + uint8_t *pg = vg; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPE aa = a[i], nn = n[i], mm = m[i]; \ + d[i] = OP(aa, nn, mm); \ + } \ + } \ +} + +#define DO_MLA(A, N, M) (A + N * M) +#define DO_MLS(A, N, M) (A - N * M) + +DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA) +DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS) + +DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA) +DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS) + +DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA) +DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS) + +DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA) +DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS) + +#undef DO_MLA +#undef DO_MLS +#undef DO_ZPZZZ +#undef DO_ZPZZZ_D + +void HELPER(sve_index_b)(void *vd, uint32_t start, + uint32_t incr, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint8_t *d = vd; + for (i = 0; i < opr_sz; i += 1) { + d[H1(i)] = start + i * incr; + } +} + +void HELPER(sve_index_h)(void *vd, uint32_t start, + uint32_t incr, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 2; + uint16_t *d = vd; + for (i = 0; i < opr_sz; i += 1) { + d[H2(i)] = start + i * incr; + } +} + +void HELPER(sve_index_s)(void *vd, uint32_t start, + uint32_t incr, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 4; + uint32_t *d = vd; + for (i = 0; i < opr_sz; i += 1) { + d[H4(i)] = start + i * incr; + } +} + +void HELPER(sve_index_d)(void *vd, uint64_t start, + uint64_t incr, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + for (i = 0; i < opr_sz; i += 1) { + d[i] = start + i * incr; + } +} + +void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 4; + uint32_t sh = simd_data(desc); + uint32_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] + (m[i] << sh); + } +} + +void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t sh = simd_data(desc); + uint64_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] + (m[i] << sh); + } +} + +void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t sh = simd_data(desc); + uint64_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh); + } +} + +void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t sh = simd_data(desc); + uint64_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh); + } +} + +void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc) +{ + /* These constants are cut-and-paste directly from the ARM pseudocode. */ + static const uint16_t coeff[] = { + 0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8, + 0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189, + 0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295, + 0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4, + }; + intptr_t i, opr_sz = simd_oprsz(desc) / 2; + uint16_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz; i++) { + uint16_t nn = n[i]; + intptr_t idx = extract32(nn, 0, 5); + uint16_t exp = extract32(nn, 5, 5); + d[i] = coeff[idx] | (exp << 10); + } +} + +void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc) +{ + /* These constants are cut-and-paste directly from the ARM pseudocode. */ + static const uint32_t coeff[] = { + 0x000000, 0x0164d2, 0x02cd87, 0x043a29, + 0x05aac3, 0x071f62, 0x08980f, 0x0a14d5, + 0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc, + 0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d, + 0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda, + 0x1ef532, 0x20b051, 0x227043, 0x243516, + 0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a, + 0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4, + 0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b, + 0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd, + 0x45672a, 0x478d75, 0x49b9be, 0x4bec15, + 0x4e248c, 0x506334, 0x52a81e, 0x54f35b, + 0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5, + 0x60ccdf, 0x633f89, 0x65b907, 0x68396a, + 0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177, + 0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c, + }; + intptr_t i, opr_sz = simd_oprsz(desc) / 4; + uint32_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz; i++) { + uint32_t nn = n[i]; + intptr_t idx = extract32(nn, 0, 6); + uint32_t exp = extract32(nn, 6, 8); + d[i] = coeff[idx] | (exp << 23); + } +} + +void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc) +{ + /* These constants are cut-and-paste directly from the ARM pseudocode. */ + static const uint64_t coeff[] = { + 0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull, + 0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull, + 0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull, + 0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull, + 0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull, + 0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull, + 0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull, + 0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull, + 0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull, + 0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull, + 0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull, + 0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull, + 0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull, + 0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull, + 0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull, + 0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull, + 0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull, + 0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull, + 0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull, + 0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull, + 0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull, + 0xFA7C1819E90D8ull, + }; + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz; i++) { + uint64_t nn = n[i]; + intptr_t idx = extract32(nn, 0, 6); + uint64_t exp = extract32(nn, 6, 11); + d[i] = coeff[idx] | (exp << 52); + } +} + +void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 2; + uint16_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + uint16_t nn = n[i]; + uint16_t mm = m[i]; + if (mm & 1) { + nn = float16_one; + } + d[i] = nn ^ (mm & 2) << 14; + } +} + +void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 4; + uint32_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + uint32_t nn = n[i]; + uint32_t mm = m[i]; + if (mm & 1) { + nn = float32_one; + } + d[i] = nn ^ (mm & 2) << 30; + } +} + +void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + uint64_t mm = m[i]; + if (mm & 1) { + nn = float64_one; + } + d[i] = nn ^ (mm & 2) << 62; + } +} + +/* + * Signed saturating addition with scalar operand. + */ + +void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(int8_t)) { + *(int8_t *)(d + i) = DO_SQADD_B(b, *(int8_t *)(a + i)); + } +} + +void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(int16_t)) { + *(int16_t *)(d + i) = DO_SQADD_H(b, *(int16_t *)(a + i)); + } +} + +void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(int32_t)) { + *(int32_t *)(d + i) = DO_SQADD_S(b, *(int32_t *)(a + i)); + } +} + +void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(int64_t)) { + *(int64_t *)(d + i) = do_sqadd_d(b, *(int64_t *)(a + i)); + } +} + +/* + * Unsigned saturating addition with scalar operand. + */ + +void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint8_t)) { + *(uint8_t *)(d + i) = DO_UQADD_B(b, *(uint8_t *)(a + i)); + } +} + +void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint16_t)) { + *(uint16_t *)(d + i) = DO_UQADD_H(b, *(uint16_t *)(a + i)); + } +} + +void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint32_t)) { + *(uint32_t *)(d + i) = DO_UQADD_S(b, *(uint32_t *)(a + i)); + } +} + +void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint64_t)) { + *(uint64_t *)(d + i) = do_uqadd_d(b, *(uint64_t *)(a + i)); + } +} + +void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint64_t)) { + *(uint64_t *)(d + i) = do_uqsub_d(*(uint64_t *)(a + i), b); + } +} + +/* Two operand predicated copy immediate with merge. All valid immediates + * can fit within 17 signed bits in the simd_data field. + */ +void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg, + uint64_t mm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + mm = dup_const(MO_8, mm); + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + uint64_t pp = expand_pred_b(pg[H1(i)]); + d[i] = (mm & pp) | (nn & ~pp); + } +} + +void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg, + uint64_t mm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + mm = dup_const(MO_16, mm); + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + uint64_t pp = expand_pred_h(pg[H1(i)]); + d[i] = (mm & pp) | (nn & ~pp); + } +} + +void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg, + uint64_t mm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + mm = dup_const(MO_32, mm); + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + uint64_t pp = expand_pred_s(pg[H1(i)]); + d[i] = (mm & pp) | (nn & ~pp); + } +} + +void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg, + uint64_t mm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + d[i] = (pg[H1(i)] & 1 ? mm : nn); + } +} + +void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + + val = dup_const(MO_8, val); + for (i = 0; i < opr_sz; i += 1) { + d[i] = val & expand_pred_b(pg[H1(i)]); + } +} + +void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + + val = dup_const(MO_16, val); + for (i = 0; i < opr_sz; i += 1) { + d[i] = val & expand_pred_h(pg[H1(i)]); + } +} + +void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + + val = dup_const(MO_32, val); + for (i = 0; i < opr_sz; i += 1) { + d[i] = val & expand_pred_s(pg[H1(i)]); + } +} + +void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + d[i] = (pg[H1(i)] & 1 ? val : 0); + } +} + +/* Big-endian hosts need to frob the byte indices. If the copy + * happens to be 8-byte aligned, then no frobbing necessary. + */ +static void swap_memmove(void *vd, void *vs, size_t n) +{ + uintptr_t d = (uintptr_t)vd; + uintptr_t s = (uintptr_t)vs; + uintptr_t o = (d | s | n) & 7; + size_t i; + +#ifndef HOST_WORDS_BIGENDIAN + o = 0; +#endif + switch (o) { + case 0: + memmove(vd, vs, n); + break; + + case 4: + if (d < s || d >= s + n) { + for (i = 0; i < n; i += 4) { + *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i); + } + } else { + for (i = n; i > 0; ) { + i -= 4; + *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i); + } + } + break; + + case 2: + case 6: + if (d < s || d >= s + n) { + for (i = 0; i < n; i += 2) { + *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i); + } + } else { + for (i = n; i > 0; ) { + i -= 2; + *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i); + } + } + break; + + default: + if (d < s || d >= s + n) { + for (i = 0; i < n; i++) { + *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i); + } + } else { + for (i = n; i > 0; ) { + i -= 1; + *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i); + } + } + break; + } +} + +/* Similarly for memset of 0. */ +static void swap_memzero(void *vd, size_t n) +{ + uintptr_t d = (uintptr_t)vd; + uintptr_t o = (d | n) & 7; + size_t i; + + /* Usually, the first bit of a predicate is set, so N is 0. */ + if (likely(n == 0)) { + return; + } + +#ifndef HOST_WORDS_BIGENDIAN + o = 0; +#endif + switch (o) { + case 0: + memset(vd, 0, n); + break; + + case 4: + for (i = 0; i < n; i += 4) { + *(uint32_t *)H1_4(d + i) = 0; + } + break; + + case 2: + case 6: + for (i = 0; i < n; i += 2) { + *(uint16_t *)H1_2(d + i) = 0; + } + break; + + default: + for (i = 0; i < n; i++) { + *(uint8_t *)H1(d + i) = 0; + } + break; + } +} + +void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t opr_sz = simd_oprsz(desc); + size_t n_ofs = simd_data(desc); + size_t n_siz = opr_sz - n_ofs; + + if (vd != vm) { + swap_memmove(vd, vn + n_ofs, n_siz); + swap_memmove(vd + n_siz, vm, n_ofs); + } else if (vd != vn) { + swap_memmove(vd + n_siz, vd, n_ofs); + swap_memmove(vd, vn + n_ofs, n_siz); + } else { + /* vd == vn == vm. Need temp space. */ + ARMVectorReg tmp; + swap_memmove(&tmp, vm, n_ofs); + swap_memmove(vd, vd + n_ofs, n_siz); + memcpy(vd + n_siz, &tmp, n_ofs); + } +} + +#define DO_INSR(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \ +{ \ + intptr_t opr_sz = simd_oprsz(desc); \ + swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \ + *(TYPE *)(vd + H(0)) = val; \ +} + +DO_INSR(sve_insr_b, uint8_t, H1) +DO_INSR(sve_insr_h, uint16_t, H1_2) +DO_INSR(sve_insr_s, uint32_t, H1_4) +DO_INSR(sve_insr_d, uint64_t, H1_8) + +#undef DO_INSR + +void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { + uint64_t f = *(uint64_t *)(vn + i); + uint64_t b = *(uint64_t *)(vn + j); + *(uint64_t *)(vd + i) = bswap64(b); + *(uint64_t *)(vd + j) = bswap64(f); + } +} + +void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { + uint64_t f = *(uint64_t *)(vn + i); + uint64_t b = *(uint64_t *)(vn + j); + *(uint64_t *)(vd + i) = hswap64(b); + *(uint64_t *)(vd + j) = hswap64(f); + } +} + +void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { + uint64_t f = *(uint64_t *)(vn + i); + uint64_t b = *(uint64_t *)(vn + j); + *(uint64_t *)(vd + i) = rol64(b, 32); + *(uint64_t *)(vd + j) = rol64(f, 32); + } +} + +void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { + uint64_t f = *(uint64_t *)(vn + i); + uint64_t b = *(uint64_t *)(vn + j); + *(uint64_t *)(vd + i) = b; + *(uint64_t *)(vd + j) = f; + } +} + +typedef void tb_impl_fn(void *, void *, void *, void *, uintptr_t, bool); + +static inline void do_tbl1(void *vd, void *vn, void *vm, uint32_t desc, + bool is_tbx, tb_impl_fn *fn) +{ + ARMVectorReg scratch; + uintptr_t oprsz = simd_oprsz(desc); + + if (unlikely(vd == vn)) { + vn = memcpy(&scratch, vn, oprsz); + } + + fn(vd, vn, NULL, vm, oprsz, is_tbx); +} + +static inline void do_tbl2(void *vd, void *vn0, void *vn1, void *vm, + uint32_t desc, bool is_tbx, tb_impl_fn *fn) +{ + ARMVectorReg scratch; + uintptr_t oprsz = simd_oprsz(desc); + + if (unlikely(vd == vn0)) { + vn0 = memcpy(&scratch, vn0, oprsz); + if (vd == vn1) { + vn1 = vn0; + } + } else if (unlikely(vd == vn1)) { + vn1 = memcpy(&scratch, vn1, oprsz); + } + + fn(vd, vn0, vn1, vm, oprsz, is_tbx); +} + +#define DO_TB(SUFF, TYPE, H) \ +static inline void do_tb_##SUFF(void *vd, void *vt0, void *vt1, \ + void *vm, uintptr_t oprsz, bool is_tbx) \ +{ \ + TYPE *d = vd, *tbl0 = vt0, *tbl1 = vt1, *indexes = vm; \ + uintptr_t i, nelem = oprsz / sizeof(TYPE); \ + for (i = 0; i < nelem; ++i) { \ + TYPE index = indexes[H1(i)], val = 0; \ + if (index < nelem) { \ + val = tbl0[H(index)]; \ + } else { \ + index -= nelem; \ + if (tbl1 && index < nelem) { \ + val = tbl1[H(index)]; \ + } else if (is_tbx) { \ + continue; \ + } \ + } \ + d[H(i)] = val; \ + } \ +} \ +void HELPER(sve_tbl_##SUFF)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + do_tbl1(vd, vn, vm, desc, false, do_tb_##SUFF); \ +} \ +void HELPER(sve2_tbl_##SUFF)(void *vd, void *vn0, void *vn1, \ + void *vm, uint32_t desc) \ +{ \ + do_tbl2(vd, vn0, vn1, vm, desc, false, do_tb_##SUFF); \ +} \ +void HELPER(sve2_tbx_##SUFF)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + do_tbl1(vd, vn, vm, desc, true, do_tb_##SUFF); \ +} + +DO_TB(b, uint8_t, H1) +DO_TB(h, uint16_t, H2) +DO_TB(s, uint32_t, H4) +DO_TB(d, uint64_t, H8) + +#undef DO_TB + +#define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + TYPED *d = vd; \ + TYPES *n = vn; \ + ARMVectorReg tmp; \ + if (unlikely(vn - vd < opr_sz)) { \ + n = memcpy(&tmp, n, opr_sz / 2); \ + } \ + for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \ + d[HD(i)] = n[HS(i)]; \ + } \ +} + +DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1) +DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2) +DO_UNPK(sve_sunpk_d, int64_t, int32_t, H8, H4) + +DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1) +DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2) +DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, H8, H4) + +#undef DO_UNPK + +/* Mask of bits included in the even numbered predicates of width esz. + * We also use this for expand_bits/compress_bits, and so extend the + * same pattern out to 16-bit units. + */ +static const uint64_t even_bit_esz_masks[5] = { + 0x5555555555555555ull, + 0x3333333333333333ull, + 0x0f0f0f0f0f0f0f0full, + 0x00ff00ff00ff00ffull, + 0x0000ffff0000ffffull, +}; + +/* Zero-extend units of 2**N bits to units of 2**(N+1) bits. + * For N==0, this corresponds to the operation that in qemu/bitops.h + * we call half_shuffle64; this algorithm is from Hacker's Delight, + * section 7-2 Shuffling Bits. + */ +static uint64_t expand_bits(uint64_t x, int n) +{ + int i; + + x &= 0xffffffffu; + for (i = 4; i >= n; i--) { + int sh = 1 << i; + x = ((x << sh) | x) & even_bit_esz_masks[i]; + } + return x; +} + +/* Compress units of 2**(N+1) bits to units of 2**N bits. + * For N==0, this corresponds to the operation that in qemu/bitops.h + * we call half_unshuffle64; this algorithm is from Hacker's Delight, + * section 7-2 Shuffling Bits, where it is called an inverse half shuffle. + */ +static uint64_t compress_bits(uint64_t x, int n) +{ + int i; + + for (i = n; i <= 4; i++) { + int sh = 1 << i; + x &= even_bit_esz_masks[i]; + x = (x >> sh) | x; + } + return x & 0xffffffffu; +} + +void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); + intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA); + int esize = 1 << esz; + uint64_t *d = vd; + intptr_t i; + + if (oprsz <= 8) { + uint64_t nn = *(uint64_t *)vn; + uint64_t mm = *(uint64_t *)vm; + int half = 4 * oprsz; + + nn = extract64(nn, high * half, half); + mm = extract64(mm, high * half, half); + nn = expand_bits(nn, esz); + mm = expand_bits(mm, esz); + d[0] = nn | (mm << esize); + } else { + ARMPredicateReg tmp; + + /* We produce output faster than we consume input. + Therefore we must be mindful of possible overlap. */ + if (vd == vn) { + vn = memcpy(&tmp, vn, oprsz); + if (vd == vm) { + vm = vn; + } + } else if (vd == vm) { + vm = memcpy(&tmp, vm, oprsz); + } + if (high) { + high = oprsz >> 1; + } + + if ((oprsz & 7) == 0) { + uint32_t *n = vn, *m = vm; + high >>= 2; + + for (i = 0; i < oprsz / 8; i++) { + uint64_t nn = n[H4(high + i)]; + uint64_t mm = m[H4(high + i)]; + + nn = expand_bits(nn, esz); + mm = expand_bits(mm, esz); + d[i] = nn | (mm << esize); + } + } else { + uint8_t *n = vn, *m = vm; + uint16_t *d16 = vd; + + for (i = 0; i < oprsz / 2; i++) { + uint16_t nn = n[H1(high + i)]; + uint16_t mm = m[H1(high + i)]; + + nn = expand_bits(nn, esz); + mm = expand_bits(mm, esz); + d16[H2(i)] = nn | (mm << esize); + } + } + } +} + +void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); + int odd = FIELD_EX32(pred_desc, PREDDESC, DATA) << esz; + uint64_t *d = vd, *n = vn, *m = vm; + uint64_t l, h; + intptr_t i; + + if (oprsz <= 8) { + l = compress_bits(n[0] >> odd, esz); + h = compress_bits(m[0] >> odd, esz); + d[0] = l | (h << (4 * oprsz)); + } else { + ARMPredicateReg tmp_m; + intptr_t oprsz_16 = oprsz / 16; + + if ((vm - vd) < (uintptr_t)oprsz) { + m = memcpy(&tmp_m, vm, oprsz); + } + + for (i = 0; i < oprsz_16; i++) { + l = n[2 * i + 0]; + h = n[2 * i + 1]; + l = compress_bits(l >> odd, esz); + h = compress_bits(h >> odd, esz); + d[i] = l | (h << 32); + } + + /* + * For VL which is not a multiple of 512, the results from M do not + * align nicely with the uint64_t for D. Put the aligned results + * from M into TMP_M and then copy it into place afterward. + */ + if (oprsz & 15) { + int final_shift = (oprsz & 15) * 2; + + l = n[2 * i + 0]; + h = n[2 * i + 1]; + l = compress_bits(l >> odd, esz); + h = compress_bits(h >> odd, esz); + d[i] = l | (h << final_shift); + + for (i = 0; i < oprsz_16; i++) { + l = m[2 * i + 0]; + h = m[2 * i + 1]; + l = compress_bits(l >> odd, esz); + h = compress_bits(h >> odd, esz); + tmp_m.p[i] = l | (h << 32); + } + l = m[2 * i + 0]; + h = m[2 * i + 1]; + l = compress_bits(l >> odd, esz); + h = compress_bits(h >> odd, esz); + tmp_m.p[i] = l | (h << final_shift); + + swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2); + } else { + for (i = 0; i < oprsz_16; i++) { + l = m[2 * i + 0]; + h = m[2 * i + 1]; + l = compress_bits(l >> odd, esz); + h = compress_bits(h >> odd, esz); + d[oprsz_16 + i] = l | (h << 32); + } + } + } +} + +void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); + int odd = FIELD_EX32(pred_desc, PREDDESC, DATA); + uint64_t *d = vd, *n = vn, *m = vm; + uint64_t mask; + int shr, shl; + intptr_t i; + + shl = 1 << esz; + shr = 0; + mask = even_bit_esz_masks[esz]; + if (odd) { + mask <<= shl; + shr = shl; + shl = 0; + } + + for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) { + uint64_t nn = (n[i] & mask) >> shr; + uint64_t mm = (m[i] & mask) << shl; + d[i] = nn + mm; + } +} + +/* Reverse units of 2**N bits. */ +static uint64_t reverse_bits_64(uint64_t x, int n) +{ + int i, sh; + + x = bswap64(x); + for (i = 2, sh = 4; i >= n; i--, sh >>= 1) { + uint64_t mask = even_bit_esz_masks[i]; + x = ((x & mask) << sh) | ((x >> sh) & mask); + } + return x; +} + +static uint8_t reverse_bits_8(uint8_t x, int n) +{ + static const uint8_t mask[3] = { 0x55, 0x33, 0x0f }; + int i, sh; + + for (i = 2, sh = 4; i >= n; i--, sh >>= 1) { + x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]); + } + return x; +} + +void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); + intptr_t i, oprsz_2 = oprsz / 2; + + if (oprsz <= 8) { + uint64_t l = *(uint64_t *)vn; + l = reverse_bits_64(l << (64 - 8 * oprsz), esz); + *(uint64_t *)vd = l; + } else if ((oprsz & 15) == 0) { + for (i = 0; i < oprsz_2; i += 8) { + intptr_t ih = oprsz - 8 - i; + uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz); + uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz); + *(uint64_t *)(vd + i) = h; + *(uint64_t *)(vd + ih) = l; + } + } else { + for (i = 0; i < oprsz_2; i += 1) { + intptr_t il = H1(i); + intptr_t ih = H1(oprsz - 1 - i); + uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz); + uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz); + *(uint8_t *)(vd + il) = h; + *(uint8_t *)(vd + ih) = l; + } + } +} + +void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA); + uint64_t *d = vd; + intptr_t i; + + if (oprsz <= 8) { + uint64_t nn = *(uint64_t *)vn; + int half = 4 * oprsz; + + nn = extract64(nn, high * half, half); + nn = expand_bits(nn, 0); + d[0] = nn; + } else { + ARMPredicateReg tmp_n; + + /* We produce output faster than we consume input. + Therefore we must be mindful of possible overlap. */ + if ((vn - vd) < (uintptr_t)oprsz) { + vn = memcpy(&tmp_n, vn, oprsz); + } + if (high) { + high = oprsz >> 1; + } + + if ((oprsz & 7) == 0) { + uint32_t *n = vn; + high >>= 2; + + for (i = 0; i < oprsz / 8; i++) { + uint64_t nn = n[H4(high + i)]; + d[i] = expand_bits(nn, 0); + } + } else { + uint16_t *d16 = vd; + uint8_t *n = vn; + + for (i = 0; i < oprsz / 2; i++) { + uint16_t nn = n[H1(high + i)]; + d16[H2(i)] = expand_bits(nn, 0); + } + } + } +} + +#define DO_ZIP(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t oprsz = simd_oprsz(desc); \ + intptr_t i, oprsz_2 = oprsz / 2; \ + ARMVectorReg tmp_n, tmp_m; \ + /* We produce output faster than we consume input. \ + Therefore we must be mindful of possible overlap. */ \ + if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \ + vn = memcpy(&tmp_n, vn, oprsz_2); \ + } \ + if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \ + vm = memcpy(&tmp_m, vm, oprsz_2); \ + } \ + for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \ + *(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = *(TYPE *)(vm + H(i)); \ + } \ + if (sizeof(TYPE) == 16 && unlikely(oprsz & 16)) { \ + memset(vd + oprsz - 16, 0, 16); \ + } \ +} + +DO_ZIP(sve_zip_b, uint8_t, H1) +DO_ZIP(sve_zip_h, uint16_t, H1_2) +DO_ZIP(sve_zip_s, uint32_t, H1_4) +DO_ZIP(sve_zip_d, uint64_t, H1_8) +DO_ZIP(sve2_zip_q, Int128, ) + +#define DO_UZP(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t oprsz = simd_oprsz(desc); \ + intptr_t odd_ofs = simd_data(desc); \ + intptr_t i, p; \ + ARMVectorReg tmp_m; \ + if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \ + vm = memcpy(&tmp_m, vm, oprsz); \ + } \ + i = 0, p = odd_ofs; \ + do { \ + *(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(p)); \ + i += sizeof(TYPE), p += 2 * sizeof(TYPE); \ + } while (p < oprsz); \ + p -= oprsz; \ + do { \ + *(TYPE *)(vd + H(i)) = *(TYPE *)(vm + H(p)); \ + i += sizeof(TYPE), p += 2 * sizeof(TYPE); \ + } while (p < oprsz); \ + tcg_debug_assert(i == oprsz); \ +} + +DO_UZP(sve_uzp_b, uint8_t, H1) +DO_UZP(sve_uzp_h, uint16_t, H1_2) +DO_UZP(sve_uzp_s, uint32_t, H1_4) +DO_UZP(sve_uzp_d, uint64_t, H1_8) +DO_UZP(sve2_uzp_q, Int128, ) + +#define DO_TRN(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t oprsz = simd_oprsz(desc); \ + intptr_t odd_ofs = simd_data(desc); \ + intptr_t i; \ + for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \ + TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \ + TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \ + *(TYPE *)(vd + H(i + 0)) = ae; \ + *(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \ + } \ + if (sizeof(TYPE) == 16 && unlikely(oprsz & 16)) { \ + memset(vd + oprsz - 16, 0, 16); \ + } \ +} + +DO_TRN(sve_trn_b, uint8_t, H1) +DO_TRN(sve_trn_h, uint16_t, H1_2) +DO_TRN(sve_trn_s, uint32_t, H1_4) +DO_TRN(sve_trn_d, uint64_t, H1_8) +DO_TRN(sve2_trn_q, Int128, ) + +#undef DO_ZIP +#undef DO_UZP +#undef DO_TRN + +void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc) / 4; + uint32_t *d = vd, *n = vn; + uint8_t *pg = vg; + + for (i = j = 0; i < opr_sz; i++) { + if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) { + d[H4(j)] = n[H4(i)]; + j++; + } + } + for (; j < opr_sz; j++) { + d[H4(j)] = 0; + } +} + +void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + for (i = j = 0; i < opr_sz; i++) { + if (pg[H1(i)] & 1) { + d[j] = n[i]; + j++; + } + } + for (; j < opr_sz; j++) { + d[j] = 0; + } +} + +/* Similar to the ARM LastActiveElement pseudocode function, except the + * result is multiplied by the element size. This includes the not found + * indication; e.g. not found for esz=3 is -8. + */ +int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc) +{ + intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8); + intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); + + return last_active_element(vg, words, esz); +} + +void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) +{ + intptr_t opr_sz = simd_oprsz(desc) / 8; + int esz = simd_data(desc); + uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz]; + intptr_t i, first_i, last_i; + ARMVectorReg tmp; + + first_i = last_i = 0; + first_g = last_g = 0; + + /* Find the extent of the active elements within VG. */ + for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) { + pg = *(uint64_t *)(vg + i) & mask; + if (pg) { + if (last_g == 0) { + last_g = pg; + last_i = i; + } + first_g = pg; + first_i = i; + } + } + + len = 0; + if (first_g != 0) { + first_i = first_i * 8 + ctz64(first_g); + last_i = last_i * 8 + 63 - clz64(last_g); + len = last_i - first_i + (1 << esz); + if (vd == vm) { + vm = memcpy(&tmp, vm, opr_sz * 8); + } + swap_memmove(vd, vn + first_i, len); + } + swap_memmove(vd + len, vm, opr_sz * 8 - len); +} + +void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm, + void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i], mm = m[i]; + uint64_t pp = expand_pred_b(pg[H1(i)]); + d[i] = (nn & pp) | (mm & ~pp); + } +} + +void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm, + void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i], mm = m[i]; + uint64_t pp = expand_pred_h(pg[H1(i)]); + d[i] = (nn & pp) | (mm & ~pp); + } +} + +void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm, + void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i], mm = m[i]; + uint64_t pp = expand_pred_s(pg[H1(i)]); + d[i] = (nn & pp) | (mm & ~pp); + } +} + +void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm, + void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i], mm = m[i]; + d[i] = (pg[H1(i)] & 1 ? nn : mm); + } +} + +/* Two operand comparison controlled by a predicate. + * ??? It is very tempting to want to be able to expand this inline + * with x86 instructions, e.g. + * + * vcmpeqw zm, zn, %ymm0 + * vpmovmskb %ymm0, %eax + * and $0x5555, %eax + * and pg, %eax + * + * or even aarch64, e.g. + * + * // mask = 4000 1000 0400 0100 0040 0010 0004 0001 + * cmeq v0.8h, zn, zm + * and v0.8h, v0.8h, mask + * addv h0, v0.8h + * and v0.8b, pg + * + * However, coming up with an abstraction that allows vector inputs and + * a scalar output, and also handles the byte-ordering of sub-uint64_t + * scalar outputs, is tricky. + */ +#define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK) \ +uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t opr_sz = simd_oprsz(desc); \ + uint32_t flags = PREDTEST_INIT; \ + intptr_t i = opr_sz; \ + do { \ + uint64_t out = 0, pg; \ + do { \ + i -= sizeof(TYPE), out <<= sizeof(TYPE); \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + TYPE mm = *(TYPE *)(vm + H(i)); \ + out |= nn OP mm; \ + } while (i & 63); \ + pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \ + out &= pg; \ + *(uint64_t *)(vd + (i >> 3)) = out; \ + flags = iter_predtest_bwd(out, pg, flags); \ + } while (i > 0); \ + return flags; \ +} + +#define DO_CMP_PPZZ_B(NAME, TYPE, OP) \ + DO_CMP_PPZZ(NAME, TYPE, OP, H1, 0xffffffffffffffffull) +#define DO_CMP_PPZZ_H(NAME, TYPE, OP) \ + DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull) +#define DO_CMP_PPZZ_S(NAME, TYPE, OP) \ + DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull) +#define DO_CMP_PPZZ_D(NAME, TYPE, OP) \ + DO_CMP_PPZZ(NAME, TYPE, OP, H1_8, 0x0101010101010101ull) + +DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t, ==) +DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==) +DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==) +DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==) + +DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t, !=) +DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=) +DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=) +DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=) + +DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t, >) +DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >) +DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >) +DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >) + +DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t, >=) +DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=) +DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=) +DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=) + +DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t, >) +DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >) +DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >) +DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >) + +DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t, >=) +DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=) +DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=) +DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=) + +#undef DO_CMP_PPZZ_B +#undef DO_CMP_PPZZ_H +#undef DO_CMP_PPZZ_S +#undef DO_CMP_PPZZ_D +#undef DO_CMP_PPZZ + +/* Similar, but the second source is "wide". */ +#define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK) \ +uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t opr_sz = simd_oprsz(desc); \ + uint32_t flags = PREDTEST_INIT; \ + intptr_t i = opr_sz; \ + do { \ + uint64_t out = 0, pg; \ + do { \ + TYPEW mm = *(TYPEW *)(vm + i - 8); \ + do { \ + i -= sizeof(TYPE), out <<= sizeof(TYPE); \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + out |= nn OP mm; \ + } while (i & 7); \ + } while (i & 63); \ + pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \ + out &= pg; \ + *(uint64_t *)(vd + (i >> 3)) = out; \ + flags = iter_predtest_bwd(out, pg, flags); \ + } while (i > 0); \ + return flags; \ +} + +#define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \ + DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1, 0xffffffffffffffffull) +#define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \ + DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull) +#define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \ + DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull) + +DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, int8_t, uint64_t, ==) +DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, int16_t, uint64_t, ==) +DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, int32_t, uint64_t, ==) + +DO_CMP_PPZW_B(sve_cmpne_ppzw_b, int8_t, uint64_t, !=) +DO_CMP_PPZW_H(sve_cmpne_ppzw_h, int16_t, uint64_t, !=) +DO_CMP_PPZW_S(sve_cmpne_ppzw_s, int32_t, uint64_t, !=) + +DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >) +DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >) +DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t, int64_t, >) + +DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t, int64_t, >=) +DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t, int64_t, >=) +DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t, int64_t, >=) + +DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t, uint64_t, >) +DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >) +DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >) + +DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t, uint64_t, >=) +DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=) +DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=) + +DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t, int64_t, <) +DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t, int64_t, <) +DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t, int64_t, <) + +DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t, int64_t, <=) +DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t, int64_t, <=) +DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t, int64_t, <=) + +DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t, uint64_t, <) +DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <) +DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <) + +DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t, uint64_t, <=) +DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=) +DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=) + +#undef DO_CMP_PPZW_B +#undef DO_CMP_PPZW_H +#undef DO_CMP_PPZW_S +#undef DO_CMP_PPZW + +/* Similar, but the second source is immediate. */ +#define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK) \ +uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t opr_sz = simd_oprsz(desc); \ + uint32_t flags = PREDTEST_INIT; \ + TYPE mm = simd_data(desc); \ + intptr_t i = opr_sz; \ + do { \ + uint64_t out = 0, pg; \ + do { \ + i -= sizeof(TYPE), out <<= sizeof(TYPE); \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + out |= nn OP mm; \ + } while (i & 63); \ + pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \ + out &= pg; \ + *(uint64_t *)(vd + (i >> 3)) = out; \ + flags = iter_predtest_bwd(out, pg, flags); \ + } while (i > 0); \ + return flags; \ +} + +#define DO_CMP_PPZI_B(NAME, TYPE, OP) \ + DO_CMP_PPZI(NAME, TYPE, OP, H1, 0xffffffffffffffffull) +#define DO_CMP_PPZI_H(NAME, TYPE, OP) \ + DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull) +#define DO_CMP_PPZI_S(NAME, TYPE, OP) \ + DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull) +#define DO_CMP_PPZI_D(NAME, TYPE, OP) \ + DO_CMP_PPZI(NAME, TYPE, OP, H1_8, 0x0101010101010101ull) + +DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t, ==) +DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==) +DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==) +DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==) + +DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t, !=) +DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=) +DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=) +DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=) + +DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t, >) +DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >) +DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >) +DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >) + +DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t, >=) +DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=) +DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=) +DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=) + +DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t, >) +DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >) +DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >) +DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >) + +DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t, >=) +DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=) +DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=) +DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=) + +DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t, <) +DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <) +DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <) +DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <) + +DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t, <=) +DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=) +DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=) +DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=) + +DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t, <) +DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <) +DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <) +DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <) + +DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t, <=) +DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=) +DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=) +DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=) + +#undef DO_CMP_PPZI_B +#undef DO_CMP_PPZI_H +#undef DO_CMP_PPZI_S +#undef DO_CMP_PPZI_D +#undef DO_CMP_PPZI + +/* Similar to the ARM LastActive pseudocode function. */ +static bool last_active_pred(void *vd, void *vg, intptr_t oprsz) +{ + intptr_t i; + + for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) { + uint64_t pg = *(uint64_t *)(vg + i); + if (pg) { + return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0; + } + } + return 0; +} + +/* Compute a mask into RETB that is true for all G, up to and including + * (if after) or excluding (if !after) the first G & N. + * Return true if BRK found. + */ +static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g, + bool brk, bool after) +{ + uint64_t b; + + if (brk) { + b = 0; + } else if ((g & n) == 0) { + /* For all G, no N are set; break not found. */ + b = g; + } else { + /* Break somewhere in N. Locate it. */ + b = g & n; /* guard true, pred true */ + b = b & -b; /* first such */ + if (after) { + b = b | (b - 1); /* break after same */ + } else { + b = b - 1; /* break before same */ + } + brk = true; + } + + *retb = b; + return brk; +} + +/* Compute a zeroing BRK. */ +static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g, + intptr_t oprsz, bool after) +{ + bool brk = false; + intptr_t i; + + for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { + uint64_t this_b, this_g = g[i]; + + brk = compute_brk(&this_b, n[i], this_g, brk, after); + d[i] = this_b & this_g; + } +} + +/* Likewise, but also compute flags. */ +static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g, + intptr_t oprsz, bool after) +{ + uint32_t flags = PREDTEST_INIT; + bool brk = false; + intptr_t i; + + for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { + uint64_t this_b, this_d, this_g = g[i]; + + brk = compute_brk(&this_b, n[i], this_g, brk, after); + d[i] = this_d = this_b & this_g; + flags = iter_predtest_fwd(this_d, this_g, flags); + } + return flags; +} + +/* Compute a merging BRK. */ +static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g, + intptr_t oprsz, bool after) +{ + bool brk = false; + intptr_t i; + + for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { + uint64_t this_b, this_g = g[i]; + + brk = compute_brk(&this_b, n[i], this_g, brk, after); + d[i] = (this_b & this_g) | (d[i] & ~this_g); + } +} + +/* Likewise, but also compute flags. */ +static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g, + intptr_t oprsz, bool after) +{ + uint32_t flags = PREDTEST_INIT; + bool brk = false; + intptr_t i; + + for (i = 0; i < oprsz / 8; ++i) { + uint64_t this_b, this_d = d[i], this_g = g[i]; + + brk = compute_brk(&this_b, n[i], this_g, brk, after); + d[i] = this_d = (this_b & this_g) | (this_d & ~this_g); + flags = iter_predtest_fwd(this_d, this_g, flags); + } + return flags; +} + +static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz) +{ + /* It is quicker to zero the whole predicate than loop on OPRSZ. + * The compiler should turn this into 4 64-bit integer stores. + */ + memset(d, 0, sizeof(ARMPredicateReg)); + return PREDTEST_INIT; +} + +void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg, + uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + if (last_active_pred(vn, vg, oprsz)) { + compute_brk_z(vd, vm, vg, oprsz, true); + } else { + do_zero(vd, oprsz); + } +} + +uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg, + uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + if (last_active_pred(vn, vg, oprsz)) { + return compute_brks_z(vd, vm, vg, oprsz, true); + } else { + return do_zero(vd, oprsz); + } +} + +void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg, + uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + if (last_active_pred(vn, vg, oprsz)) { + compute_brk_z(vd, vm, vg, oprsz, false); + } else { + do_zero(vd, oprsz); + } +} + +uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg, + uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + if (last_active_pred(vn, vg, oprsz)) { + return compute_brks_z(vd, vm, vg, oprsz, false); + } else { + return do_zero(vd, oprsz); + } +} + +void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + compute_brk_z(vd, vn, vg, oprsz, true); +} + +uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + return compute_brks_z(vd, vn, vg, oprsz, true); +} + +void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + compute_brk_z(vd, vn, vg, oprsz, false); +} + +uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + return compute_brks_z(vd, vn, vg, oprsz, false); +} + +void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + compute_brk_m(vd, vn, vg, oprsz, true); +} + +uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + return compute_brks_m(vd, vn, vg, oprsz, true); +} + +void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + compute_brk_m(vd, vn, vg, oprsz, false); +} + +uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + return compute_brks_m(vd, vn, vg, oprsz, false); +} + +void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + if (!last_active_pred(vn, vg, oprsz)) { + do_zero(vd, oprsz); + } +} + +/* As if PredTest(Ones(PL), D, esz). */ +static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz, + uint64_t esz_mask) +{ + uint32_t flags = PREDTEST_INIT; + intptr_t i; + + for (i = 0; i < oprsz / 8; i++) { + flags = iter_predtest_fwd(d->p[i], esz_mask, flags); + } + if (oprsz & 7) { + uint64_t mask = ~(-1ULL << (8 * (oprsz & 7))); + flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags); + } + return flags; +} + +uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + if (last_active_pred(vn, vg, oprsz)) { + return predtest_ones(vd, oprsz, -1); + } else { + return do_zero(vd, oprsz); + } +} + +uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc) +{ + intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8); + intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); + uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz]; + intptr_t i; + + for (i = 0; i < words; ++i) { + uint64_t t = n[i] & g[i] & mask; + sum += ctpop64(t); + } + return sum; +} + +uint32_t HELPER(sve_whilel)(void *vd, uint32_t count, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); + uint64_t esz_mask = pred_esz_masks[esz]; + ARMPredicateReg *d = vd; + uint32_t flags; + intptr_t i; + + /* Begin with a zero predicate register. */ + flags = do_zero(d, oprsz); + if (count == 0) { + return flags; + } + + /* Set all of the requested bits. */ + for (i = 0; i < count / 64; ++i) { + d->p[i] = esz_mask; + } + if (count & 63) { + d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask; + } + + return predtest_ones(d, oprsz, esz_mask); +} + +uint32_t HELPER(sve_whileg)(void *vd, uint32_t count, uint32_t pred_desc) +{ + intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ); + intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ); + uint64_t esz_mask = pred_esz_masks[esz]; + ARMPredicateReg *d = vd; + intptr_t i, invcount, oprbits; + uint64_t bits; + + if (count == 0) { + return do_zero(d, oprsz); + } + + oprbits = oprsz * 8; + tcg_debug_assert(count <= oprbits); + + bits = esz_mask; + if (oprbits & 63) { + bits &= MAKE_64BIT_MASK(0, oprbits & 63); + } + + invcount = oprbits - count; + for (i = (oprsz - 1) / 8; i > invcount / 64; --i) { + d->p[i] = bits; + bits = esz_mask; + } + + d->p[i] = bits & MAKE_64BIT_MASK(invcount & 63, 64); + + while (--i >= 0) { + d->p[i] = 0; + } + + return predtest_ones(d, oprsz, esz_mask); +} + +/* Recursive reduction on a function; + * C.f. the ARM ARM function ReducePredicated. + * + * While it would be possible to write this without the DATA temporary, + * it is much simpler to process the predicate register this way. + * The recursion is bounded to depth 7 (128 fp16 elements), so there's + * little to gain with a more complex non-recursive form. + */ +#define DO_REDUCE(NAME, TYPE, H, FUNC, IDENT) \ +static TYPE NAME##_reduce(TYPE *data, float_status *status, uintptr_t n) \ +{ \ + if (n == 1) { \ + return *data; \ + } else { \ + uintptr_t half = n / 2; \ + TYPE lo = NAME##_reduce(data, status, half); \ + TYPE hi = NAME##_reduce(data + half, status, half); \ + return TYPE##_##FUNC(lo, hi, status); \ + } \ +} \ +uint64_t HELPER(NAME)(void *vn, void *vg, void *vs, uint32_t desc) \ +{ \ + uintptr_t i, oprsz = simd_oprsz(desc), maxsz = simd_data(desc); \ + TYPE data[sizeof(ARMVectorReg) / sizeof(TYPE)]; \ + for (i = 0; i < oprsz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)((void *)data + i) = (pg & 1 ? nn : IDENT); \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ + for (; i < maxsz; i += sizeof(TYPE)) { \ + *(TYPE *)((void *)data + i) = IDENT; \ + } \ + return NAME##_reduce(data, vs, maxsz / sizeof(TYPE)); \ +} + +DO_REDUCE(sve_faddv_h, float16, H1_2, add, float16_zero) +DO_REDUCE(sve_faddv_s, float32, H1_4, add, float32_zero) +DO_REDUCE(sve_faddv_d, float64, H1_8, add, float64_zero) + +/* Identity is floatN_default_nan, without the function call. */ +DO_REDUCE(sve_fminnmv_h, float16, H1_2, minnum, 0x7E00) +DO_REDUCE(sve_fminnmv_s, float32, H1_4, minnum, 0x7FC00000) +DO_REDUCE(sve_fminnmv_d, float64, H1_8, minnum, 0x7FF8000000000000ULL) + +DO_REDUCE(sve_fmaxnmv_h, float16, H1_2, maxnum, 0x7E00) +DO_REDUCE(sve_fmaxnmv_s, float32, H1_4, maxnum, 0x7FC00000) +DO_REDUCE(sve_fmaxnmv_d, float64, H1_8, maxnum, 0x7FF8000000000000ULL) + +DO_REDUCE(sve_fminv_h, float16, H1_2, min, float16_infinity) +DO_REDUCE(sve_fminv_s, float32, H1_4, min, float32_infinity) +DO_REDUCE(sve_fminv_d, float64, H1_8, min, float64_infinity) + +DO_REDUCE(sve_fmaxv_h, float16, H1_2, max, float16_chs(float16_infinity)) +DO_REDUCE(sve_fmaxv_s, float32, H1_4, max, float32_chs(float32_infinity)) +DO_REDUCE(sve_fmaxv_d, float64, H1_8, max, float64_chs(float64_infinity)) + +#undef DO_REDUCE + +uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg, + void *status, uint32_t desc) +{ + intptr_t i = 0, opr_sz = simd_oprsz(desc); + float16 result = nn; + + do { + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); + do { + if (pg & 1) { + float16 mm = *(float16 *)(vm + H1_2(i)); + result = float16_add(result, mm, status); + } + i += sizeof(float16), pg >>= sizeof(float16); + } while (i & 15); + } while (i < opr_sz); + + return result; +} + +uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg, + void *status, uint32_t desc) +{ + intptr_t i = 0, opr_sz = simd_oprsz(desc); + float32 result = nn; + + do { + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); + do { + if (pg & 1) { + float32 mm = *(float32 *)(vm + H1_2(i)); + result = float32_add(result, mm, status); + } + i += sizeof(float32), pg >>= sizeof(float32); + } while (i & 15); + } while (i < opr_sz); + + return result; +} + +uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg, + void *status, uint32_t desc) +{ + intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8; + uint64_t *m = vm; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i++) { + if (pg[H1(i)] & 1) { + nn = float64_add(nn, m[i], status); + } + } + + return nn; +} + +/* Fully general three-operand expander, controlled by a predicate, + * With the extra float_status parameter. + */ +#define DO_ZPZZ_FP(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \ + void *status, uint32_t desc) \ +{ \ + intptr_t i = simd_oprsz(desc); \ + uint64_t *g = vg; \ + do { \ + uint64_t pg = g[(i - 1) >> 6]; \ + do { \ + i -= sizeof(TYPE); \ + if (likely((pg >> (i & 63)) & 1)) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + TYPE mm = *(TYPE *)(vm + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \ + } \ + } while (i & 63); \ + } while (i != 0); \ +} + +DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add) +DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add) +DO_ZPZZ_FP(sve_fadd_d, uint64_t, H1_8, float64_add) + +DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub) +DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub) +DO_ZPZZ_FP(sve_fsub_d, uint64_t, H1_8, float64_sub) + +DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul) +DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul) +DO_ZPZZ_FP(sve_fmul_d, uint64_t, H1_8, float64_mul) + +DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div) +DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div) +DO_ZPZZ_FP(sve_fdiv_d, uint64_t, H1_8, float64_div) + +DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min) +DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min) +DO_ZPZZ_FP(sve_fmin_d, uint64_t, H1_8, float64_min) + +DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max) +DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max) +DO_ZPZZ_FP(sve_fmax_d, uint64_t, H1_8, float64_max) + +DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum) +DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum) +DO_ZPZZ_FP(sve_fminnum_d, uint64_t, H1_8, float64_minnum) + +DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum) +DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum) +DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, H1_8, float64_maxnum) + +static inline float16 abd_h(float16 a, float16 b, float_status *s) +{ + return float16_abs(float16_sub(a, b, s)); +} + +static inline float32 abd_s(float32 a, float32 b, float_status *s) +{ + return float32_abs(float32_sub(a, b, s)); +} + +static inline float64 abd_d(float64 a, float64 b, float_status *s) +{ + return float64_abs(float64_sub(a, b, s)); +} + +DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h) +DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s) +DO_ZPZZ_FP(sve_fabd_d, uint64_t, H1_8, abd_d) + +static inline float64 scalbn_d(float64 a, int64_t b, float_status *s) +{ + int b_int = MIN(MAX(b, INT_MIN), INT_MAX); + return float64_scalbn(a, b_int, s); +} + +DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn) +DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn) +DO_ZPZZ_FP(sve_fscalbn_d, int64_t, H1_8, scalbn_d) + +DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh) +DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs) +DO_ZPZZ_FP(sve_fmulx_d, uint64_t, H1_8, helper_vfp_mulxd) + +#undef DO_ZPZZ_FP + +/* Three-operand expander, with one scalar operand, controlled by + * a predicate, with the extra float_status parameter. + */ +#define DO_ZPZS_FP(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, uint64_t scalar, \ + void *status, uint32_t desc) \ +{ \ + intptr_t i = simd_oprsz(desc); \ + uint64_t *g = vg; \ + TYPE mm = scalar; \ + do { \ + uint64_t pg = g[(i - 1) >> 6]; \ + do { \ + i -= sizeof(TYPE); \ + if (likely((pg >> (i & 63)) & 1)) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \ + } \ + } while (i & 63); \ + } while (i != 0); \ +} + +DO_ZPZS_FP(sve_fadds_h, float16, H1_2, float16_add) +DO_ZPZS_FP(sve_fadds_s, float32, H1_4, float32_add) +DO_ZPZS_FP(sve_fadds_d, float64, H1_8, float64_add) + +DO_ZPZS_FP(sve_fsubs_h, float16, H1_2, float16_sub) +DO_ZPZS_FP(sve_fsubs_s, float32, H1_4, float32_sub) +DO_ZPZS_FP(sve_fsubs_d, float64, H1_8, float64_sub) + +DO_ZPZS_FP(sve_fmuls_h, float16, H1_2, float16_mul) +DO_ZPZS_FP(sve_fmuls_s, float32, H1_4, float32_mul) +DO_ZPZS_FP(sve_fmuls_d, float64, H1_8, float64_mul) + +static inline float16 subr_h(float16 a, float16 b, float_status *s) +{ + return float16_sub(b, a, s); +} + +static inline float32 subr_s(float32 a, float32 b, float_status *s) +{ + return float32_sub(b, a, s); +} + +static inline float64 subr_d(float64 a, float64 b, float_status *s) +{ + return float64_sub(b, a, s); +} + +DO_ZPZS_FP(sve_fsubrs_h, float16, H1_2, subr_h) +DO_ZPZS_FP(sve_fsubrs_s, float32, H1_4, subr_s) +DO_ZPZS_FP(sve_fsubrs_d, float64, H1_8, subr_d) + +DO_ZPZS_FP(sve_fmaxnms_h, float16, H1_2, float16_maxnum) +DO_ZPZS_FP(sve_fmaxnms_s, float32, H1_4, float32_maxnum) +DO_ZPZS_FP(sve_fmaxnms_d, float64, H1_8, float64_maxnum) + +DO_ZPZS_FP(sve_fminnms_h, float16, H1_2, float16_minnum) +DO_ZPZS_FP(sve_fminnms_s, float32, H1_4, float32_minnum) +DO_ZPZS_FP(sve_fminnms_d, float64, H1_8, float64_minnum) + +DO_ZPZS_FP(sve_fmaxs_h, float16, H1_2, float16_max) +DO_ZPZS_FP(sve_fmaxs_s, float32, H1_4, float32_max) +DO_ZPZS_FP(sve_fmaxs_d, float64, H1_8, float64_max) + +DO_ZPZS_FP(sve_fmins_h, float16, H1_2, float16_min) +DO_ZPZS_FP(sve_fmins_s, float32, H1_4, float32_min) +DO_ZPZS_FP(sve_fmins_d, float64, H1_8, float64_min) + +/* Fully general two-operand expander, controlled by a predicate, + * With the extra float_status parameter. + */ +#define DO_ZPZ_FP(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \ +{ \ + intptr_t i = simd_oprsz(desc); \ + uint64_t *g = vg; \ + do { \ + uint64_t pg = g[(i - 1) >> 6]; \ + do { \ + i -= sizeof(TYPE); \ + if (likely((pg >> (i & 63)) & 1)) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, status); \ + } \ + } while (i & 63); \ + } while (i != 0); \ +} + +/* SVE fp16 conversions always use IEEE mode. Like AdvSIMD, they ignore + * FZ16. When converting from fp16, this affects flushing input denormals; + * when converting to fp16, this affects flushing output denormals. + */ +static inline float32 sve_f16_to_f32(float16 f, float_status *fpst) +{ + bool save = get_flush_inputs_to_zero(fpst); + float32 ret; + + set_flush_inputs_to_zero(false, fpst); + ret = float16_to_float32(f, true, fpst); + set_flush_inputs_to_zero(save, fpst); + return ret; +} + +static inline float64 sve_f16_to_f64(float16 f, float_status *fpst) +{ + bool save = get_flush_inputs_to_zero(fpst); + float64 ret; + + set_flush_inputs_to_zero(false, fpst); + ret = float16_to_float64(f, true, fpst); + set_flush_inputs_to_zero(save, fpst); + return ret; +} + +static inline float16 sve_f32_to_f16(float32 f, float_status *fpst) +{ + bool save = get_flush_to_zero(fpst); + float16 ret; + + set_flush_to_zero(false, fpst); + ret = float32_to_float16(f, true, fpst); + set_flush_to_zero(save, fpst); + return ret; +} + +static inline float16 sve_f64_to_f16(float64 f, float_status *fpst) +{ + bool save = get_flush_to_zero(fpst); + float16 ret; + + set_flush_to_zero(false, fpst); + ret = float64_to_float16(f, true, fpst); + set_flush_to_zero(save, fpst); + return ret; +} + +static inline int16_t vfp_float16_to_int16_rtz(float16 f, float_status *s) +{ + if (float16_is_any_nan(f)) { + float_raise(float_flag_invalid, s); + return 0; + } + return float16_to_int16_round_to_zero(f, s); +} + +static inline int64_t vfp_float16_to_int64_rtz(float16 f, float_status *s) +{ + if (float16_is_any_nan(f)) { + float_raise(float_flag_invalid, s); + return 0; + } + return float16_to_int64_round_to_zero(f, s); +} + +static inline int64_t vfp_float32_to_int64_rtz(float32 f, float_status *s) +{ + if (float32_is_any_nan(f)) { + float_raise(float_flag_invalid, s); + return 0; + } + return float32_to_int64_round_to_zero(f, s); +} + +static inline int64_t vfp_float64_to_int64_rtz(float64 f, float_status *s) +{ + if (float64_is_any_nan(f)) { + float_raise(float_flag_invalid, s); + return 0; + } + return float64_to_int64_round_to_zero(f, s); +} + +static inline uint16_t vfp_float16_to_uint16_rtz(float16 f, float_status *s) +{ + if (float16_is_any_nan(f)) { + float_raise(float_flag_invalid, s); + return 0; + } + return float16_to_uint16_round_to_zero(f, s); +} + +static inline uint64_t vfp_float16_to_uint64_rtz(float16 f, float_status *s) +{ + if (float16_is_any_nan(f)) { + float_raise(float_flag_invalid, s); + return 0; + } + return float16_to_uint64_round_to_zero(f, s); +} + +static inline uint64_t vfp_float32_to_uint64_rtz(float32 f, float_status *s) +{ + if (float32_is_any_nan(f)) { + float_raise(float_flag_invalid, s); + return 0; + } + return float32_to_uint64_round_to_zero(f, s); +} + +static inline uint64_t vfp_float64_to_uint64_rtz(float64 f, float_status *s) +{ + if (float64_is_any_nan(f)) { + float_raise(float_flag_invalid, s); + return 0; + } + return float64_to_uint64_round_to_zero(f, s); +} + +DO_ZPZ_FP(sve_fcvt_sh, uint32_t, H1_4, sve_f32_to_f16) +DO_ZPZ_FP(sve_fcvt_hs, uint32_t, H1_4, sve_f16_to_f32) +DO_ZPZ_FP(sve_bfcvt, uint32_t, H1_4, float32_to_bfloat16) +DO_ZPZ_FP(sve_fcvt_dh, uint64_t, H1_8, sve_f64_to_f16) +DO_ZPZ_FP(sve_fcvt_hd, uint64_t, H1_8, sve_f16_to_f64) +DO_ZPZ_FP(sve_fcvt_ds, uint64_t, H1_8, float64_to_float32) +DO_ZPZ_FP(sve_fcvt_sd, uint64_t, H1_8, float32_to_float64) + +DO_ZPZ_FP(sve_fcvtzs_hh, uint16_t, H1_2, vfp_float16_to_int16_rtz) +DO_ZPZ_FP(sve_fcvtzs_hs, uint32_t, H1_4, helper_vfp_tosizh) +DO_ZPZ_FP(sve_fcvtzs_ss, uint32_t, H1_4, helper_vfp_tosizs) +DO_ZPZ_FP(sve_fcvtzs_hd, uint64_t, H1_8, vfp_float16_to_int64_rtz) +DO_ZPZ_FP(sve_fcvtzs_sd, uint64_t, H1_8, vfp_float32_to_int64_rtz) +DO_ZPZ_FP(sve_fcvtzs_ds, uint64_t, H1_8, helper_vfp_tosizd) +DO_ZPZ_FP(sve_fcvtzs_dd, uint64_t, H1_8, vfp_float64_to_int64_rtz) + +DO_ZPZ_FP(sve_fcvtzu_hh, uint16_t, H1_2, vfp_float16_to_uint16_rtz) +DO_ZPZ_FP(sve_fcvtzu_hs, uint32_t, H1_4, helper_vfp_touizh) +DO_ZPZ_FP(sve_fcvtzu_ss, uint32_t, H1_4, helper_vfp_touizs) +DO_ZPZ_FP(sve_fcvtzu_hd, uint64_t, H1_8, vfp_float16_to_uint64_rtz) +DO_ZPZ_FP(sve_fcvtzu_sd, uint64_t, H1_8, vfp_float32_to_uint64_rtz) +DO_ZPZ_FP(sve_fcvtzu_ds, uint64_t, H1_8, helper_vfp_touizd) +DO_ZPZ_FP(sve_fcvtzu_dd, uint64_t, H1_8, vfp_float64_to_uint64_rtz) + +DO_ZPZ_FP(sve_frint_h, uint16_t, H1_2, helper_advsimd_rinth) +DO_ZPZ_FP(sve_frint_s, uint32_t, H1_4, helper_rints) +DO_ZPZ_FP(sve_frint_d, uint64_t, H1_8, helper_rintd) + +DO_ZPZ_FP(sve_frintx_h, uint16_t, H1_2, float16_round_to_int) +DO_ZPZ_FP(sve_frintx_s, uint32_t, H1_4, float32_round_to_int) +DO_ZPZ_FP(sve_frintx_d, uint64_t, H1_8, float64_round_to_int) + +DO_ZPZ_FP(sve_frecpx_h, uint16_t, H1_2, helper_frecpx_f16) +DO_ZPZ_FP(sve_frecpx_s, uint32_t, H1_4, helper_frecpx_f32) +DO_ZPZ_FP(sve_frecpx_d, uint64_t, H1_8, helper_frecpx_f64) + +DO_ZPZ_FP(sve_fsqrt_h, uint16_t, H1_2, float16_sqrt) +DO_ZPZ_FP(sve_fsqrt_s, uint32_t, H1_4, float32_sqrt) +DO_ZPZ_FP(sve_fsqrt_d, uint64_t, H1_8, float64_sqrt) + +DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16) +DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16) +DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32) +DO_ZPZ_FP(sve_scvt_sd, uint64_t, H1_8, int32_to_float64) +DO_ZPZ_FP(sve_scvt_dh, uint64_t, H1_8, int64_to_float16) +DO_ZPZ_FP(sve_scvt_ds, uint64_t, H1_8, int64_to_float32) +DO_ZPZ_FP(sve_scvt_dd, uint64_t, H1_8, int64_to_float64) + +DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16) +DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16) +DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32) +DO_ZPZ_FP(sve_ucvt_sd, uint64_t, H1_8, uint32_to_float64) +DO_ZPZ_FP(sve_ucvt_dh, uint64_t, H1_8, uint64_to_float16) +DO_ZPZ_FP(sve_ucvt_ds, uint64_t, H1_8, uint64_to_float32) +DO_ZPZ_FP(sve_ucvt_dd, uint64_t, H1_8, uint64_to_float64) + +static int16_t do_float16_logb_as_int(float16 a, float_status *s) +{ + /* Extract frac to the top of the uint32_t. */ + uint32_t frac = (uint32_t)a << (16 + 6); + int16_t exp = extract32(a, 10, 5); + + if (unlikely(exp == 0)) { + if (frac != 0) { + if (!get_flush_inputs_to_zero(s)) { + /* denormal: bias - fractional_zeros */ + return -15 - clz32(frac); + } + /* flush to zero */ + float_raise(float_flag_input_denormal, s); + } + } else if (unlikely(exp == 0x1f)) { + if (frac == 0) { + return INT16_MAX; /* infinity */ + } + } else { + /* normal: exp - bias */ + return exp - 15; + } + /* nan or zero */ + float_raise(float_flag_invalid, s); + return INT16_MIN; +} + +static int32_t do_float32_logb_as_int(float32 a, float_status *s) +{ + /* Extract frac to the top of the uint32_t. */ + uint32_t frac = a << 9; + int32_t exp = extract32(a, 23, 8); + + if (unlikely(exp == 0)) { + if (frac != 0) { + if (!get_flush_inputs_to_zero(s)) { + /* denormal: bias - fractional_zeros */ + return -127 - clz32(frac); + } + /* flush to zero */ + float_raise(float_flag_input_denormal, s); + } + } else if (unlikely(exp == 0xff)) { + if (frac == 0) { + return INT32_MAX; /* infinity */ + } + } else { + /* normal: exp - bias */ + return exp - 127; + } + /* nan or zero */ + float_raise(float_flag_invalid, s); + return INT32_MIN; +} + +static int64_t do_float64_logb_as_int(float64 a, float_status *s) +{ + /* Extract frac to the top of the uint64_t. */ + uint64_t frac = a << 12; + int64_t exp = extract64(a, 52, 11); + + if (unlikely(exp == 0)) { + if (frac != 0) { + if (!get_flush_inputs_to_zero(s)) { + /* denormal: bias - fractional_zeros */ + return -1023 - clz64(frac); + } + /* flush to zero */ + float_raise(float_flag_input_denormal, s); + } + } else if (unlikely(exp == 0x7ff)) { + if (frac == 0) { + return INT64_MAX; /* infinity */ + } + } else { + /* normal: exp - bias */ + return exp - 1023; + } + /* nan or zero */ + float_raise(float_flag_invalid, s); + return INT64_MIN; +} + +DO_ZPZ_FP(flogb_h, float16, H1_2, do_float16_logb_as_int) +DO_ZPZ_FP(flogb_s, float32, H1_4, do_float32_logb_as_int) +DO_ZPZ_FP(flogb_d, float64, H1_8, do_float64_logb_as_int) + +#undef DO_ZPZ_FP + +static void do_fmla_zpzzz_h(void *vd, void *vn, void *vm, void *va, void *vg, + float_status *status, uint32_t desc, + uint16_t neg1, uint16_t neg3) +{ + intptr_t i = simd_oprsz(desc); + uint64_t *g = vg; + + do { + uint64_t pg = g[(i - 1) >> 6]; + do { + i -= 2; + if (likely((pg >> (i & 63)) & 1)) { + float16 e1, e2, e3, r; + + e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1; + e2 = *(uint16_t *)(vm + H1_2(i)); + e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3; + r = float16_muladd(e1, e2, e3, 0, status); + *(uint16_t *)(vd + H1_2(i)) = r; + } + } while (i & 63); + } while (i != 0); +} + +void HELPER(sve_fmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0); +} + +void HELPER(sve_fmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0); +} + +void HELPER(sve_fnmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0x8000); +} + +void HELPER(sve_fnmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0x8000); +} + +static void do_fmla_zpzzz_s(void *vd, void *vn, void *vm, void *va, void *vg, + float_status *status, uint32_t desc, + uint32_t neg1, uint32_t neg3) +{ + intptr_t i = simd_oprsz(desc); + uint64_t *g = vg; + + do { + uint64_t pg = g[(i - 1) >> 6]; + do { + i -= 4; + if (likely((pg >> (i & 63)) & 1)) { + float32 e1, e2, e3, r; + + e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1; + e2 = *(uint32_t *)(vm + H1_4(i)); + e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3; + r = float32_muladd(e1, e2, e3, 0, status); + *(uint32_t *)(vd + H1_4(i)) = r; + } + } while (i & 63); + } while (i != 0); +} + +void HELPER(sve_fmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0); +} + +void HELPER(sve_fmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0); +} + +void HELPER(sve_fnmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0x80000000); +} + +void HELPER(sve_fnmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0x80000000); +} + +static void do_fmla_zpzzz_d(void *vd, void *vn, void *vm, void *va, void *vg, + float_status *status, uint32_t desc, + uint64_t neg1, uint64_t neg3) +{ + intptr_t i = simd_oprsz(desc); + uint64_t *g = vg; + + do { + uint64_t pg = g[(i - 1) >> 6]; + do { + i -= 8; + if (likely((pg >> (i & 63)) & 1)) { + float64 e1, e2, e3, r; + + e1 = *(uint64_t *)(vn + i) ^ neg1; + e2 = *(uint64_t *)(vm + i); + e3 = *(uint64_t *)(va + i) ^ neg3; + r = float64_muladd(e1, e2, e3, 0, status); + *(uint64_t *)(vd + i) = r; + } + } while (i & 63); + } while (i != 0); +} + +void HELPER(sve_fmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, 0); +} + +void HELPER(sve_fmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, 0); +} + +void HELPER(sve_fnmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, INT64_MIN); +} + +void HELPER(sve_fnmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, INT64_MIN); +} + +/* Two operand floating-point comparison controlled by a predicate. + * Unlike the integer version, we are not allowed to optimistically + * compare operands, since the comparison may have side effects wrt + * the FPSR. + */ +#define DO_FPCMP_PPZZ(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \ + void *status, uint32_t desc) \ +{ \ + intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \ + uint64_t *d = vd, *g = vg; \ + do { \ + uint64_t out = 0, pg = g[j]; \ + do { \ + i -= sizeof(TYPE), out <<= sizeof(TYPE); \ + if (likely((pg >> (i & 63)) & 1)) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + TYPE mm = *(TYPE *)(vm + H(i)); \ + out |= OP(TYPE, nn, mm, status); \ + } \ + } while (i & 63); \ + d[j--] = out; \ + } while (i > 0); \ +} + +#define DO_FPCMP_PPZZ_H(NAME, OP) \ + DO_FPCMP_PPZZ(NAME##_h, float16, H1_2, OP) +#define DO_FPCMP_PPZZ_S(NAME, OP) \ + DO_FPCMP_PPZZ(NAME##_s, float32, H1_4, OP) +#define DO_FPCMP_PPZZ_D(NAME, OP) \ + DO_FPCMP_PPZZ(NAME##_d, float64, H1_8, OP) + +#define DO_FPCMP_PPZZ_ALL(NAME, OP) \ + DO_FPCMP_PPZZ_H(NAME, OP) \ + DO_FPCMP_PPZZ_S(NAME, OP) \ + DO_FPCMP_PPZZ_D(NAME, OP) + +#define DO_FCMGE(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) <= 0 +#define DO_FCMGT(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) < 0 +#define DO_FCMLE(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) <= 0 +#define DO_FCMLT(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) < 0 +#define DO_FCMEQ(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) == 0 +#define DO_FCMNE(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) != 0 +#define DO_FCMUO(TYPE, X, Y, ST) \ + TYPE##_compare_quiet(X, Y, ST) == float_relation_unordered +#define DO_FACGE(TYPE, X, Y, ST) \ + TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) <= 0 +#define DO_FACGT(TYPE, X, Y, ST) \ + TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) < 0 + +DO_FPCMP_PPZZ_ALL(sve_fcmge, DO_FCMGE) +DO_FPCMP_PPZZ_ALL(sve_fcmgt, DO_FCMGT) +DO_FPCMP_PPZZ_ALL(sve_fcmeq, DO_FCMEQ) +DO_FPCMP_PPZZ_ALL(sve_fcmne, DO_FCMNE) +DO_FPCMP_PPZZ_ALL(sve_fcmuo, DO_FCMUO) +DO_FPCMP_PPZZ_ALL(sve_facge, DO_FACGE) +DO_FPCMP_PPZZ_ALL(sve_facgt, DO_FACGT) + +#undef DO_FPCMP_PPZZ_ALL +#undef DO_FPCMP_PPZZ_D +#undef DO_FPCMP_PPZZ_S +#undef DO_FPCMP_PPZZ_H +#undef DO_FPCMP_PPZZ + +/* One operand floating-point comparison against zero, controlled + * by a predicate. + */ +#define DO_FPCMP_PPZ0(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, \ + void *status, uint32_t desc) \ +{ \ + intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \ + uint64_t *d = vd, *g = vg; \ + do { \ + uint64_t out = 0, pg = g[j]; \ + do { \ + i -= sizeof(TYPE), out <<= sizeof(TYPE); \ + if ((pg >> (i & 63)) & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + out |= OP(TYPE, nn, 0, status); \ + } \ + } while (i & 63); \ + d[j--] = out; \ + } while (i > 0); \ +} + +#define DO_FPCMP_PPZ0_H(NAME, OP) \ + DO_FPCMP_PPZ0(NAME##_h, float16, H1_2, OP) +#define DO_FPCMP_PPZ0_S(NAME, OP) \ + DO_FPCMP_PPZ0(NAME##_s, float32, H1_4, OP) +#define DO_FPCMP_PPZ0_D(NAME, OP) \ + DO_FPCMP_PPZ0(NAME##_d, float64, H1_8, OP) + +#define DO_FPCMP_PPZ0_ALL(NAME, OP) \ + DO_FPCMP_PPZ0_H(NAME, OP) \ + DO_FPCMP_PPZ0_S(NAME, OP) \ + DO_FPCMP_PPZ0_D(NAME, OP) + +DO_FPCMP_PPZ0_ALL(sve_fcmge0, DO_FCMGE) +DO_FPCMP_PPZ0_ALL(sve_fcmgt0, DO_FCMGT) +DO_FPCMP_PPZ0_ALL(sve_fcmle0, DO_FCMLE) +DO_FPCMP_PPZ0_ALL(sve_fcmlt0, DO_FCMLT) +DO_FPCMP_PPZ0_ALL(sve_fcmeq0, DO_FCMEQ) +DO_FPCMP_PPZ0_ALL(sve_fcmne0, DO_FCMNE) + +/* FP Trig Multiply-Add. */ + +void HELPER(sve_ftmad_h)(void *vd, void *vn, void *vm, void *vs, uint32_t desc) +{ + static const float16 coeff[16] = { + 0x3c00, 0xb155, 0x2030, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x3c00, 0xb800, 0x293a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + }; + intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float16); + intptr_t x = simd_data(desc); + float16 *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i++) { + float16 mm = m[i]; + intptr_t xx = x; + if (float16_is_neg(mm)) { + mm = float16_abs(mm); + xx += 8; + } + d[i] = float16_muladd(n[i], mm, coeff[xx], 0, vs); + } +} + +void HELPER(sve_ftmad_s)(void *vd, void *vn, void *vm, void *vs, uint32_t desc) +{ + static const float32 coeff[16] = { + 0x3f800000, 0xbe2aaaab, 0x3c088886, 0xb95008b9, + 0x36369d6d, 0x00000000, 0x00000000, 0x00000000, + 0x3f800000, 0xbf000000, 0x3d2aaaa6, 0xbab60705, + 0x37cd37cc, 0x00000000, 0x00000000, 0x00000000, + }; + intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float32); + intptr_t x = simd_data(desc); + float32 *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i++) { + float32 mm = m[i]; + intptr_t xx = x; + if (float32_is_neg(mm)) { + mm = float32_abs(mm); + xx += 8; + } + d[i] = float32_muladd(n[i], mm, coeff[xx], 0, vs); + } +} + +void HELPER(sve_ftmad_d)(void *vd, void *vn, void *vm, void *vs, uint32_t desc) +{ + static const float64 coeff[16] = { + 0x3ff0000000000000ull, 0xbfc5555555555543ull, + 0x3f8111111110f30cull, 0xbf2a01a019b92fc6ull, + 0x3ec71de351f3d22bull, 0xbe5ae5e2b60f7b91ull, + 0x3de5d8408868552full, 0x0000000000000000ull, + 0x3ff0000000000000ull, 0xbfe0000000000000ull, + 0x3fa5555555555536ull, 0xbf56c16c16c13a0bull, + 0x3efa01a019b1e8d8ull, 0xbe927e4f7282f468ull, + 0x3e21ee96d2641b13ull, 0xbda8f76380fbb401ull, + }; + intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float64); + intptr_t x = simd_data(desc); + float64 *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i++) { + float64 mm = m[i]; + intptr_t xx = x; + if (float64_is_neg(mm)) { + mm = float64_abs(mm); + xx += 8; + } + d[i] = float64_muladd(n[i], mm, coeff[xx], 0, vs); + } +} + +/* + * FP Complex Add + */ + +void HELPER(sve_fcadd_h)(void *vd, void *vn, void *vm, void *vg, + void *vs, uint32_t desc) +{ + intptr_t j, i = simd_oprsz(desc); + uint64_t *g = vg; + float16 neg_imag = float16_set_sign(0, simd_data(desc)); + float16 neg_real = float16_chs(neg_imag); + + do { + uint64_t pg = g[(i - 1) >> 6]; + do { + float16 e0, e1, e2, e3; + + /* I holds the real index; J holds the imag index. */ + j = i - sizeof(float16); + i -= 2 * sizeof(float16); + + e0 = *(float16 *)(vn + H1_2(i)); + e1 = *(float16 *)(vm + H1_2(j)) ^ neg_real; + e2 = *(float16 *)(vn + H1_2(j)); + e3 = *(float16 *)(vm + H1_2(i)) ^ neg_imag; + + if (likely((pg >> (i & 63)) & 1)) { + *(float16 *)(vd + H1_2(i)) = float16_add(e0, e1, vs); + } + if (likely((pg >> (j & 63)) & 1)) { + *(float16 *)(vd + H1_2(j)) = float16_add(e2, e3, vs); + } + } while (i & 63); + } while (i != 0); +} + +void HELPER(sve_fcadd_s)(void *vd, void *vn, void *vm, void *vg, + void *vs, uint32_t desc) +{ + intptr_t j, i = simd_oprsz(desc); + uint64_t *g = vg; + float32 neg_imag = float32_set_sign(0, simd_data(desc)); + float32 neg_real = float32_chs(neg_imag); + + do { + uint64_t pg = g[(i - 1) >> 6]; + do { + float32 e0, e1, e2, e3; + + /* I holds the real index; J holds the imag index. */ + j = i - sizeof(float32); + i -= 2 * sizeof(float32); + + e0 = *(float32 *)(vn + H1_2(i)); + e1 = *(float32 *)(vm + H1_2(j)) ^ neg_real; + e2 = *(float32 *)(vn + H1_2(j)); + e3 = *(float32 *)(vm + H1_2(i)) ^ neg_imag; + + if (likely((pg >> (i & 63)) & 1)) { + *(float32 *)(vd + H1_2(i)) = float32_add(e0, e1, vs); + } + if (likely((pg >> (j & 63)) & 1)) { + *(float32 *)(vd + H1_2(j)) = float32_add(e2, e3, vs); + } + } while (i & 63); + } while (i != 0); +} + +void HELPER(sve_fcadd_d)(void *vd, void *vn, void *vm, void *vg, + void *vs, uint32_t desc) +{ + intptr_t j, i = simd_oprsz(desc); + uint64_t *g = vg; + float64 neg_imag = float64_set_sign(0, simd_data(desc)); + float64 neg_real = float64_chs(neg_imag); + + do { + uint64_t pg = g[(i - 1) >> 6]; + do { + float64 e0, e1, e2, e3; + + /* I holds the real index; J holds the imag index. */ + j = i - sizeof(float64); + i -= 2 * sizeof(float64); + + e0 = *(float64 *)(vn + H1_2(i)); + e1 = *(float64 *)(vm + H1_2(j)) ^ neg_real; + e2 = *(float64 *)(vn + H1_2(j)); + e3 = *(float64 *)(vm + H1_2(i)) ^ neg_imag; + + if (likely((pg >> (i & 63)) & 1)) { + *(float64 *)(vd + H1_2(i)) = float64_add(e0, e1, vs); + } + if (likely((pg >> (j & 63)) & 1)) { + *(float64 *)(vd + H1_2(j)) = float64_add(e2, e3, vs); + } + } while (i & 63); + } while (i != 0); +} + +/* + * FP Complex Multiply + */ + +void HELPER(sve_fcmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + intptr_t j, i = simd_oprsz(desc); + unsigned rot = simd_data(desc); + bool flip = rot & 1; + float16 neg_imag, neg_real; + uint64_t *g = vg; + + neg_imag = float16_set_sign(0, (rot & 2) != 0); + neg_real = float16_set_sign(0, rot == 1 || rot == 2); + + do { + uint64_t pg = g[(i - 1) >> 6]; + do { + float16 e1, e2, e3, e4, nr, ni, mr, mi, d; + + /* I holds the real index; J holds the imag index. */ + j = i - sizeof(float16); + i -= 2 * sizeof(float16); + + nr = *(float16 *)(vn + H1_2(i)); + ni = *(float16 *)(vn + H1_2(j)); + mr = *(float16 *)(vm + H1_2(i)); + mi = *(float16 *)(vm + H1_2(j)); + + e2 = (flip ? ni : nr); + e1 = (flip ? mi : mr) ^ neg_real; + e4 = e2; + e3 = (flip ? mr : mi) ^ neg_imag; + + if (likely((pg >> (i & 63)) & 1)) { + d = *(float16 *)(va + H1_2(i)); + d = float16_muladd(e2, e1, d, 0, status); + *(float16 *)(vd + H1_2(i)) = d; + } + if (likely((pg >> (j & 63)) & 1)) { + d = *(float16 *)(va + H1_2(j)); + d = float16_muladd(e4, e3, d, 0, status); + *(float16 *)(vd + H1_2(j)) = d; + } + } while (i & 63); + } while (i != 0); +} + +void HELPER(sve_fcmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + intptr_t j, i = simd_oprsz(desc); + unsigned rot = simd_data(desc); + bool flip = rot & 1; + float32 neg_imag, neg_real; + uint64_t *g = vg; + + neg_imag = float32_set_sign(0, (rot & 2) != 0); + neg_real = float32_set_sign(0, rot == 1 || rot == 2); + + do { + uint64_t pg = g[(i - 1) >> 6]; + do { + float32 e1, e2, e3, e4, nr, ni, mr, mi, d; + + /* I holds the real index; J holds the imag index. */ + j = i - sizeof(float32); + i -= 2 * sizeof(float32); + + nr = *(float32 *)(vn + H1_2(i)); + ni = *(float32 *)(vn + H1_2(j)); + mr = *(float32 *)(vm + H1_2(i)); + mi = *(float32 *)(vm + H1_2(j)); + + e2 = (flip ? ni : nr); + e1 = (flip ? mi : mr) ^ neg_real; + e4 = e2; + e3 = (flip ? mr : mi) ^ neg_imag; + + if (likely((pg >> (i & 63)) & 1)) { + d = *(float32 *)(va + H1_2(i)); + d = float32_muladd(e2, e1, d, 0, status); + *(float32 *)(vd + H1_2(i)) = d; + } + if (likely((pg >> (j & 63)) & 1)) { + d = *(float32 *)(va + H1_2(j)); + d = float32_muladd(e4, e3, d, 0, status); + *(float32 *)(vd + H1_2(j)) = d; + } + } while (i & 63); + } while (i != 0); +} + +void HELPER(sve_fcmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va, + void *vg, void *status, uint32_t desc) +{ + intptr_t j, i = simd_oprsz(desc); + unsigned rot = simd_data(desc); + bool flip = rot & 1; + float64 neg_imag, neg_real; + uint64_t *g = vg; + + neg_imag = float64_set_sign(0, (rot & 2) != 0); + neg_real = float64_set_sign(0, rot == 1 || rot == 2); + + do { + uint64_t pg = g[(i - 1) >> 6]; + do { + float64 e1, e2, e3, e4, nr, ni, mr, mi, d; + + /* I holds the real index; J holds the imag index. */ + j = i - sizeof(float64); + i -= 2 * sizeof(float64); + + nr = *(float64 *)(vn + H1_2(i)); + ni = *(float64 *)(vn + H1_2(j)); + mr = *(float64 *)(vm + H1_2(i)); + mi = *(float64 *)(vm + H1_2(j)); + + e2 = (flip ? ni : nr); + e1 = (flip ? mi : mr) ^ neg_real; + e4 = e2; + e3 = (flip ? mr : mi) ^ neg_imag; + + if (likely((pg >> (i & 63)) & 1)) { + d = *(float64 *)(va + H1_2(i)); + d = float64_muladd(e2, e1, d, 0, status); + *(float64 *)(vd + H1_2(i)) = d; + } + if (likely((pg >> (j & 63)) & 1)) { + d = *(float64 *)(va + H1_2(j)); + d = float64_muladd(e4, e3, d, 0, status); + *(float64 *)(vd + H1_2(j)) = d; + } + } while (i & 63); + } while (i != 0); +} + +/* + * Load contiguous data, protected by a governing predicate. + */ + +/* + * Load one element into @vd + @reg_off from @host. + * The controlling predicate is known to be true. + */ +typedef void sve_ldst1_host_fn(void *vd, intptr_t reg_off, void *host); + +/* + * Load one element into @vd + @reg_off from (@env, @vaddr, @ra). + * The controlling predicate is known to be true. + */ +typedef void sve_ldst1_tlb_fn(CPUARMState *env, void *vd, intptr_t reg_off, + target_ulong vaddr, uintptr_t retaddr); + +/* + * Generate the above primitives. + */ + +#define DO_LD_HOST(NAME, H, TYPEE, TYPEM, HOST) \ +static void sve_##NAME##_host(void *vd, intptr_t reg_off, void *host) \ +{ \ + TYPEM val = HOST(host); \ + *(TYPEE *)(vd + H(reg_off)) = val; \ +} + +#define DO_ST_HOST(NAME, H, TYPEE, TYPEM, HOST) \ +static void sve_##NAME##_host(void *vd, intptr_t reg_off, void *host) \ +{ HOST(host, (TYPEM)*(TYPEE *)(vd + H(reg_off))); } + +#define DO_LD_TLB(NAME, H, TYPEE, TYPEM, TLB) \ +static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \ + target_ulong addr, uintptr_t ra) \ +{ \ + *(TYPEE *)(vd + H(reg_off)) = \ + (TYPEM)TLB(env, useronly_clean_ptr(addr), ra); \ +} + +#define DO_ST_TLB(NAME, H, TYPEE, TYPEM, TLB) \ +static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \ + target_ulong addr, uintptr_t ra) \ +{ \ + TLB(env, useronly_clean_ptr(addr), \ + (TYPEM)*(TYPEE *)(vd + H(reg_off)), ra); \ +} + +#define DO_LD_PRIM_1(NAME, H, TE, TM) \ + DO_LD_HOST(NAME, H, TE, TM, ldub_p) \ + DO_LD_TLB(NAME, H, TE, TM, cpu_ldub_data_ra) + +DO_LD_PRIM_1(ld1bb, H1, uint8_t, uint8_t) +DO_LD_PRIM_1(ld1bhu, H1_2, uint16_t, uint8_t) +DO_LD_PRIM_1(ld1bhs, H1_2, uint16_t, int8_t) +DO_LD_PRIM_1(ld1bsu, H1_4, uint32_t, uint8_t) +DO_LD_PRIM_1(ld1bss, H1_4, uint32_t, int8_t) +DO_LD_PRIM_1(ld1bdu, H1_8, uint64_t, uint8_t) +DO_LD_PRIM_1(ld1bds, H1_8, uint64_t, int8_t) + +#define DO_ST_PRIM_1(NAME, H, TE, TM) \ + DO_ST_HOST(st1##NAME, H, TE, TM, stb_p) \ + DO_ST_TLB(st1##NAME, H, TE, TM, cpu_stb_data_ra) + +DO_ST_PRIM_1(bb, H1, uint8_t, uint8_t) +DO_ST_PRIM_1(bh, H1_2, uint16_t, uint8_t) +DO_ST_PRIM_1(bs, H1_4, uint32_t, uint8_t) +DO_ST_PRIM_1(bd, H1_8, uint64_t, uint8_t) + +#define DO_LD_PRIM_2(NAME, H, TE, TM, LD) \ + DO_LD_HOST(ld1##NAME##_be, H, TE, TM, LD##_be_p) \ + DO_LD_HOST(ld1##NAME##_le, H, TE, TM, LD##_le_p) \ + DO_LD_TLB(ld1##NAME##_be, H, TE, TM, cpu_##LD##_be_data_ra) \ + DO_LD_TLB(ld1##NAME##_le, H, TE, TM, cpu_##LD##_le_data_ra) + +#define DO_ST_PRIM_2(NAME, H, TE, TM, ST) \ + DO_ST_HOST(st1##NAME##_be, H, TE, TM, ST##_be_p) \ + DO_ST_HOST(st1##NAME##_le, H, TE, TM, ST##_le_p) \ + DO_ST_TLB(st1##NAME##_be, H, TE, TM, cpu_##ST##_be_data_ra) \ + DO_ST_TLB(st1##NAME##_le, H, TE, TM, cpu_##ST##_le_data_ra) + +DO_LD_PRIM_2(hh, H1_2, uint16_t, uint16_t, lduw) +DO_LD_PRIM_2(hsu, H1_4, uint32_t, uint16_t, lduw) +DO_LD_PRIM_2(hss, H1_4, uint32_t, int16_t, lduw) +DO_LD_PRIM_2(hdu, H1_8, uint64_t, uint16_t, lduw) +DO_LD_PRIM_2(hds, H1_8, uint64_t, int16_t, lduw) + +DO_ST_PRIM_2(hh, H1_2, uint16_t, uint16_t, stw) +DO_ST_PRIM_2(hs, H1_4, uint32_t, uint16_t, stw) +DO_ST_PRIM_2(hd, H1_8, uint64_t, uint16_t, stw) + +DO_LD_PRIM_2(ss, H1_4, uint32_t, uint32_t, ldl) +DO_LD_PRIM_2(sdu, H1_8, uint64_t, uint32_t, ldl) +DO_LD_PRIM_2(sds, H1_8, uint64_t, int32_t, ldl) + +DO_ST_PRIM_2(ss, H1_4, uint32_t, uint32_t, stl) +DO_ST_PRIM_2(sd, H1_8, uint64_t, uint32_t, stl) + +DO_LD_PRIM_2(dd, H1_8, uint64_t, uint64_t, ldq) +DO_ST_PRIM_2(dd, H1_8, uint64_t, uint64_t, stq) + +#undef DO_LD_TLB +#undef DO_ST_TLB +#undef DO_LD_HOST +#undef DO_LD_PRIM_1 +#undef DO_ST_PRIM_1 +#undef DO_LD_PRIM_2 +#undef DO_ST_PRIM_2 + +/* + * Skip through a sequence of inactive elements in the guarding predicate @vg, + * beginning at @reg_off bounded by @reg_max. Return the offset of the active + * element >= @reg_off, or @reg_max if there were no active elements at all. + */ +static intptr_t find_next_active(uint64_t *vg, intptr_t reg_off, + intptr_t reg_max, int esz) +{ + uint64_t pg_mask = pred_esz_masks[esz]; + uint64_t pg = (vg[reg_off >> 6] & pg_mask) >> (reg_off & 63); + + /* In normal usage, the first element is active. */ + if (likely(pg & 1)) { + return reg_off; + } + + if (pg == 0) { + reg_off &= -64; + do { + reg_off += 64; + if (unlikely(reg_off >= reg_max)) { + /* The entire predicate was false. */ + return reg_max; + } + pg = vg[reg_off >> 6] & pg_mask; + } while (pg == 0); + } + reg_off += ctz64(pg); + + /* We should never see an out of range predicate bit set. */ + tcg_debug_assert(reg_off < reg_max); + return reg_off; +} + +/* + * Resolve the guest virtual address to info->host and info->flags. + * If @nofault, return false if the page is invalid, otherwise + * exit via page fault exception. + */ + +typedef struct { + void *host; + int flags; + MemTxAttrs attrs; +} SVEHostPage; + +static bool sve_probe_page(SVEHostPage *info, bool nofault, + CPUARMState *env, target_ulong addr, + int mem_off, MMUAccessType access_type, + int mmu_idx, uintptr_t retaddr) +{ + int flags; + + addr += mem_off; + + /* + * User-only currently always issues with TBI. See the comment + * above useronly_clean_ptr. Usually we clean this top byte away + * during translation, but we can't do that for e.g. vector + imm + * addressing modes. + * + * We currently always enable TBI for user-only, and do not provide + * a way to turn it off. So clean the pointer unconditionally here, + * rather than look it up here, or pass it down from above. + */ + addr = useronly_clean_ptr(addr); + + flags = probe_access_flags(env, addr, access_type, mmu_idx, nofault, + &info->host, retaddr); + info->flags = flags; + + if (flags & TLB_INVALID_MASK) { + g_assert(nofault); + return false; + } + + /* Ensure that info->host[] is relative to addr, not addr + mem_off. */ + info->host -= mem_off; + +#ifdef CONFIG_USER_ONLY + memset(&info->attrs, 0, sizeof(info->attrs)); +#else + /* + * Find the iotlbentry for addr and return the transaction attributes. + * This *must* be present in the TLB because we just found the mapping. + */ + { + uintptr_t index = tlb_index(env, mmu_idx, addr); + +# ifdef CONFIG_DEBUG_TCG + CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); + target_ulong comparator = (access_type == MMU_DATA_LOAD + ? entry->addr_read + : tlb_addr_write(entry)); + g_assert(tlb_hit(comparator, addr)); +# endif + + CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; + info->attrs = iotlbentry->attrs; + } +#endif + + return true; +} + + +/* + * Analyse contiguous data, protected by a governing predicate. + */ + +typedef enum { + FAULT_NO, + FAULT_FIRST, + FAULT_ALL, +} SVEContFault; + +typedef struct { + /* + * First and last element wholly contained within the two pages. + * mem_off_first[0] and reg_off_first[0] are always set >= 0. + * reg_off_last[0] may be < 0 if the first element crosses pages. + * All of mem_off_first[1], reg_off_first[1] and reg_off_last[1] + * are set >= 0 only if there are complete elements on a second page. + * + * The reg_off_* offsets are relative to the internal vector register. + * The mem_off_first offset is relative to the memory address; the + * two offsets are different when a load operation extends, a store + * operation truncates, or for multi-register operations. + */ + int16_t mem_off_first[2]; + int16_t reg_off_first[2]; + int16_t reg_off_last[2]; + + /* + * One element that is misaligned and spans both pages, + * or -1 if there is no such active element. + */ + int16_t mem_off_split; + int16_t reg_off_split; + + /* + * The byte offset at which the entire operation crosses a page boundary. + * Set >= 0 if and only if the entire operation spans two pages. + */ + int16_t page_split; + + /* TLB data for the two pages. */ + SVEHostPage page[2]; +} SVEContLdSt; + +/* + * Find first active element on each page, and a loose bound for the + * final element on each page. Identify any single element that spans + * the page boundary. Return true if there are any active elements. + */ +static bool sve_cont_ldst_elements(SVEContLdSt *info, target_ulong addr, + uint64_t *vg, intptr_t reg_max, + int esz, int msize) +{ + const int esize = 1 << esz; + const uint64_t pg_mask = pred_esz_masks[esz]; + intptr_t reg_off_first = -1, reg_off_last = -1, reg_off_split; + intptr_t mem_off_last, mem_off_split; + intptr_t page_split, elt_split; + intptr_t i; + + /* Set all of the element indices to -1, and the TLB data to 0. */ + memset(info, -1, offsetof(SVEContLdSt, page)); + memset(info->page, 0, sizeof(info->page)); + + /* Gross scan over the entire predicate to find bounds. */ + i = 0; + do { + uint64_t pg = vg[i] & pg_mask; + if (pg) { + reg_off_last = i * 64 + 63 - clz64(pg); + if (reg_off_first < 0) { + reg_off_first = i * 64 + ctz64(pg); + } + } + } while (++i * 64 < reg_max); + + if (unlikely(reg_off_first < 0)) { + /* No active elements, no pages touched. */ + return false; + } + tcg_debug_assert(reg_off_last >= 0 && reg_off_last < reg_max); + + info->reg_off_first[0] = reg_off_first; + info->mem_off_first[0] = (reg_off_first >> esz) * msize; + mem_off_last = (reg_off_last >> esz) * msize; + + page_split = -(addr | TARGET_PAGE_MASK); + if (likely(mem_off_last + msize <= page_split)) { + /* The entire operation fits within a single page. */ + info->reg_off_last[0] = reg_off_last; + return true; + } + + info->page_split = page_split; + elt_split = page_split / msize; + reg_off_split = elt_split << esz; + mem_off_split = elt_split * msize; + + /* + * This is the last full element on the first page, but it is not + * necessarily active. If there is no full element, i.e. the first + * active element is the one that's split, this value remains -1. + * It is useful as iteration bounds. + */ + if (elt_split != 0) { + info->reg_off_last[0] = reg_off_split - esize; + } + + /* Determine if an unaligned element spans the pages. */ + if (page_split % msize != 0) { + /* It is helpful to know if the split element is active. */ + if ((vg[reg_off_split >> 6] >> (reg_off_split & 63)) & 1) { + info->reg_off_split = reg_off_split; + info->mem_off_split = mem_off_split; + + if (reg_off_split == reg_off_last) { + /* The page crossing element is last. */ + return true; + } + } + reg_off_split += esize; + mem_off_split += msize; + } + + /* + * We do want the first active element on the second page, because + * this may affect the address reported in an exception. + */ + reg_off_split = find_next_active(vg, reg_off_split, reg_max, esz); + tcg_debug_assert(reg_off_split <= reg_off_last); + info->reg_off_first[1] = reg_off_split; + info->mem_off_first[1] = (reg_off_split >> esz) * msize; + info->reg_off_last[1] = reg_off_last; + return true; +} + +/* + * Resolve the guest virtual addresses to info->page[]. + * Control the generation of page faults with @fault. Return false if + * there is no work to do, which can only happen with @fault == FAULT_NO. + */ +static bool sve_cont_ldst_pages(SVEContLdSt *info, SVEContFault fault, + CPUARMState *env, target_ulong addr, + MMUAccessType access_type, uintptr_t retaddr) +{ + int mmu_idx = cpu_mmu_index(env, false); + int mem_off = info->mem_off_first[0]; + bool nofault = fault == FAULT_NO; + bool have_work = true; + + if (!sve_probe_page(&info->page[0], nofault, env, addr, mem_off, + access_type, mmu_idx, retaddr)) { + /* No work to be done. */ + return false; + } + + if (likely(info->page_split < 0)) { + /* The entire operation was on the one page. */ + return true; + } + + /* + * If the second page is invalid, then we want the fault address to be + * the first byte on that page which is accessed. + */ + if (info->mem_off_split >= 0) { + /* + * There is an element split across the pages. The fault address + * should be the first byte of the second page. + */ + mem_off = info->page_split; + /* + * If the split element is also the first active element + * of the vector, then: For first-fault we should continue + * to generate faults for the second page. For no-fault, + * we have work only if the second page is valid. + */ + if (info->mem_off_first[0] < info->mem_off_split) { + nofault = FAULT_FIRST; + have_work = false; + } + } else { + /* + * There is no element split across the pages. The fault address + * should be the first active element on the second page. + */ + mem_off = info->mem_off_first[1]; + /* + * There must have been one active element on the first page, + * so we're out of first-fault territory. + */ + nofault = fault != FAULT_ALL; + } + + have_work |= sve_probe_page(&info->page[1], nofault, env, addr, mem_off, + access_type, mmu_idx, retaddr); + return have_work; +} + +static void sve_cont_ldst_watchpoints(SVEContLdSt *info, CPUARMState *env, + uint64_t *vg, target_ulong addr, + int esize, int msize, int wp_access, + uintptr_t retaddr) +{ +#ifndef CONFIG_USER_ONLY + intptr_t mem_off, reg_off, reg_last; + int flags0 = info->page[0].flags; + int flags1 = info->page[1].flags; + + if (likely(!((flags0 | flags1) & TLB_WATCHPOINT))) { + return; + } + + /* Indicate that watchpoints are handled. */ + info->page[0].flags = flags0 & ~TLB_WATCHPOINT; + info->page[1].flags = flags1 & ~TLB_WATCHPOINT; + + if (flags0 & TLB_WATCHPOINT) { + mem_off = info->mem_off_first[0]; + reg_off = info->reg_off_first[0]; + reg_last = info->reg_off_last[0]; + + while (reg_off <= reg_last) { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + cpu_check_watchpoint(env_cpu(env), addr + mem_off, + msize, info->page[0].attrs, + wp_access, retaddr); + } + reg_off += esize; + mem_off += msize; + } while (reg_off <= reg_last && (reg_off & 63)); + } + } + + mem_off = info->mem_off_split; + if (mem_off >= 0) { + cpu_check_watchpoint(env_cpu(env), addr + mem_off, msize, + info->page[0].attrs, wp_access, retaddr); + } + + mem_off = info->mem_off_first[1]; + if ((flags1 & TLB_WATCHPOINT) && mem_off >= 0) { + reg_off = info->reg_off_first[1]; + reg_last = info->reg_off_last[1]; + + do { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + cpu_check_watchpoint(env_cpu(env), addr + mem_off, + msize, info->page[1].attrs, + wp_access, retaddr); + } + reg_off += esize; + mem_off += msize; + } while (reg_off & 63); + } while (reg_off <= reg_last); + } +#endif +} + +static void sve_cont_ldst_mte_check(SVEContLdSt *info, CPUARMState *env, + uint64_t *vg, target_ulong addr, int esize, + int msize, uint32_t mtedesc, uintptr_t ra) +{ + intptr_t mem_off, reg_off, reg_last; + + /* Process the page only if MemAttr == Tagged. */ + if (arm_tlb_mte_tagged(&info->page[0].attrs)) { + mem_off = info->mem_off_first[0]; + reg_off = info->reg_off_first[0]; + reg_last = info->reg_off_split; + if (reg_last < 0) { + reg_last = info->reg_off_last[0]; + } + + do { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + mte_check(env, mtedesc, addr, ra); + } + reg_off += esize; + mem_off += msize; + } while (reg_off <= reg_last && (reg_off & 63)); + } while (reg_off <= reg_last); + } + + mem_off = info->mem_off_first[1]; + if (mem_off >= 0 && arm_tlb_mte_tagged(&info->page[1].attrs)) { + reg_off = info->reg_off_first[1]; + reg_last = info->reg_off_last[1]; + + do { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + mte_check(env, mtedesc, addr, ra); + } + reg_off += esize; + mem_off += msize; + } while (reg_off & 63); + } while (reg_off <= reg_last); + } +} + +/* + * Common helper for all contiguous 1,2,3,4-register predicated stores. + */ +static inline QEMU_ALWAYS_INLINE +void sve_ldN_r(CPUARMState *env, uint64_t *vg, const target_ulong addr, + uint32_t desc, const uintptr_t retaddr, + const int esz, const int msz, const int N, uint32_t mtedesc, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + const unsigned rd = simd_data(desc); + const intptr_t reg_max = simd_oprsz(desc); + intptr_t reg_off, reg_last, mem_off; + SVEContLdSt info; + void *host; + int flags, i; + + /* Find the active elements. */ + if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) { + /* The entire predicate was false; no load occurs. */ + for (i = 0; i < N; ++i) { + memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max); + } + return; + } + + /* Probe the page(s). Exit with exception for any invalid page. */ + sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, retaddr); + + /* Handle watchpoints for all active elements. */ + sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz, + BP_MEM_READ, retaddr); + + /* + * Handle mte checks for all active elements. + * Since TBI must be set for MTE, !mtedesc => !mte_active. + */ + if (mtedesc) { + sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz, + mtedesc, retaddr); + } + + flags = info.page[0].flags | info.page[1].flags; + if (unlikely(flags != 0)) { +#ifdef CONFIG_USER_ONLY + g_assert_not_reached(); +#else + /* + * At least one page includes MMIO. + * Any bus operation can fail with cpu_transaction_failed, + * which for ARM will raise SyncExternal. Perform the load + * into scratch memory to preserve register state until the end. + */ + ARMVectorReg scratch[4] = { }; + + mem_off = info.mem_off_first[0]; + reg_off = info.reg_off_first[0]; + reg_last = info.reg_off_last[1]; + if (reg_last < 0) { + reg_last = info.reg_off_split; + if (reg_last < 0) { + reg_last = info.reg_off_last[0]; + } + } + + do { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + for (i = 0; i < N; ++i) { + tlb_fn(env, &scratch[i], reg_off, + addr + mem_off + (i << msz), retaddr); + } + } + reg_off += 1 << esz; + mem_off += N << msz; + } while (reg_off & 63); + } while (reg_off <= reg_last); + + for (i = 0; i < N; ++i) { + memcpy(&env->vfp.zregs[(rd + i) & 31], &scratch[i], reg_max); + } + return; +#endif + } + + /* The entire operation is in RAM, on valid pages. */ + + for (i = 0; i < N; ++i) { + memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max); + } + + mem_off = info.mem_off_first[0]; + reg_off = info.reg_off_first[0]; + reg_last = info.reg_off_last[0]; + host = info.page[0].host; + + while (reg_off <= reg_last) { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + for (i = 0; i < N; ++i) { + host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off, + host + mem_off + (i << msz)); + } + } + reg_off += 1 << esz; + mem_off += N << msz; + } while (reg_off <= reg_last && (reg_off & 63)); + } + + /* + * Use the slow path to manage the cross-page misalignment. + * But we know this is RAM and cannot trap. + */ + mem_off = info.mem_off_split; + if (unlikely(mem_off >= 0)) { + reg_off = info.reg_off_split; + for (i = 0; i < N; ++i) { + tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off, + addr + mem_off + (i << msz), retaddr); + } + } + + mem_off = info.mem_off_first[1]; + if (unlikely(mem_off >= 0)) { + reg_off = info.reg_off_first[1]; + reg_last = info.reg_off_last[1]; + host = info.page[1].host; + + do { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + for (i = 0; i < N; ++i) { + host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off, + host + mem_off + (i << msz)); + } + } + reg_off += 1 << esz; + mem_off += N << msz; + } while (reg_off & 63); + } while (reg_off <= reg_last); + } +} + +static inline QEMU_ALWAYS_INLINE +void sve_ldN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr, + uint32_t desc, const uintptr_t ra, + const int esz, const int msz, const int N, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + int bit55 = extract64(addr, 55, 1); + + /* Remove mtedesc from the normal sve descriptor. */ + desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + + /* Perform gross MTE suppression early. */ + if (!tbi_check(desc, bit55) || + tcma_check(desc, bit55, allocation_tag_from_addr(addr))) { + mtedesc = 0; + } + + sve_ldN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn); +} + +#define DO_LD1_1(NAME, ESZ) \ +void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, 0, \ + sve_##NAME##_host, sve_##NAME##_tlb); \ +} \ +void HELPER(sve_##NAME##_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, \ + sve_##NAME##_host, sve_##NAME##_tlb); \ +} + +#define DO_LD1_2(NAME, ESZ, MSZ) \ +void HELPER(sve_##NAME##_le_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0, \ + sve_##NAME##_le_host, sve_##NAME##_le_tlb); \ +} \ +void HELPER(sve_##NAME##_be_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0, \ + sve_##NAME##_be_host, sve_##NAME##_be_tlb); \ +} \ +void HELPER(sve_##NAME##_le_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \ + sve_##NAME##_le_host, sve_##NAME##_le_tlb); \ +} \ +void HELPER(sve_##NAME##_be_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \ + sve_##NAME##_be_host, sve_##NAME##_be_tlb); \ +} + +DO_LD1_1(ld1bb, MO_8) +DO_LD1_1(ld1bhu, MO_16) +DO_LD1_1(ld1bhs, MO_16) +DO_LD1_1(ld1bsu, MO_32) +DO_LD1_1(ld1bss, MO_32) +DO_LD1_1(ld1bdu, MO_64) +DO_LD1_1(ld1bds, MO_64) + +DO_LD1_2(ld1hh, MO_16, MO_16) +DO_LD1_2(ld1hsu, MO_32, MO_16) +DO_LD1_2(ld1hss, MO_32, MO_16) +DO_LD1_2(ld1hdu, MO_64, MO_16) +DO_LD1_2(ld1hds, MO_64, MO_16) + +DO_LD1_2(ld1ss, MO_32, MO_32) +DO_LD1_2(ld1sdu, MO_64, MO_32) +DO_LD1_2(ld1sds, MO_64, MO_32) + +DO_LD1_2(ld1dd, MO_64, MO_64) + +#undef DO_LD1_1 +#undef DO_LD1_2 + +#define DO_LDN_1(N) \ +void HELPER(sve_ld##N##bb_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, 0, \ + sve_ld1bb_host, sve_ld1bb_tlb); \ +} \ +void HELPER(sve_ld##N##bb_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r_mte(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, \ + sve_ld1bb_host, sve_ld1bb_tlb); \ +} + +#define DO_LDN_2(N, SUFF, ESZ) \ +void HELPER(sve_ld##N##SUFF##_le_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0, \ + sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb); \ +} \ +void HELPER(sve_ld##N##SUFF##_be_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0, \ + sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb); \ +} \ +void HELPER(sve_ld##N##SUFF##_le_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \ + sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb); \ +} \ +void HELPER(sve_ld##N##SUFF##_be_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \ + sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb); \ +} + +DO_LDN_1(2) +DO_LDN_1(3) +DO_LDN_1(4) + +DO_LDN_2(2, hh, MO_16) +DO_LDN_2(3, hh, MO_16) +DO_LDN_2(4, hh, MO_16) + +DO_LDN_2(2, ss, MO_32) +DO_LDN_2(3, ss, MO_32) +DO_LDN_2(4, ss, MO_32) + +DO_LDN_2(2, dd, MO_64) +DO_LDN_2(3, dd, MO_64) +DO_LDN_2(4, dd, MO_64) + +#undef DO_LDN_1 +#undef DO_LDN_2 + +/* + * Load contiguous data, first-fault and no-fault. + * + * For user-only, one could argue that we should hold the mmap_lock during + * the operation so that there is no race between page_check_range and the + * load operation. However, unmapping pages out from under a running thread + * is extraordinarily unlikely. This theoretical race condition also affects + * linux-user/ in its get_user/put_user macros. + * + * TODO: Construct some helpers, written in assembly, that interact with + * host_signal_handler to produce memory ops which can properly report errors + * without racing. + */ + +/* Fault on byte I. All bits in FFR from I are cleared. The vector + * result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE + * option, which leaves subsequent data unchanged. + */ +static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz) +{ + uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p; + + if (i & 63) { + ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63); + i = ROUND_UP(i, 64); + } + for (; i < oprsz; i += 64) { + ffr[i / 64] = 0; + } +} + +/* + * Common helper for all contiguous no-fault and first-fault loads. + */ +static inline QEMU_ALWAYS_INLINE +void sve_ldnfff1_r(CPUARMState *env, void *vg, const target_ulong addr, + uint32_t desc, const uintptr_t retaddr, uint32_t mtedesc, + const int esz, const int msz, const SVEContFault fault, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + const unsigned rd = simd_data(desc); + void *vd = &env->vfp.zregs[rd]; + const intptr_t reg_max = simd_oprsz(desc); + intptr_t reg_off, mem_off, reg_last; + SVEContLdSt info; + int flags; + void *host; + + /* Find the active elements. */ + if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, 1 << msz)) { + /* The entire predicate was false; no load occurs. */ + memset(vd, 0, reg_max); + return; + } + reg_off = info.reg_off_first[0]; + + /* Probe the page(s). */ + if (!sve_cont_ldst_pages(&info, fault, env, addr, MMU_DATA_LOAD, retaddr)) { + /* Fault on first element. */ + tcg_debug_assert(fault == FAULT_NO); + memset(vd, 0, reg_max); + goto do_fault; + } + + mem_off = info.mem_off_first[0]; + flags = info.page[0].flags; + + /* + * Disable MTE checking if the Tagged bit is not set. Since TBI must + * be set within MTEDESC for MTE, !mtedesc => !mte_active. + */ + if (arm_tlb_mte_tagged(&info.page[0].attrs)) { + mtedesc = 0; + } + + if (fault == FAULT_FIRST) { + /* Trapping mte check for the first-fault element. */ + if (mtedesc) { + mte_check(env, mtedesc, addr + mem_off, retaddr); + } + + /* + * Special handling of the first active element, + * if it crosses a page boundary or is MMIO. + */ + bool is_split = mem_off == info.mem_off_split; + if (unlikely(flags != 0) || unlikely(is_split)) { + /* + * Use the slow path for cross-page handling. + * Might trap for MMIO or watchpoints. + */ + tlb_fn(env, vd, reg_off, addr + mem_off, retaddr); + + /* After any fault, zero the other elements. */ + swap_memzero(vd, reg_off); + reg_off += 1 << esz; + mem_off += 1 << msz; + swap_memzero(vd + reg_off, reg_max - reg_off); + + if (is_split) { + goto second_page; + } + } else { + memset(vd, 0, reg_max); + } + } else { + memset(vd, 0, reg_max); + if (unlikely(mem_off == info.mem_off_split)) { + /* The first active element crosses a page boundary. */ + flags |= info.page[1].flags; + if (unlikely(flags & TLB_MMIO)) { + /* Some page is MMIO, see below. */ + goto do_fault; + } + if (unlikely(flags & TLB_WATCHPOINT) && + (cpu_watchpoint_address_matches + (env_cpu(env), addr + mem_off, 1 << msz) + & BP_MEM_READ)) { + /* Watchpoint hit, see below. */ + goto do_fault; + } + if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) { + goto do_fault; + } + /* + * Use the slow path for cross-page handling. + * This is RAM, without a watchpoint, and will not trap. + */ + tlb_fn(env, vd, reg_off, addr + mem_off, retaddr); + goto second_page; + } + } + + /* + * From this point on, all memory operations are MemSingleNF. + * + * Per the MemSingleNF pseudocode, a no-fault load from Device memory + * must not actually hit the bus -- it returns (UNKNOWN, FAULT) instead. + * + * Unfortuately we do not have access to the memory attributes from the + * PTE to tell Device memory from Normal memory. So we make a mostly + * correct check, and indicate (UNKNOWN, FAULT) for any MMIO. + * This gives the right answer for the common cases of "Normal memory, + * backed by host RAM" and "Device memory, backed by MMIO". + * The architecture allows us to suppress an NF load and return + * (UNKNOWN, FAULT) for any reason, so our behaviour for the corner + * case of "Normal memory, backed by MMIO" is permitted. The case we + * get wrong is "Device memory, backed by host RAM", for which we + * should return (UNKNOWN, FAULT) for but do not. + * + * Similarly, CPU_BP breakpoints would raise exceptions, and so + * return (UNKNOWN, FAULT). For simplicity, we consider gdb and + * architectural breakpoints the same. + */ + if (unlikely(flags & TLB_MMIO)) { + goto do_fault; + } + + reg_last = info.reg_off_last[0]; + host = info.page[0].host; + + do { + uint64_t pg = *(uint64_t *)(vg + (reg_off >> 3)); + do { + if ((pg >> (reg_off & 63)) & 1) { + if (unlikely(flags & TLB_WATCHPOINT) && + (cpu_watchpoint_address_matches + (env_cpu(env), addr + mem_off, 1 << msz) + & BP_MEM_READ)) { + goto do_fault; + } + if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) { + goto do_fault; + } + host_fn(vd, reg_off, host + mem_off); + } + reg_off += 1 << esz; + mem_off += 1 << msz; + } while (reg_off <= reg_last && (reg_off & 63)); + } while (reg_off <= reg_last); + + /* + * MemSingleNF is allowed to fail for any reason. We have special + * code above to handle the first element crossing a page boundary. + * As an implementation choice, decline to handle a cross-page element + * in any other position. + */ + reg_off = info.reg_off_split; + if (reg_off >= 0) { + goto do_fault; + } + + second_page: + reg_off = info.reg_off_first[1]; + if (likely(reg_off < 0)) { + /* No active elements on the second page. All done. */ + return; + } + + /* + * MemSingleNF is allowed to fail for any reason. As an implementation + * choice, decline to handle elements on the second page. This should + * be low frequency as the guest walks through memory -- the next + * iteration of the guest's loop should be aligned on the page boundary, + * and then all following iterations will stay aligned. + */ + + do_fault: + record_fault(env, reg_off, reg_max); +} + +static inline QEMU_ALWAYS_INLINE +void sve_ldnfff1_r_mte(CPUARMState *env, void *vg, target_ulong addr, + uint32_t desc, const uintptr_t retaddr, + const int esz, const int msz, const SVEContFault fault, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + int bit55 = extract64(addr, 55, 1); + + /* Remove mtedesc from the normal sve descriptor. */ + desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + + /* Perform gross MTE suppression early. */ + if (!tbi_check(desc, bit55) || + tcma_check(desc, bit55, allocation_tag_from_addr(addr))) { + mtedesc = 0; + } + + sve_ldnfff1_r(env, vg, addr, desc, retaddr, mtedesc, + esz, msz, fault, host_fn, tlb_fn); +} + +#define DO_LDFF1_LDNF1_1(PART, ESZ) \ +void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_FIRST, \ + sve_ld1##PART##_host, sve_ld1##PART##_tlb); \ +} \ +void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_NO, \ + sve_ld1##PART##_host, sve_ld1##PART##_tlb); \ +} \ +void HELPER(sve_ldff1##PART##_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_FIRST, \ + sve_ld1##PART##_host, sve_ld1##PART##_tlb); \ +} \ +void HELPER(sve_ldnf1##PART##_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_NO, \ + sve_ld1##PART##_host, sve_ld1##PART##_tlb); \ +} + +#define DO_LDFF1_LDNF1_2(PART, ESZ, MSZ) \ +void HELPER(sve_ldff1##PART##_le_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \ + sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \ +} \ +void HELPER(sve_ldnf1##PART##_le_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO, \ + sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \ +} \ +void HELPER(sve_ldff1##PART##_be_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \ + sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \ +} \ +void HELPER(sve_ldnf1##PART##_be_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO, \ + sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \ +} \ +void HELPER(sve_ldff1##PART##_le_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \ + sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \ +} \ +void HELPER(sve_ldnf1##PART##_le_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \ + sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \ +} \ +void HELPER(sve_ldff1##PART##_be_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \ + sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \ +} \ +void HELPER(sve_ldnf1##PART##_be_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \ + sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \ +} + +DO_LDFF1_LDNF1_1(bb, MO_8) +DO_LDFF1_LDNF1_1(bhu, MO_16) +DO_LDFF1_LDNF1_1(bhs, MO_16) +DO_LDFF1_LDNF1_1(bsu, MO_32) +DO_LDFF1_LDNF1_1(bss, MO_32) +DO_LDFF1_LDNF1_1(bdu, MO_64) +DO_LDFF1_LDNF1_1(bds, MO_64) + +DO_LDFF1_LDNF1_2(hh, MO_16, MO_16) +DO_LDFF1_LDNF1_2(hsu, MO_32, MO_16) +DO_LDFF1_LDNF1_2(hss, MO_32, MO_16) +DO_LDFF1_LDNF1_2(hdu, MO_64, MO_16) +DO_LDFF1_LDNF1_2(hds, MO_64, MO_16) + +DO_LDFF1_LDNF1_2(ss, MO_32, MO_32) +DO_LDFF1_LDNF1_2(sdu, MO_64, MO_32) +DO_LDFF1_LDNF1_2(sds, MO_64, MO_32) + +DO_LDFF1_LDNF1_2(dd, MO_64, MO_64) + +#undef DO_LDFF1_LDNF1_1 +#undef DO_LDFF1_LDNF1_2 + +/* + * Common helper for all contiguous 1,2,3,4-register predicated stores. + */ + +static inline QEMU_ALWAYS_INLINE +void sve_stN_r(CPUARMState *env, uint64_t *vg, target_ulong addr, + uint32_t desc, const uintptr_t retaddr, + const int esz, const int msz, const int N, uint32_t mtedesc, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + const unsigned rd = simd_data(desc); + const intptr_t reg_max = simd_oprsz(desc); + intptr_t reg_off, reg_last, mem_off; + SVEContLdSt info; + void *host; + int i, flags; + + /* Find the active elements. */ + if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) { + /* The entire predicate was false; no store occurs. */ + return; + } + + /* Probe the page(s). Exit with exception for any invalid page. */ + sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, retaddr); + + /* Handle watchpoints for all active elements. */ + sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz, + BP_MEM_WRITE, retaddr); + + /* + * Handle mte checks for all active elements. + * Since TBI must be set for MTE, !mtedesc => !mte_active. + */ + if (mtedesc) { + sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz, + mtedesc, retaddr); + } + + flags = info.page[0].flags | info.page[1].flags; + if (unlikely(flags != 0)) { +#ifdef CONFIG_USER_ONLY + g_assert_not_reached(); +#else + /* + * At least one page includes MMIO. + * Any bus operation can fail with cpu_transaction_failed, + * which for ARM will raise SyncExternal. We cannot avoid + * this fault and will leave with the store incomplete. + */ + mem_off = info.mem_off_first[0]; + reg_off = info.reg_off_first[0]; + reg_last = info.reg_off_last[1]; + if (reg_last < 0) { + reg_last = info.reg_off_split; + if (reg_last < 0) { + reg_last = info.reg_off_last[0]; + } + } + + do { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + for (i = 0; i < N; ++i) { + tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off, + addr + mem_off + (i << msz), retaddr); + } + } + reg_off += 1 << esz; + mem_off += N << msz; + } while (reg_off & 63); + } while (reg_off <= reg_last); + return; +#endif + } + + mem_off = info.mem_off_first[0]; + reg_off = info.reg_off_first[0]; + reg_last = info.reg_off_last[0]; + host = info.page[0].host; + + while (reg_off <= reg_last) { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + for (i = 0; i < N; ++i) { + host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off, + host + mem_off + (i << msz)); + } + } + reg_off += 1 << esz; + mem_off += N << msz; + } while (reg_off <= reg_last && (reg_off & 63)); + } + + /* + * Use the slow path to manage the cross-page misalignment. + * But we know this is RAM and cannot trap. + */ + mem_off = info.mem_off_split; + if (unlikely(mem_off >= 0)) { + reg_off = info.reg_off_split; + for (i = 0; i < N; ++i) { + tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off, + addr + mem_off + (i << msz), retaddr); + } + } + + mem_off = info.mem_off_first[1]; + if (unlikely(mem_off >= 0)) { + reg_off = info.reg_off_first[1]; + reg_last = info.reg_off_last[1]; + host = info.page[1].host; + + do { + uint64_t pg = vg[reg_off >> 6]; + do { + if ((pg >> (reg_off & 63)) & 1) { + for (i = 0; i < N; ++i) { + host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off, + host + mem_off + (i << msz)); + } + } + reg_off += 1 << esz; + mem_off += N << msz; + } while (reg_off & 63); + } while (reg_off <= reg_last); + } +} + +static inline QEMU_ALWAYS_INLINE +void sve_stN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr, + uint32_t desc, const uintptr_t ra, + const int esz, const int msz, const int N, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + int bit55 = extract64(addr, 55, 1); + + /* Remove mtedesc from the normal sve descriptor. */ + desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + + /* Perform gross MTE suppression early. */ + if (!tbi_check(desc, bit55) || + tcma_check(desc, bit55, allocation_tag_from_addr(addr))) { + mtedesc = 0; + } + + sve_stN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn); +} + +#define DO_STN_1(N, NAME, ESZ) \ +void HELPER(sve_st##N##NAME##_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, 0, \ + sve_st1##NAME##_host, sve_st1##NAME##_tlb); \ +} \ +void HELPER(sve_st##N##NAME##_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, \ + sve_st1##NAME##_host, sve_st1##NAME##_tlb); \ +} + +#define DO_STN_2(N, NAME, ESZ, MSZ) \ +void HELPER(sve_st##N##NAME##_le_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0, \ + sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb); \ +} \ +void HELPER(sve_st##N##NAME##_be_r)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0, \ + sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb); \ +} \ +void HELPER(sve_st##N##NAME##_le_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \ + sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb); \ +} \ +void HELPER(sve_st##N##NAME##_be_r_mte)(CPUARMState *env, void *vg, \ + target_ulong addr, uint32_t desc) \ +{ \ + sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \ + sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb); \ +} + +DO_STN_1(1, bb, MO_8) +DO_STN_1(1, bh, MO_16) +DO_STN_1(1, bs, MO_32) +DO_STN_1(1, bd, MO_64) +DO_STN_1(2, bb, MO_8) +DO_STN_1(3, bb, MO_8) +DO_STN_1(4, bb, MO_8) + +DO_STN_2(1, hh, MO_16, MO_16) +DO_STN_2(1, hs, MO_32, MO_16) +DO_STN_2(1, hd, MO_64, MO_16) +DO_STN_2(2, hh, MO_16, MO_16) +DO_STN_2(3, hh, MO_16, MO_16) +DO_STN_2(4, hh, MO_16, MO_16) + +DO_STN_2(1, ss, MO_32, MO_32) +DO_STN_2(1, sd, MO_64, MO_32) +DO_STN_2(2, ss, MO_32, MO_32) +DO_STN_2(3, ss, MO_32, MO_32) +DO_STN_2(4, ss, MO_32, MO_32) + +DO_STN_2(1, dd, MO_64, MO_64) +DO_STN_2(2, dd, MO_64, MO_64) +DO_STN_2(3, dd, MO_64, MO_64) +DO_STN_2(4, dd, MO_64, MO_64) + +#undef DO_STN_1 +#undef DO_STN_2 + +/* + * Loads with a vector index. + */ + +/* + * Load the element at @reg + @reg_ofs, sign or zero-extend as needed. + */ +typedef target_ulong zreg_off_fn(void *reg, intptr_t reg_ofs); + +static target_ulong off_zsu_s(void *reg, intptr_t reg_ofs) +{ + return *(uint32_t *)(reg + H1_4(reg_ofs)); +} + +static target_ulong off_zss_s(void *reg, intptr_t reg_ofs) +{ + return *(int32_t *)(reg + H1_4(reg_ofs)); +} + +static target_ulong off_zsu_d(void *reg, intptr_t reg_ofs) +{ + return (uint32_t)*(uint64_t *)(reg + reg_ofs); +} + +static target_ulong off_zss_d(void *reg, intptr_t reg_ofs) +{ + return (int32_t)*(uint64_t *)(reg + reg_ofs); +} + +static target_ulong off_zd_d(void *reg, intptr_t reg_ofs) +{ + return *(uint64_t *)(reg + reg_ofs); +} + +static inline QEMU_ALWAYS_INLINE +void sve_ld1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm, + target_ulong base, uint32_t desc, uintptr_t retaddr, + uint32_t mtedesc, int esize, int msize, + zreg_off_fn *off_fn, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + const int mmu_idx = cpu_mmu_index(env, false); + const intptr_t reg_max = simd_oprsz(desc); + const int scale = simd_data(desc); + ARMVectorReg scratch; + intptr_t reg_off; + SVEHostPage info, info2; + + memset(&scratch, 0, reg_max); + reg_off = 0; + do { + uint64_t pg = vg[reg_off >> 6]; + do { + if (likely(pg & 1)) { + target_ulong addr = base + (off_fn(vm, reg_off) << scale); + target_ulong in_page = -(addr | TARGET_PAGE_MASK); + + sve_probe_page(&info, false, env, addr, 0, MMU_DATA_LOAD, + mmu_idx, retaddr); + + if (likely(in_page >= msize)) { + if (unlikely(info.flags & TLB_WATCHPOINT)) { + cpu_check_watchpoint(env_cpu(env), addr, msize, + info.attrs, BP_MEM_READ, retaddr); + } + if (mtedesc && arm_tlb_mte_tagged(&info.attrs)) { + mte_check(env, mtedesc, addr, retaddr); + } + host_fn(&scratch, reg_off, info.host); + } else { + /* Element crosses the page boundary. */ + sve_probe_page(&info2, false, env, addr + in_page, 0, + MMU_DATA_LOAD, mmu_idx, retaddr); + if (unlikely((info.flags | info2.flags) & TLB_WATCHPOINT)) { + cpu_check_watchpoint(env_cpu(env), addr, + msize, info.attrs, + BP_MEM_READ, retaddr); + } + if (mtedesc && arm_tlb_mte_tagged(&info.attrs)) { + mte_check(env, mtedesc, addr, retaddr); + } + tlb_fn(env, &scratch, reg_off, addr, retaddr); + } + } + reg_off += esize; + pg >>= esize; + } while (reg_off & 63); + } while (reg_off < reg_max); + + /* Wait until all exceptions have been raised to write back. */ + memcpy(vd, &scratch, reg_max); +} + +static inline QEMU_ALWAYS_INLINE +void sve_ld1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm, + target_ulong base, uint32_t desc, uintptr_t retaddr, + int esize, int msize, zreg_off_fn *off_fn, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + /* Remove mtedesc from the normal sve descriptor. */ + desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + + /* + * ??? TODO: For the 32-bit offset extractions, base + ofs cannot + * offset base entirely over the address space hole to change the + * pointer tag, or change the bit55 selector. So we could here + * examine TBI + TCMA like we do for sve_ldN_r_mte(). + */ + sve_ld1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc, + esize, msize, off_fn, host_fn, tlb_fn); +} + +#define DO_LD1_ZPZ_S(MEM, OFS, MSZ) \ +void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ, \ + off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ +} \ +void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \ + off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ +} + +#define DO_LD1_ZPZ_D(MEM, OFS, MSZ) \ +void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ, \ + off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ +} \ +void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \ + off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ +} + +DO_LD1_ZPZ_S(bsu, zsu, MO_8) +DO_LD1_ZPZ_S(bsu, zss, MO_8) +DO_LD1_ZPZ_D(bdu, zsu, MO_8) +DO_LD1_ZPZ_D(bdu, zss, MO_8) +DO_LD1_ZPZ_D(bdu, zd, MO_8) + +DO_LD1_ZPZ_S(bss, zsu, MO_8) +DO_LD1_ZPZ_S(bss, zss, MO_8) +DO_LD1_ZPZ_D(bds, zsu, MO_8) +DO_LD1_ZPZ_D(bds, zss, MO_8) +DO_LD1_ZPZ_D(bds, zd, MO_8) + +DO_LD1_ZPZ_S(hsu_le, zsu, MO_16) +DO_LD1_ZPZ_S(hsu_le, zss, MO_16) +DO_LD1_ZPZ_D(hdu_le, zsu, MO_16) +DO_LD1_ZPZ_D(hdu_le, zss, MO_16) +DO_LD1_ZPZ_D(hdu_le, zd, MO_16) + +DO_LD1_ZPZ_S(hsu_be, zsu, MO_16) +DO_LD1_ZPZ_S(hsu_be, zss, MO_16) +DO_LD1_ZPZ_D(hdu_be, zsu, MO_16) +DO_LD1_ZPZ_D(hdu_be, zss, MO_16) +DO_LD1_ZPZ_D(hdu_be, zd, MO_16) + +DO_LD1_ZPZ_S(hss_le, zsu, MO_16) +DO_LD1_ZPZ_S(hss_le, zss, MO_16) +DO_LD1_ZPZ_D(hds_le, zsu, MO_16) +DO_LD1_ZPZ_D(hds_le, zss, MO_16) +DO_LD1_ZPZ_D(hds_le, zd, MO_16) + +DO_LD1_ZPZ_S(hss_be, zsu, MO_16) +DO_LD1_ZPZ_S(hss_be, zss, MO_16) +DO_LD1_ZPZ_D(hds_be, zsu, MO_16) +DO_LD1_ZPZ_D(hds_be, zss, MO_16) +DO_LD1_ZPZ_D(hds_be, zd, MO_16) + +DO_LD1_ZPZ_S(ss_le, zsu, MO_32) +DO_LD1_ZPZ_S(ss_le, zss, MO_32) +DO_LD1_ZPZ_D(sdu_le, zsu, MO_32) +DO_LD1_ZPZ_D(sdu_le, zss, MO_32) +DO_LD1_ZPZ_D(sdu_le, zd, MO_32) + +DO_LD1_ZPZ_S(ss_be, zsu, MO_32) +DO_LD1_ZPZ_S(ss_be, zss, MO_32) +DO_LD1_ZPZ_D(sdu_be, zsu, MO_32) +DO_LD1_ZPZ_D(sdu_be, zss, MO_32) +DO_LD1_ZPZ_D(sdu_be, zd, MO_32) + +DO_LD1_ZPZ_D(sds_le, zsu, MO_32) +DO_LD1_ZPZ_D(sds_le, zss, MO_32) +DO_LD1_ZPZ_D(sds_le, zd, MO_32) + +DO_LD1_ZPZ_D(sds_be, zsu, MO_32) +DO_LD1_ZPZ_D(sds_be, zss, MO_32) +DO_LD1_ZPZ_D(sds_be, zd, MO_32) + +DO_LD1_ZPZ_D(dd_le, zsu, MO_64) +DO_LD1_ZPZ_D(dd_le, zss, MO_64) +DO_LD1_ZPZ_D(dd_le, zd, MO_64) + +DO_LD1_ZPZ_D(dd_be, zsu, MO_64) +DO_LD1_ZPZ_D(dd_be, zss, MO_64) +DO_LD1_ZPZ_D(dd_be, zd, MO_64) + +#undef DO_LD1_ZPZ_S +#undef DO_LD1_ZPZ_D + +/* First fault loads with a vector index. */ + +/* + * Common helpers for all gather first-faulting loads. + */ + +static inline QEMU_ALWAYS_INLINE +void sve_ldff1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm, + target_ulong base, uint32_t desc, uintptr_t retaddr, + uint32_t mtedesc, const int esz, const int msz, + zreg_off_fn *off_fn, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + const int mmu_idx = cpu_mmu_index(env, false); + const intptr_t reg_max = simd_oprsz(desc); + const int scale = simd_data(desc); + const int esize = 1 << esz; + const int msize = 1 << msz; + intptr_t reg_off; + SVEHostPage info; + target_ulong addr, in_page; + + /* Skip to the first true predicate. */ + reg_off = find_next_active(vg, 0, reg_max, esz); + if (unlikely(reg_off >= reg_max)) { + /* The entire predicate was false; no load occurs. */ + memset(vd, 0, reg_max); + return; + } + + /* + * Probe the first element, allowing faults. + */ + addr = base + (off_fn(vm, reg_off) << scale); + if (mtedesc) { + mte_check(env, mtedesc, addr, retaddr); + } + tlb_fn(env, vd, reg_off, addr, retaddr); + + /* After any fault, zero the other elements. */ + swap_memzero(vd, reg_off); + reg_off += esize; + swap_memzero(vd + reg_off, reg_max - reg_off); + + /* + * Probe the remaining elements, not allowing faults. + */ + while (reg_off < reg_max) { + uint64_t pg = vg[reg_off >> 6]; + do { + if (likely((pg >> (reg_off & 63)) & 1)) { + addr = base + (off_fn(vm, reg_off) << scale); + in_page = -(addr | TARGET_PAGE_MASK); + + if (unlikely(in_page < msize)) { + /* Stop if the element crosses a page boundary. */ + goto fault; + } + + sve_probe_page(&info, true, env, addr, 0, MMU_DATA_LOAD, + mmu_idx, retaddr); + if (unlikely(info.flags & (TLB_INVALID_MASK | TLB_MMIO))) { + goto fault; + } + if (unlikely(info.flags & TLB_WATCHPOINT) && + (cpu_watchpoint_address_matches + (env_cpu(env), addr, msize) & BP_MEM_READ)) { + goto fault; + } + if (mtedesc && + arm_tlb_mte_tagged(&info.attrs) && + !mte_probe(env, mtedesc, addr)) { + goto fault; + } + + host_fn(vd, reg_off, info.host); + } + reg_off += esize; + } while (reg_off & 63); + } + return; + + fault: + record_fault(env, reg_off, reg_max); +} + +static inline QEMU_ALWAYS_INLINE +void sve_ldff1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm, + target_ulong base, uint32_t desc, uintptr_t retaddr, + const int esz, const int msz, + zreg_off_fn *off_fn, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + /* Remove mtedesc from the normal sve descriptor. */ + desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + + /* + * ??? TODO: For the 32-bit offset extractions, base + ofs cannot + * offset base entirely over the address space hole to change the + * pointer tag, or change the bit55 selector. So we could here + * examine TBI + TCMA like we do for sve_ldN_r_mte(). + */ + sve_ldff1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc, + esz, msz, off_fn, host_fn, tlb_fn); +} + +#define DO_LDFF1_ZPZ_S(MEM, OFS, MSZ) \ +void HELPER(sve_ldff##MEM##_##OFS) \ + (CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_32, MSZ, \ + off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ +} \ +void HELPER(sve_ldff##MEM##_##OFS##_mte) \ + (CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_32, MSZ, \ + off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ +} + +#define DO_LDFF1_ZPZ_D(MEM, OFS, MSZ) \ +void HELPER(sve_ldff##MEM##_##OFS) \ + (CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_64, MSZ, \ + off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ +} \ +void HELPER(sve_ldff##MEM##_##OFS##_mte) \ + (CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_64, MSZ, \ + off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \ +} + +DO_LDFF1_ZPZ_S(bsu, zsu, MO_8) +DO_LDFF1_ZPZ_S(bsu, zss, MO_8) +DO_LDFF1_ZPZ_D(bdu, zsu, MO_8) +DO_LDFF1_ZPZ_D(bdu, zss, MO_8) +DO_LDFF1_ZPZ_D(bdu, zd, MO_8) + +DO_LDFF1_ZPZ_S(bss, zsu, MO_8) +DO_LDFF1_ZPZ_S(bss, zss, MO_8) +DO_LDFF1_ZPZ_D(bds, zsu, MO_8) +DO_LDFF1_ZPZ_D(bds, zss, MO_8) +DO_LDFF1_ZPZ_D(bds, zd, MO_8) + +DO_LDFF1_ZPZ_S(hsu_le, zsu, MO_16) +DO_LDFF1_ZPZ_S(hsu_le, zss, MO_16) +DO_LDFF1_ZPZ_D(hdu_le, zsu, MO_16) +DO_LDFF1_ZPZ_D(hdu_le, zss, MO_16) +DO_LDFF1_ZPZ_D(hdu_le, zd, MO_16) + +DO_LDFF1_ZPZ_S(hsu_be, zsu, MO_16) +DO_LDFF1_ZPZ_S(hsu_be, zss, MO_16) +DO_LDFF1_ZPZ_D(hdu_be, zsu, MO_16) +DO_LDFF1_ZPZ_D(hdu_be, zss, MO_16) +DO_LDFF1_ZPZ_D(hdu_be, zd, MO_16) + +DO_LDFF1_ZPZ_S(hss_le, zsu, MO_16) +DO_LDFF1_ZPZ_S(hss_le, zss, MO_16) +DO_LDFF1_ZPZ_D(hds_le, zsu, MO_16) +DO_LDFF1_ZPZ_D(hds_le, zss, MO_16) +DO_LDFF1_ZPZ_D(hds_le, zd, MO_16) + +DO_LDFF1_ZPZ_S(hss_be, zsu, MO_16) +DO_LDFF1_ZPZ_S(hss_be, zss, MO_16) +DO_LDFF1_ZPZ_D(hds_be, zsu, MO_16) +DO_LDFF1_ZPZ_D(hds_be, zss, MO_16) +DO_LDFF1_ZPZ_D(hds_be, zd, MO_16) + +DO_LDFF1_ZPZ_S(ss_le, zsu, MO_32) +DO_LDFF1_ZPZ_S(ss_le, zss, MO_32) +DO_LDFF1_ZPZ_D(sdu_le, zsu, MO_32) +DO_LDFF1_ZPZ_D(sdu_le, zss, MO_32) +DO_LDFF1_ZPZ_D(sdu_le, zd, MO_32) + +DO_LDFF1_ZPZ_S(ss_be, zsu, MO_32) +DO_LDFF1_ZPZ_S(ss_be, zss, MO_32) +DO_LDFF1_ZPZ_D(sdu_be, zsu, MO_32) +DO_LDFF1_ZPZ_D(sdu_be, zss, MO_32) +DO_LDFF1_ZPZ_D(sdu_be, zd, MO_32) + +DO_LDFF1_ZPZ_D(sds_le, zsu, MO_32) +DO_LDFF1_ZPZ_D(sds_le, zss, MO_32) +DO_LDFF1_ZPZ_D(sds_le, zd, MO_32) + +DO_LDFF1_ZPZ_D(sds_be, zsu, MO_32) +DO_LDFF1_ZPZ_D(sds_be, zss, MO_32) +DO_LDFF1_ZPZ_D(sds_be, zd, MO_32) + +DO_LDFF1_ZPZ_D(dd_le, zsu, MO_64) +DO_LDFF1_ZPZ_D(dd_le, zss, MO_64) +DO_LDFF1_ZPZ_D(dd_le, zd, MO_64) + +DO_LDFF1_ZPZ_D(dd_be, zsu, MO_64) +DO_LDFF1_ZPZ_D(dd_be, zss, MO_64) +DO_LDFF1_ZPZ_D(dd_be, zd, MO_64) + +/* Stores with a vector index. */ + +static inline QEMU_ALWAYS_INLINE +void sve_st1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm, + target_ulong base, uint32_t desc, uintptr_t retaddr, + uint32_t mtedesc, int esize, int msize, + zreg_off_fn *off_fn, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + const int mmu_idx = cpu_mmu_index(env, false); + const intptr_t reg_max = simd_oprsz(desc); + const int scale = simd_data(desc); + void *host[ARM_MAX_VQ * 4]; + intptr_t reg_off, i; + SVEHostPage info, info2; + + /* + * Probe all of the elements for host addresses and flags. + */ + i = reg_off = 0; + do { + uint64_t pg = vg[reg_off >> 6]; + do { + target_ulong addr = base + (off_fn(vm, reg_off) << scale); + target_ulong in_page = -(addr | TARGET_PAGE_MASK); + + host[i] = NULL; + if (likely((pg >> (reg_off & 63)) & 1)) { + if (likely(in_page >= msize)) { + sve_probe_page(&info, false, env, addr, 0, MMU_DATA_STORE, + mmu_idx, retaddr); + host[i] = info.host; + } else { + /* + * Element crosses the page boundary. + * Probe both pages, but do not record the host address, + * so that we use the slow path. + */ + sve_probe_page(&info, false, env, addr, 0, + MMU_DATA_STORE, mmu_idx, retaddr); + sve_probe_page(&info2, false, env, addr + in_page, 0, + MMU_DATA_STORE, mmu_idx, retaddr); + info.flags |= info2.flags; + } + + if (unlikely(info.flags & TLB_WATCHPOINT)) { + cpu_check_watchpoint(env_cpu(env), addr, msize, + info.attrs, BP_MEM_WRITE, retaddr); + } + + if (mtedesc && arm_tlb_mte_tagged(&info.attrs)) { + mte_check(env, mtedesc, addr, retaddr); + } + } + i += 1; + reg_off += esize; + } while (reg_off & 63); + } while (reg_off < reg_max); + + /* + * Now that we have recognized all exceptions except SyncExternal + * (from TLB_MMIO), which we cannot avoid, perform all of the stores. + * + * Note for the common case of an element in RAM, not crossing a page + * boundary, we have stored the host address in host[]. This doubles + * as a first-level check against the predicate, since only enabled + * elements have non-null host addresses. + */ + i = reg_off = 0; + do { + void *h = host[i]; + if (likely(h != NULL)) { + host_fn(vd, reg_off, h); + } else if ((vg[reg_off >> 6] >> (reg_off & 63)) & 1) { + target_ulong addr = base + (off_fn(vm, reg_off) << scale); + tlb_fn(env, vd, reg_off, addr, retaddr); + } + i += 1; + reg_off += esize; + } while (reg_off < reg_max); +} + +static inline QEMU_ALWAYS_INLINE +void sve_st1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm, + target_ulong base, uint32_t desc, uintptr_t retaddr, + int esize, int msize, zreg_off_fn *off_fn, + sve_ldst1_host_fn *host_fn, + sve_ldst1_tlb_fn *tlb_fn) +{ + uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + /* Remove mtedesc from the normal sve descriptor. */ + desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + + /* + * ??? TODO: For the 32-bit offset extractions, base + ofs cannot + * offset base entirely over the address space hole to change the + * pointer tag, or change the bit55 selector. So we could here + * examine TBI + TCMA like we do for sve_ldN_r_mte(). + */ + sve_st1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc, + esize, msize, off_fn, host_fn, tlb_fn); +} + +#define DO_ST1_ZPZ_S(MEM, OFS, MSZ) \ +void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ, \ + off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \ +} \ +void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \ + off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \ +} + +#define DO_ST1_ZPZ_D(MEM, OFS, MSZ) \ +void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ, \ + off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \ +} \ +void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \ + void *vm, target_ulong base, uint32_t desc) \ +{ \ + sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \ + off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \ +} + +DO_ST1_ZPZ_S(bs, zsu, MO_8) +DO_ST1_ZPZ_S(hs_le, zsu, MO_16) +DO_ST1_ZPZ_S(hs_be, zsu, MO_16) +DO_ST1_ZPZ_S(ss_le, zsu, MO_32) +DO_ST1_ZPZ_S(ss_be, zsu, MO_32) + +DO_ST1_ZPZ_S(bs, zss, MO_8) +DO_ST1_ZPZ_S(hs_le, zss, MO_16) +DO_ST1_ZPZ_S(hs_be, zss, MO_16) +DO_ST1_ZPZ_S(ss_le, zss, MO_32) +DO_ST1_ZPZ_S(ss_be, zss, MO_32) + +DO_ST1_ZPZ_D(bd, zsu, MO_8) +DO_ST1_ZPZ_D(hd_le, zsu, MO_16) +DO_ST1_ZPZ_D(hd_be, zsu, MO_16) +DO_ST1_ZPZ_D(sd_le, zsu, MO_32) +DO_ST1_ZPZ_D(sd_be, zsu, MO_32) +DO_ST1_ZPZ_D(dd_le, zsu, MO_64) +DO_ST1_ZPZ_D(dd_be, zsu, MO_64) + +DO_ST1_ZPZ_D(bd, zss, MO_8) +DO_ST1_ZPZ_D(hd_le, zss, MO_16) +DO_ST1_ZPZ_D(hd_be, zss, MO_16) +DO_ST1_ZPZ_D(sd_le, zss, MO_32) +DO_ST1_ZPZ_D(sd_be, zss, MO_32) +DO_ST1_ZPZ_D(dd_le, zss, MO_64) +DO_ST1_ZPZ_D(dd_be, zss, MO_64) + +DO_ST1_ZPZ_D(bd, zd, MO_8) +DO_ST1_ZPZ_D(hd_le, zd, MO_16) +DO_ST1_ZPZ_D(hd_be, zd, MO_16) +DO_ST1_ZPZ_D(sd_le, zd, MO_32) +DO_ST1_ZPZ_D(sd_be, zd, MO_32) +DO_ST1_ZPZ_D(dd_le, zd, MO_64) +DO_ST1_ZPZ_D(dd_be, zd, MO_64) + +#undef DO_ST1_ZPZ_S +#undef DO_ST1_ZPZ_D + +void HELPER(sve2_eor3)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm, *k = vk; + + for (i = 0; i < opr_sz; ++i) { + d[i] = n[i] ^ m[i] ^ k[i]; + } +} + +void HELPER(sve2_bcax)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm, *k = vk; + + for (i = 0; i < opr_sz; ++i) { + d[i] = n[i] ^ (m[i] & ~k[i]); + } +} + +void HELPER(sve2_bsl1n)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm, *k = vk; + + for (i = 0; i < opr_sz; ++i) { + d[i] = (~n[i] & k[i]) | (m[i] & ~k[i]); + } +} + +void HELPER(sve2_bsl2n)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm, *k = vk; + + for (i = 0; i < opr_sz; ++i) { + d[i] = (n[i] & k[i]) | (~m[i] & ~k[i]); + } +} + +void HELPER(sve2_nbsl)(void *vd, void *vn, void *vm, void *vk, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm, *k = vk; + + for (i = 0; i < opr_sz; ++i) { + d[i] = ~((n[i] & k[i]) | (m[i] & ~k[i])); + } +} + +/* + * Returns true if m0 or m1 contains the low uint8_t/uint16_t in n. + * See hasless(v,1) from + * https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord + */ +static inline bool do_match2(uint64_t n, uint64_t m0, uint64_t m1, int esz) +{ + int bits = 8 << esz; + uint64_t ones = dup_const(esz, 1); + uint64_t signs = ones << (bits - 1); + uint64_t cmp0, cmp1; + + cmp1 = dup_const(esz, n); + cmp0 = cmp1 ^ m0; + cmp1 = cmp1 ^ m1; + cmp0 = (cmp0 - ones) & ~cmp0; + cmp1 = (cmp1 - ones) & ~cmp1; + return (cmp0 | cmp1) & signs; +} + +static inline uint32_t do_match(void *vd, void *vn, void *vm, void *vg, + uint32_t desc, int esz, bool nmatch) +{ + uint16_t esz_mask = pred_esz_masks[esz]; + intptr_t opr_sz = simd_oprsz(desc); + uint32_t flags = PREDTEST_INIT; + intptr_t i, j, k; + + for (i = 0; i < opr_sz; i += 16) { + uint64_t m0 = *(uint64_t *)(vm + i); + uint64_t m1 = *(uint64_t *)(vm + i + 8); + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)) & esz_mask; + uint16_t out = 0; + + for (j = 0; j < 16; j += 8) { + uint64_t n = *(uint64_t *)(vn + i + j); + + for (k = 0; k < 8; k += 1 << esz) { + if (pg & (1 << (j + k))) { + bool o = do_match2(n >> (k * 8), m0, m1, esz); + out |= (o ^ nmatch) << (j + k); + } + } + } + *(uint16_t *)(vd + H1_2(i >> 3)) = out; + flags = iter_predtest_fwd(out, pg, flags); + } + return flags; +} + +#define DO_PPZZ_MATCH(NAME, ESZ, INV) \ +uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + return do_match(vd, vn, vm, vg, desc, ESZ, INV); \ +} + +DO_PPZZ_MATCH(sve2_match_ppzz_b, MO_8, false) +DO_PPZZ_MATCH(sve2_match_ppzz_h, MO_16, false) + +DO_PPZZ_MATCH(sve2_nmatch_ppzz_b, MO_8, true) +DO_PPZZ_MATCH(sve2_nmatch_ppzz_h, MO_16, true) + +#undef DO_PPZZ_MATCH + +void HELPER(sve2_histcnt_s)(void *vd, void *vn, void *vm, void *vg, + uint32_t desc) +{ + ARMVectorReg scratch; + intptr_t i, j; + intptr_t opr_sz = simd_oprsz(desc); + uint32_t *d = vd, *n = vn, *m = vm; + uint8_t *pg = vg; + + if (d == n) { + n = memcpy(&scratch, n, opr_sz); + if (d == m) { + m = n; + } + } else if (d == m) { + m = memcpy(&scratch, m, opr_sz); + } + + for (i = 0; i < opr_sz; i += 4) { + uint64_t count = 0; + uint8_t pred; + + pred = pg[H1(i >> 3)] >> (i & 7); + if (pred & 1) { + uint32_t nn = n[H4(i >> 2)]; + + for (j = 0; j <= i; j += 4) { + pred = pg[H1(j >> 3)] >> (j & 7); + if ((pred & 1) && nn == m[H4(j >> 2)]) { + ++count; + } + } + } + d[H4(i >> 2)] = count; + } +} + +void HELPER(sve2_histcnt_d)(void *vd, void *vn, void *vm, void *vg, + uint32_t desc) +{ + ARMVectorReg scratch; + intptr_t i, j; + intptr_t opr_sz = simd_oprsz(desc); + uint64_t *d = vd, *n = vn, *m = vm; + uint8_t *pg = vg; + + if (d == n) { + n = memcpy(&scratch, n, opr_sz); + if (d == m) { + m = n; + } + } else if (d == m) { + m = memcpy(&scratch, m, opr_sz); + } + + for (i = 0; i < opr_sz / 8; ++i) { + uint64_t count = 0; + if (pg[H1(i)] & 1) { + uint64_t nn = n[i]; + for (j = 0; j <= i; ++j) { + if ((pg[H1(j)] & 1) && nn == m[j]) { + ++count; + } + } + } + d[i] = count; + } +} + +/* + * Returns the number of bytes in m0 and m1 that match n. + * Unlike do_match2 we don't just need true/false, we need an exact count. + * This requires two extra logical operations. + */ +static inline uint64_t do_histseg_cnt(uint8_t n, uint64_t m0, uint64_t m1) +{ + const uint64_t mask = dup_const(MO_8, 0x7f); + uint64_t cmp0, cmp1; + + cmp1 = dup_const(MO_8, n); + cmp0 = cmp1 ^ m0; + cmp1 = cmp1 ^ m1; + + /* + * 1: clear msb of each byte to avoid carry to next byte (& mask) + * 2: carry in to msb if byte != 0 (+ mask) + * 3: set msb if cmp has msb set (| cmp) + * 4: set ~msb to ignore them (| mask) + * We now have 0xff for byte != 0 or 0x7f for byte == 0. + * 5: invert, resulting in 0x80 if and only if byte == 0. + */ + cmp0 = ~(((cmp0 & mask) + mask) | cmp0 | mask); + cmp1 = ~(((cmp1 & mask) + mask) | cmp1 | mask); + + /* + * Combine the two compares in a way that the bits do + * not overlap, and so preserves the count of set bits. + * If the host has an efficient instruction for ctpop, + * then ctpop(x) + ctpop(y) has the same number of + * operations as ctpop(x | (y >> 1)). If the host does + * not have an efficient ctpop, then we only want to + * use it once. + */ + return ctpop64(cmp0 | (cmp1 >> 1)); +} + +void HELPER(sve2_histseg)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, j; + intptr_t opr_sz = simd_oprsz(desc); + + for (i = 0; i < opr_sz; i += 16) { + uint64_t n0 = *(uint64_t *)(vn + i); + uint64_t m0 = *(uint64_t *)(vm + i); + uint64_t n1 = *(uint64_t *)(vn + i + 8); + uint64_t m1 = *(uint64_t *)(vm + i + 8); + uint64_t out0 = 0; + uint64_t out1 = 0; + + for (j = 0; j < 64; j += 8) { + uint64_t cnt0 = do_histseg_cnt(n0 >> j, m0, m1); + uint64_t cnt1 = do_histseg_cnt(n1 >> j, m0, m1); + out0 |= cnt0 << j; + out1 |= cnt1 << j; + } + + *(uint64_t *)(vd + i) = out0; + *(uint64_t *)(vd + i + 8) = out1; + } +} + +void HELPER(sve2_xar_b)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + int shr = simd_data(desc); + int shl = 8 - shr; + uint64_t mask = dup_const(MO_8, 0xff >> shr); + uint64_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + uint64_t t = n[i] ^ m[i]; + d[i] = ((t >> shr) & mask) | ((t << shl) & ~mask); + } +} + +void HELPER(sve2_xar_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + int shr = simd_data(desc); + int shl = 16 - shr; + uint64_t mask = dup_const(MO_16, 0xffff >> shr); + uint64_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + uint64_t t = n[i] ^ m[i]; + d[i] = ((t >> shr) & mask) | ((t << shl) & ~mask); + } +} + +void HELPER(sve2_xar_s)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 4; + int shr = simd_data(desc); + uint32_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + d[i] = ror32(n[i] ^ m[i], shr); + } +} + +void HELPER(fmmla_s)(void *vd, void *vn, void *vm, void *va, + void *status, uint32_t desc) +{ + intptr_t s, opr_sz = simd_oprsz(desc) / (sizeof(float32) * 4); + + for (s = 0; s < opr_sz; ++s) { + float32 *n = vn + s * sizeof(float32) * 4; + float32 *m = vm + s * sizeof(float32) * 4; + float32 *a = va + s * sizeof(float32) * 4; + float32 *d = vd + s * sizeof(float32) * 4; + float32 n00 = n[H4(0)], n01 = n[H4(1)]; + float32 n10 = n[H4(2)], n11 = n[H4(3)]; + float32 m00 = m[H4(0)], m01 = m[H4(1)]; + float32 m10 = m[H4(2)], m11 = m[H4(3)]; + float32 p0, p1; + + /* i = 0, j = 0 */ + p0 = float32_mul(n00, m00, status); + p1 = float32_mul(n01, m01, status); + d[H4(0)] = float32_add(a[H4(0)], float32_add(p0, p1, status), status); + + /* i = 0, j = 1 */ + p0 = float32_mul(n00, m10, status); + p1 = float32_mul(n01, m11, status); + d[H4(1)] = float32_add(a[H4(1)], float32_add(p0, p1, status), status); + + /* i = 1, j = 0 */ + p0 = float32_mul(n10, m00, status); + p1 = float32_mul(n11, m01, status); + d[H4(2)] = float32_add(a[H4(2)], float32_add(p0, p1, status), status); + + /* i = 1, j = 1 */ + p0 = float32_mul(n10, m10, status); + p1 = float32_mul(n11, m11, status); + d[H4(3)] = float32_add(a[H4(3)], float32_add(p0, p1, status), status); + } +} + +void HELPER(fmmla_d)(void *vd, void *vn, void *vm, void *va, + void *status, uint32_t desc) +{ + intptr_t s, opr_sz = simd_oprsz(desc) / (sizeof(float64) * 4); + + for (s = 0; s < opr_sz; ++s) { + float64 *n = vn + s * sizeof(float64) * 4; + float64 *m = vm + s * sizeof(float64) * 4; + float64 *a = va + s * sizeof(float64) * 4; + float64 *d = vd + s * sizeof(float64) * 4; + float64 n00 = n[0], n01 = n[1], n10 = n[2], n11 = n[3]; + float64 m00 = m[0], m01 = m[1], m10 = m[2], m11 = m[3]; + float64 p0, p1; + + /* i = 0, j = 0 */ + p0 = float64_mul(n00, m00, status); + p1 = float64_mul(n01, m01, status); + d[0] = float64_add(a[0], float64_add(p0, p1, status), status); + + /* i = 0, j = 1 */ + p0 = float64_mul(n00, m10, status); + p1 = float64_mul(n01, m11, status); + d[1] = float64_add(a[1], float64_add(p0, p1, status), status); + + /* i = 1, j = 0 */ + p0 = float64_mul(n10, m00, status); + p1 = float64_mul(n11, m01, status); + d[2] = float64_add(a[2], float64_add(p0, p1, status), status); + + /* i = 1, j = 1 */ + p0 = float64_mul(n10, m10, status); + p1 = float64_mul(n11, m11, status); + d[3] = float64_add(a[3], float64_add(p0, p1, status), status); + } +} + +#define DO_FCVTNT(NAME, TYPEW, TYPEN, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \ +{ \ + intptr_t i = simd_oprsz(desc); \ + uint64_t *g = vg; \ + do { \ + uint64_t pg = g[(i - 1) >> 6]; \ + do { \ + i -= sizeof(TYPEW); \ + if (likely((pg >> (i & 63)) & 1)) { \ + TYPEW nn = *(TYPEW *)(vn + HW(i)); \ + *(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, status); \ + } \ + } while (i & 63); \ + } while (i != 0); \ +} + +DO_FCVTNT(sve_bfcvtnt, uint32_t, uint16_t, H1_4, H1_2, float32_to_bfloat16) +DO_FCVTNT(sve2_fcvtnt_sh, uint32_t, uint16_t, H1_4, H1_2, sve_f32_to_f16) +DO_FCVTNT(sve2_fcvtnt_ds, uint64_t, uint32_t, H1_8, H1_4, float64_to_float32) + +#define DO_FCVTLT(NAME, TYPEW, TYPEN, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \ +{ \ + intptr_t i = simd_oprsz(desc); \ + uint64_t *g = vg; \ + do { \ + uint64_t pg = g[(i - 1) >> 6]; \ + do { \ + i -= sizeof(TYPEW); \ + if (likely((pg >> (i & 63)) & 1)) { \ + TYPEN nn = *(TYPEN *)(vn + HN(i + sizeof(TYPEN))); \ + *(TYPEW *)(vd + HW(i)) = OP(nn, status); \ + } \ + } while (i & 63); \ + } while (i != 0); \ +} + +DO_FCVTLT(sve2_fcvtlt_hs, uint32_t, uint16_t, H1_4, H1_2, sve_f16_to_f32) +DO_FCVTLT(sve2_fcvtlt_sd, uint64_t, uint32_t, H1_8, H1_4, float32_to_float64) + +#undef DO_FCVTLT +#undef DO_FCVTNT |