diff options
Diffstat (limited to 'target/arm/translate-mve.c')
-rw-r--r-- | target/arm/translate-mve.c | 2311 |
1 files changed, 2311 insertions, 0 deletions
diff --git a/target/arm/translate-mve.c b/target/arm/translate-mve.c new file mode 100644 index 000000000..4267d43cc --- /dev/null +++ b/target/arm/translate-mve.c @@ -0,0 +1,2311 @@ +/* + * ARM translation: M-profile MVE instructions + * + * Copyright (c) 2021 Linaro, Ltd. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "tcg/tcg-op.h" +#include "tcg/tcg-op-gvec.h" +#include "exec/exec-all.h" +#include "exec/gen-icount.h" +#include "translate.h" +#include "translate-a32.h" + +static inline int vidup_imm(DisasContext *s, int x) +{ + return 1 << x; +} + +/* Include the generated decoder */ +#include "decode-mve.c.inc" + +typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32); +typedef void MVEGenLdStSGFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); +typedef void MVEGenLdStIlFn(TCGv_ptr, TCGv_i32, TCGv_i32); +typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); +typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr); +typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); +typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); +typedef void MVEGenLongDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64); +typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32); +typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64); +typedef void MVEGenVIDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32); +typedef void MVEGenVIWDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32); +typedef void MVEGenCmpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); +typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32); +typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); +typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); +typedef void MVEGenVCVTRmodeFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); + +/* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */ +static inline long mve_qreg_offset(unsigned reg) +{ + return offsetof(CPUARMState, vfp.zregs[reg].d[0]); +} + +static TCGv_ptr mve_qreg_ptr(unsigned reg) +{ + TCGv_ptr ret = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(ret, cpu_env, mve_qreg_offset(reg)); + return ret; +} + +static bool mve_no_predication(DisasContext *s) +{ + /* + * Return true if we are executing the entire MVE instruction + * with no predication or partial-execution, and so we can safely + * use an inline TCG vector implementation. + */ + return s->eci == 0 && s->mve_no_pred; +} + +static bool mve_check_qreg_bank(DisasContext *s, int qmask) +{ + /* + * Check whether Qregs are in range. For v8.1M only Q0..Q7 + * are supported, see VFPSmallRegisterBank(). + */ + return qmask < 8; +} + +bool mve_eci_check(DisasContext *s) +{ + /* + * This is a beatwise insn: check that ECI is valid (not a + * reserved value) and note that we are handling it. + * Return true if OK, false if we generated an exception. + */ + s->eci_handled = true; + switch (s->eci) { + case ECI_NONE: + case ECI_A0: + case ECI_A0A1: + case ECI_A0A1A2: + case ECI_A0A1A2B0: + return true; + default: + /* Reserved value: INVSTATE UsageFault */ + gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(), + default_exception_el(s)); + return false; + } +} + +void mve_update_eci(DisasContext *s) +{ + /* + * The helper function will always update the CPUState field, + * so we only need to update the DisasContext field. + */ + if (s->eci) { + s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE; + } +} + +void mve_update_and_store_eci(DisasContext *s) +{ + /* + * For insns which don't call a helper function that will call + * mve_advance_vpt(), this version updates s->eci and also stores + * it out to the CPUState field. + */ + if (s->eci) { + mve_update_eci(s); + store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits); + } +} + +static bool mve_skip_first_beat(DisasContext *s) +{ + /* Return true if PSR.ECI says we must skip the first beat of this insn */ + switch (s->eci) { + case ECI_NONE: + return false; + case ECI_A0: + case ECI_A0A1: + case ECI_A0A1A2: + case ECI_A0A1A2B0: + return true; + default: + g_assert_not_reached(); + } +} + +static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn, + unsigned msize) +{ + TCGv_i32 addr; + uint32_t offset; + TCGv_ptr qreg; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd) || + !fn) { + return false; + } + + /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */ + if (a->rn == 15 || (a->rn == 13 && a->w)) { + return false; + } + + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + offset = a->imm << msize; + if (!a->a) { + offset = -offset; + } + addr = load_reg(s, a->rn); + if (a->p) { + tcg_gen_addi_i32(addr, addr, offset); + } + + qreg = mve_qreg_ptr(a->qd); + fn(cpu_env, qreg, addr); + tcg_temp_free_ptr(qreg); + + /* + * Writeback always happens after the last beat of the insn, + * regardless of predication + */ + if (a->w) { + if (!a->p) { + tcg_gen_addi_i32(addr, addr, offset); + } + store_reg(s, a->rn, addr); + } else { + tcg_temp_free_i32(addr); + } + mve_update_eci(s); + return true; +} + +static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a) +{ + static MVEGenLdStFn * const ldstfns[4][2] = { + { gen_helper_mve_vstrb, gen_helper_mve_vldrb }, + { gen_helper_mve_vstrh, gen_helper_mve_vldrh }, + { gen_helper_mve_vstrw, gen_helper_mve_vldrw }, + { NULL, NULL } + }; + return do_ldst(s, a, ldstfns[a->size][a->l], a->size); +} + +#define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE) \ + static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a) \ + { \ + static MVEGenLdStFn * const ldstfns[2][2] = { \ + { gen_helper_mve_##ST, gen_helper_mve_##SLD }, \ + { NULL, gen_helper_mve_##ULD }, \ + }; \ + return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE); \ + } + +DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8) +DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8) +DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16) + +static bool do_ldst_sg(DisasContext *s, arg_vldst_sg *a, MVEGenLdStSGFn fn) +{ + TCGv_i32 addr; + TCGv_ptr qd, qm; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd | a->qm) || + !fn || a->rn == 15) { + /* Rn case is UNPREDICTABLE */ + return false; + } + + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + addr = load_reg(s, a->rn); + + qd = mve_qreg_ptr(a->qd); + qm = mve_qreg_ptr(a->qm); + fn(cpu_env, qd, qm, addr); + tcg_temp_free_ptr(qd); + tcg_temp_free_ptr(qm); + tcg_temp_free_i32(addr); + mve_update_eci(s); + return true; +} + +/* + * The naming scheme here is "vldrb_sg_sh == in-memory byte loads + * signextended to halfword elements in register". _os_ indicates that + * the offsets in Qm should be scaled by the element size. + */ +/* This macro is just to make the arrays more compact in these functions */ +#define F(N) gen_helper_mve_##N + +/* VLDRB/VSTRB (ie msize 1) with OS=1 is UNPREDICTABLE; we UNDEF */ +static bool trans_VLDR_S_sg(DisasContext *s, arg_vldst_sg *a) +{ + static MVEGenLdStSGFn * const fns[2][4][4] = { { + { NULL, F(vldrb_sg_sh), F(vldrb_sg_sw), NULL }, + { NULL, NULL, F(vldrh_sg_sw), NULL }, + { NULL, NULL, NULL, NULL }, + { NULL, NULL, NULL, NULL } + }, { + { NULL, NULL, NULL, NULL }, + { NULL, NULL, F(vldrh_sg_os_sw), NULL }, + { NULL, NULL, NULL, NULL }, + { NULL, NULL, NULL, NULL } + } + }; + if (a->qd == a->qm) { + return false; /* UNPREDICTABLE */ + } + return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]); +} + +static bool trans_VLDR_U_sg(DisasContext *s, arg_vldst_sg *a) +{ + static MVEGenLdStSGFn * const fns[2][4][4] = { { + { F(vldrb_sg_ub), F(vldrb_sg_uh), F(vldrb_sg_uw), NULL }, + { NULL, F(vldrh_sg_uh), F(vldrh_sg_uw), NULL }, + { NULL, NULL, F(vldrw_sg_uw), NULL }, + { NULL, NULL, NULL, F(vldrd_sg_ud) } + }, { + { NULL, NULL, NULL, NULL }, + { NULL, F(vldrh_sg_os_uh), F(vldrh_sg_os_uw), NULL }, + { NULL, NULL, F(vldrw_sg_os_uw), NULL }, + { NULL, NULL, NULL, F(vldrd_sg_os_ud) } + } + }; + if (a->qd == a->qm) { + return false; /* UNPREDICTABLE */ + } + return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]); +} + +static bool trans_VSTR_sg(DisasContext *s, arg_vldst_sg *a) +{ + static MVEGenLdStSGFn * const fns[2][4][4] = { { + { F(vstrb_sg_ub), F(vstrb_sg_uh), F(vstrb_sg_uw), NULL }, + { NULL, F(vstrh_sg_uh), F(vstrh_sg_uw), NULL }, + { NULL, NULL, F(vstrw_sg_uw), NULL }, + { NULL, NULL, NULL, F(vstrd_sg_ud) } + }, { + { NULL, NULL, NULL, NULL }, + { NULL, F(vstrh_sg_os_uh), F(vstrh_sg_os_uw), NULL }, + { NULL, NULL, F(vstrw_sg_os_uw), NULL }, + { NULL, NULL, NULL, F(vstrd_sg_os_ud) } + } + }; + return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]); +} + +#undef F + +static bool do_ldst_sg_imm(DisasContext *s, arg_vldst_sg_imm *a, + MVEGenLdStSGFn *fn, unsigned msize) +{ + uint32_t offset; + TCGv_ptr qd, qm; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd | a->qm) || + !fn) { + return false; + } + + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + offset = a->imm << msize; + if (!a->a) { + offset = -offset; + } + + qd = mve_qreg_ptr(a->qd); + qm = mve_qreg_ptr(a->qm); + fn(cpu_env, qd, qm, tcg_constant_i32(offset)); + tcg_temp_free_ptr(qd); + tcg_temp_free_ptr(qm); + mve_update_eci(s); + return true; +} + +static bool trans_VLDRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) +{ + static MVEGenLdStSGFn * const fns[] = { + gen_helper_mve_vldrw_sg_uw, + gen_helper_mve_vldrw_sg_wb_uw, + }; + if (a->qd == a->qm) { + return false; /* UNPREDICTABLE */ + } + return do_ldst_sg_imm(s, a, fns[a->w], MO_32); +} + +static bool trans_VLDRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) +{ + static MVEGenLdStSGFn * const fns[] = { + gen_helper_mve_vldrd_sg_ud, + gen_helper_mve_vldrd_sg_wb_ud, + }; + if (a->qd == a->qm) { + return false; /* UNPREDICTABLE */ + } + return do_ldst_sg_imm(s, a, fns[a->w], MO_64); +} + +static bool trans_VSTRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) +{ + static MVEGenLdStSGFn * const fns[] = { + gen_helper_mve_vstrw_sg_uw, + gen_helper_mve_vstrw_sg_wb_uw, + }; + return do_ldst_sg_imm(s, a, fns[a->w], MO_32); +} + +static bool trans_VSTRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) +{ + static MVEGenLdStSGFn * const fns[] = { + gen_helper_mve_vstrd_sg_ud, + gen_helper_mve_vstrd_sg_wb_ud, + }; + return do_ldst_sg_imm(s, a, fns[a->w], MO_64); +} + +static bool do_vldst_il(DisasContext *s, arg_vldst_il *a, MVEGenLdStIlFn *fn, + int addrinc) +{ + TCGv_i32 rn; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd) || + !fn || (a->rn == 13 && a->w) || a->rn == 15) { + /* Variously UNPREDICTABLE or UNDEF or related-encoding */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + rn = load_reg(s, a->rn); + /* + * We pass the index of Qd, not a pointer, because the helper must + * access multiple Q registers starting at Qd and working up. + */ + fn(cpu_env, tcg_constant_i32(a->qd), rn); + + if (a->w) { + tcg_gen_addi_i32(rn, rn, addrinc); + store_reg(s, a->rn, rn); + } else { + tcg_temp_free_i32(rn); + } + mve_update_and_store_eci(s); + return true; +} + +/* This macro is just to make the arrays more compact in these functions */ +#define F(N) gen_helper_mve_##N + +static bool trans_VLD2(DisasContext *s, arg_vldst_il *a) +{ + static MVEGenLdStIlFn * const fns[4][4] = { + { F(vld20b), F(vld20h), F(vld20w), NULL, }, + { F(vld21b), F(vld21h), F(vld21w), NULL, }, + { NULL, NULL, NULL, NULL }, + { NULL, NULL, NULL, NULL }, + }; + if (a->qd > 6) { + return false; + } + return do_vldst_il(s, a, fns[a->pat][a->size], 32); +} + +static bool trans_VLD4(DisasContext *s, arg_vldst_il *a) +{ + static MVEGenLdStIlFn * const fns[4][4] = { + { F(vld40b), F(vld40h), F(vld40w), NULL, }, + { F(vld41b), F(vld41h), F(vld41w), NULL, }, + { F(vld42b), F(vld42h), F(vld42w), NULL, }, + { F(vld43b), F(vld43h), F(vld43w), NULL, }, + }; + if (a->qd > 4) { + return false; + } + return do_vldst_il(s, a, fns[a->pat][a->size], 64); +} + +static bool trans_VST2(DisasContext *s, arg_vldst_il *a) +{ + static MVEGenLdStIlFn * const fns[4][4] = { + { F(vst20b), F(vst20h), F(vst20w), NULL, }, + { F(vst21b), F(vst21h), F(vst21w), NULL, }, + { NULL, NULL, NULL, NULL }, + { NULL, NULL, NULL, NULL }, + }; + if (a->qd > 6) { + return false; + } + return do_vldst_il(s, a, fns[a->pat][a->size], 32); +} + +static bool trans_VST4(DisasContext *s, arg_vldst_il *a) +{ + static MVEGenLdStIlFn * const fns[4][4] = { + { F(vst40b), F(vst40h), F(vst40w), NULL, }, + { F(vst41b), F(vst41h), F(vst41w), NULL, }, + { F(vst42b), F(vst42h), F(vst42w), NULL, }, + { F(vst43b), F(vst43h), F(vst43w), NULL, }, + }; + if (a->qd > 4) { + return false; + } + return do_vldst_il(s, a, fns[a->pat][a->size], 64); +} + +#undef F + +static bool trans_VDUP(DisasContext *s, arg_VDUP *a) +{ + TCGv_ptr qd; + TCGv_i32 rt; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd)) { + return false; + } + if (a->rt == 13 || a->rt == 15) { + /* UNPREDICTABLE; we choose to UNDEF */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + rt = load_reg(s, a->rt); + if (mve_no_predication(s)) { + tcg_gen_gvec_dup_i32(a->size, mve_qreg_offset(a->qd), 16, 16, rt); + } else { + qd = mve_qreg_ptr(a->qd); + tcg_gen_dup_i32(a->size, rt, rt); + gen_helper_mve_vdup(cpu_env, qd, rt); + tcg_temp_free_ptr(qd); + } + tcg_temp_free_i32(rt); + mve_update_eci(s); + return true; +} + +static bool do_1op_vec(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn, + GVecGen2Fn vecfn) +{ + TCGv_ptr qd, qm; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd | a->qm) || + !fn) { + return false; + } + + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + if (vecfn && mve_no_predication(s)) { + vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm), 16, 16); + } else { + qd = mve_qreg_ptr(a->qd); + qm = mve_qreg_ptr(a->qm); + fn(cpu_env, qd, qm); + tcg_temp_free_ptr(qd); + tcg_temp_free_ptr(qm); + } + mve_update_eci(s); + return true; +} + +static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn) +{ + return do_1op_vec(s, a, fn, NULL); +} + +#define DO_1OP_VEC(INSN, FN, VECFN) \ + static bool trans_##INSN(DisasContext *s, arg_1op *a) \ + { \ + static MVEGenOneOpFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##w, \ + NULL, \ + }; \ + return do_1op_vec(s, a, fns[a->size], VECFN); \ + } + +#define DO_1OP(INSN, FN) DO_1OP_VEC(INSN, FN, NULL) + +DO_1OP(VCLZ, vclz) +DO_1OP(VCLS, vcls) +DO_1OP_VEC(VABS, vabs, tcg_gen_gvec_abs) +DO_1OP_VEC(VNEG, vneg, tcg_gen_gvec_neg) +DO_1OP(VQABS, vqabs) +DO_1OP(VQNEG, vqneg) +DO_1OP(VMAXA, vmaxa) +DO_1OP(VMINA, vmina) + +/* + * For simple float/int conversions we use the fixed-point + * conversion helpers with a zero shift count + */ +#define DO_VCVT(INSN, HFN, SFN) \ + static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \ + { \ + gen_helper_mve_##HFN(env, qd, qm, tcg_constant_i32(0)); \ + } \ + static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \ + { \ + gen_helper_mve_##SFN(env, qd, qm, tcg_constant_i32(0)); \ + } \ + static bool trans_##INSN(DisasContext *s, arg_1op *a) \ + { \ + static MVEGenOneOpFn * const fns[] = { \ + NULL, \ + gen_##INSN##h, \ + gen_##INSN##s, \ + NULL, \ + }; \ + if (!dc_isar_feature(aa32_mve_fp, s)) { \ + return false; \ + } \ + return do_1op(s, a, fns[a->size]); \ + } + +DO_VCVT(VCVT_SF, vcvt_sh, vcvt_sf) +DO_VCVT(VCVT_UF, vcvt_uh, vcvt_uf) +DO_VCVT(VCVT_FS, vcvt_hs, vcvt_fs) +DO_VCVT(VCVT_FU, vcvt_hu, vcvt_fu) + +static bool do_vcvt_rmode(DisasContext *s, arg_1op *a, + enum arm_fprounding rmode, bool u) +{ + /* + * Handle VCVT fp to int with specified rounding mode. + * This is a 1op fn but we must pass the rounding mode as + * an immediate to the helper. + */ + TCGv_ptr qd, qm; + static MVEGenVCVTRmodeFn * const fns[4][2] = { + { NULL, NULL }, + { gen_helper_mve_vcvt_rm_sh, gen_helper_mve_vcvt_rm_uh }, + { gen_helper_mve_vcvt_rm_ss, gen_helper_mve_vcvt_rm_us }, + { NULL, NULL }, + }; + MVEGenVCVTRmodeFn *fn = fns[a->size][u]; + + if (!dc_isar_feature(aa32_mve_fp, s) || + !mve_check_qreg_bank(s, a->qd | a->qm) || + !fn) { + return false; + } + + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qd = mve_qreg_ptr(a->qd); + qm = mve_qreg_ptr(a->qm); + fn(cpu_env, qd, qm, tcg_constant_i32(arm_rmode_to_sf(rmode))); + tcg_temp_free_ptr(qd); + tcg_temp_free_ptr(qm); + mve_update_eci(s); + return true; +} + +#define DO_VCVT_RMODE(INSN, RMODE, U) \ + static bool trans_##INSN(DisasContext *s, arg_1op *a) \ + { \ + return do_vcvt_rmode(s, a, RMODE, U); \ + } \ + +DO_VCVT_RMODE(VCVTAS, FPROUNDING_TIEAWAY, false) +DO_VCVT_RMODE(VCVTAU, FPROUNDING_TIEAWAY, true) +DO_VCVT_RMODE(VCVTNS, FPROUNDING_TIEEVEN, false) +DO_VCVT_RMODE(VCVTNU, FPROUNDING_TIEEVEN, true) +DO_VCVT_RMODE(VCVTPS, FPROUNDING_POSINF, false) +DO_VCVT_RMODE(VCVTPU, FPROUNDING_POSINF, true) +DO_VCVT_RMODE(VCVTMS, FPROUNDING_NEGINF, false) +DO_VCVT_RMODE(VCVTMU, FPROUNDING_NEGINF, true) + +#define DO_VCVT_SH(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_1op *a) \ + { \ + if (!dc_isar_feature(aa32_mve_fp, s)) { \ + return false; \ + } \ + return do_1op(s, a, gen_helper_mve_##FN); \ + } \ + +DO_VCVT_SH(VCVTB_SH, vcvtb_sh) +DO_VCVT_SH(VCVTT_SH, vcvtt_sh) +DO_VCVT_SH(VCVTB_HS, vcvtb_hs) +DO_VCVT_SH(VCVTT_HS, vcvtt_hs) + +#define DO_VRINT(INSN, RMODE) \ + static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \ + { \ + gen_helper_mve_vrint_rm_h(env, qd, qm, \ + tcg_constant_i32(arm_rmode_to_sf(RMODE))); \ + } \ + static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \ + { \ + gen_helper_mve_vrint_rm_s(env, qd, qm, \ + tcg_constant_i32(arm_rmode_to_sf(RMODE))); \ + } \ + static bool trans_##INSN(DisasContext *s, arg_1op *a) \ + { \ + static MVEGenOneOpFn * const fns[] = { \ + NULL, \ + gen_##INSN##h, \ + gen_##INSN##s, \ + NULL, \ + }; \ + if (!dc_isar_feature(aa32_mve_fp, s)) { \ + return false; \ + } \ + return do_1op(s, a, fns[a->size]); \ + } + +DO_VRINT(VRINTN, FPROUNDING_TIEEVEN) +DO_VRINT(VRINTA, FPROUNDING_TIEAWAY) +DO_VRINT(VRINTZ, FPROUNDING_ZERO) +DO_VRINT(VRINTM, FPROUNDING_NEGINF) +DO_VRINT(VRINTP, FPROUNDING_POSINF) + +static bool trans_VRINTX(DisasContext *s, arg_1op *a) +{ + static MVEGenOneOpFn * const fns[] = { + NULL, + gen_helper_mve_vrintx_h, + gen_helper_mve_vrintx_s, + NULL, + }; + if (!dc_isar_feature(aa32_mve_fp, s)) { + return false; + } + return do_1op(s, a, fns[a->size]); +} + +/* Narrowing moves: only size 0 and 1 are valid */ +#define DO_VMOVN(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_1op *a) \ + { \ + static MVEGenOneOpFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + NULL, \ + NULL, \ + }; \ + return do_1op(s, a, fns[a->size]); \ + } + +DO_VMOVN(VMOVNB, vmovnb) +DO_VMOVN(VMOVNT, vmovnt) +DO_VMOVN(VQMOVUNB, vqmovunb) +DO_VMOVN(VQMOVUNT, vqmovunt) +DO_VMOVN(VQMOVN_BS, vqmovnbs) +DO_VMOVN(VQMOVN_TS, vqmovnts) +DO_VMOVN(VQMOVN_BU, vqmovnbu) +DO_VMOVN(VQMOVN_TU, vqmovntu) + +static bool trans_VREV16(DisasContext *s, arg_1op *a) +{ + static MVEGenOneOpFn * const fns[] = { + gen_helper_mve_vrev16b, + NULL, + NULL, + NULL, + }; + return do_1op(s, a, fns[a->size]); +} + +static bool trans_VREV32(DisasContext *s, arg_1op *a) +{ + static MVEGenOneOpFn * const fns[] = { + gen_helper_mve_vrev32b, + gen_helper_mve_vrev32h, + NULL, + NULL, + }; + return do_1op(s, a, fns[a->size]); +} + +static bool trans_VREV64(DisasContext *s, arg_1op *a) +{ + static MVEGenOneOpFn * const fns[] = { + gen_helper_mve_vrev64b, + gen_helper_mve_vrev64h, + gen_helper_mve_vrev64w, + NULL, + }; + return do_1op(s, a, fns[a->size]); +} + +static bool trans_VMVN(DisasContext *s, arg_1op *a) +{ + return do_1op_vec(s, a, gen_helper_mve_vmvn, tcg_gen_gvec_not); +} + +static bool trans_VABS_fp(DisasContext *s, arg_1op *a) +{ + static MVEGenOneOpFn * const fns[] = { + NULL, + gen_helper_mve_vfabsh, + gen_helper_mve_vfabss, + NULL, + }; + if (!dc_isar_feature(aa32_mve_fp, s)) { + return false; + } + return do_1op(s, a, fns[a->size]); +} + +static bool trans_VNEG_fp(DisasContext *s, arg_1op *a) +{ + static MVEGenOneOpFn * const fns[] = { + NULL, + gen_helper_mve_vfnegh, + gen_helper_mve_vfnegs, + NULL, + }; + if (!dc_isar_feature(aa32_mve_fp, s)) { + return false; + } + return do_1op(s, a, fns[a->size]); +} + +static bool do_2op_vec(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn, + GVecGen3Fn *vecfn) +{ + TCGv_ptr qd, qn, qm; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd | a->qn | a->qm) || + !fn) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + if (vecfn && mve_no_predication(s)) { + vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qn), + mve_qreg_offset(a->qm), 16, 16); + } else { + qd = mve_qreg_ptr(a->qd); + qn = mve_qreg_ptr(a->qn); + qm = mve_qreg_ptr(a->qm); + fn(cpu_env, qd, qn, qm); + tcg_temp_free_ptr(qd); + tcg_temp_free_ptr(qn); + tcg_temp_free_ptr(qm); + } + mve_update_eci(s); + return true; +} + +static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn *fn) +{ + return do_2op_vec(s, a, fn, NULL); +} + +#define DO_LOGIC(INSN, HELPER, VECFN) \ + static bool trans_##INSN(DisasContext *s, arg_2op *a) \ + { \ + return do_2op_vec(s, a, HELPER, VECFN); \ + } + +DO_LOGIC(VAND, gen_helper_mve_vand, tcg_gen_gvec_and) +DO_LOGIC(VBIC, gen_helper_mve_vbic, tcg_gen_gvec_andc) +DO_LOGIC(VORR, gen_helper_mve_vorr, tcg_gen_gvec_or) +DO_LOGIC(VORN, gen_helper_mve_vorn, tcg_gen_gvec_orc) +DO_LOGIC(VEOR, gen_helper_mve_veor, tcg_gen_gvec_xor) + +static bool trans_VPSEL(DisasContext *s, arg_2op *a) +{ + /* This insn updates predication bits */ + s->base.is_jmp = DISAS_UPDATE_NOCHAIN; + return do_2op(s, a, gen_helper_mve_vpsel); +} + +#define DO_2OP_VEC(INSN, FN, VECFN) \ + static bool trans_##INSN(DisasContext *s, arg_2op *a) \ + { \ + static MVEGenTwoOpFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##w, \ + NULL, \ + }; \ + return do_2op_vec(s, a, fns[a->size], VECFN); \ + } + +#define DO_2OP(INSN, FN) DO_2OP_VEC(INSN, FN, NULL) + +DO_2OP_VEC(VADD, vadd, tcg_gen_gvec_add) +DO_2OP_VEC(VSUB, vsub, tcg_gen_gvec_sub) +DO_2OP_VEC(VMUL, vmul, tcg_gen_gvec_mul) +DO_2OP(VMULH_S, vmulhs) +DO_2OP(VMULH_U, vmulhu) +DO_2OP(VRMULH_S, vrmulhs) +DO_2OP(VRMULH_U, vrmulhu) +DO_2OP_VEC(VMAX_S, vmaxs, tcg_gen_gvec_smax) +DO_2OP_VEC(VMAX_U, vmaxu, tcg_gen_gvec_umax) +DO_2OP_VEC(VMIN_S, vmins, tcg_gen_gvec_smin) +DO_2OP_VEC(VMIN_U, vminu, tcg_gen_gvec_umin) +DO_2OP(VABD_S, vabds) +DO_2OP(VABD_U, vabdu) +DO_2OP(VHADD_S, vhadds) +DO_2OP(VHADD_U, vhaddu) +DO_2OP(VHSUB_S, vhsubs) +DO_2OP(VHSUB_U, vhsubu) +DO_2OP(VMULL_BS, vmullbs) +DO_2OP(VMULL_BU, vmullbu) +DO_2OP(VMULL_TS, vmullts) +DO_2OP(VMULL_TU, vmulltu) +DO_2OP(VQDMULH, vqdmulh) +DO_2OP(VQRDMULH, vqrdmulh) +DO_2OP(VQADD_S, vqadds) +DO_2OP(VQADD_U, vqaddu) +DO_2OP(VQSUB_S, vqsubs) +DO_2OP(VQSUB_U, vqsubu) +DO_2OP(VSHL_S, vshls) +DO_2OP(VSHL_U, vshlu) +DO_2OP(VRSHL_S, vrshls) +DO_2OP(VRSHL_U, vrshlu) +DO_2OP(VQSHL_S, vqshls) +DO_2OP(VQSHL_U, vqshlu) +DO_2OP(VQRSHL_S, vqrshls) +DO_2OP(VQRSHL_U, vqrshlu) +DO_2OP(VQDMLADH, vqdmladh) +DO_2OP(VQDMLADHX, vqdmladhx) +DO_2OP(VQRDMLADH, vqrdmladh) +DO_2OP(VQRDMLADHX, vqrdmladhx) +DO_2OP(VQDMLSDH, vqdmlsdh) +DO_2OP(VQDMLSDHX, vqdmlsdhx) +DO_2OP(VQRDMLSDH, vqrdmlsdh) +DO_2OP(VQRDMLSDHX, vqrdmlsdhx) +DO_2OP(VRHADD_S, vrhadds) +DO_2OP(VRHADD_U, vrhaddu) +/* + * VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose + * so we can reuse the DO_2OP macro. (Our implementation calculates the + * "expected" results in this case.) Similarly for VHCADD. + */ +DO_2OP(VCADD90, vcadd90) +DO_2OP(VCADD270, vcadd270) +DO_2OP(VHCADD90, vhcadd90) +DO_2OP(VHCADD270, vhcadd270) + +static bool trans_VQDMULLB(DisasContext *s, arg_2op *a) +{ + static MVEGenTwoOpFn * const fns[] = { + NULL, + gen_helper_mve_vqdmullbh, + gen_helper_mve_vqdmullbw, + NULL, + }; + if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) { + /* UNPREDICTABLE; we choose to undef */ + return false; + } + return do_2op(s, a, fns[a->size]); +} + +static bool trans_VQDMULLT(DisasContext *s, arg_2op *a) +{ + static MVEGenTwoOpFn * const fns[] = { + NULL, + gen_helper_mve_vqdmullth, + gen_helper_mve_vqdmulltw, + NULL, + }; + if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) { + /* UNPREDICTABLE; we choose to undef */ + return false; + } + return do_2op(s, a, fns[a->size]); +} + +static bool trans_VMULLP_B(DisasContext *s, arg_2op *a) +{ + /* + * Note that a->size indicates the output size, ie VMULL.P8 + * is the 8x8->16 operation and a->size is MO_16; VMULL.P16 + * is the 16x16->32 operation and a->size is MO_32. + */ + static MVEGenTwoOpFn * const fns[] = { + NULL, + gen_helper_mve_vmullpbh, + gen_helper_mve_vmullpbw, + NULL, + }; + return do_2op(s, a, fns[a->size]); +} + +static bool trans_VMULLP_T(DisasContext *s, arg_2op *a) +{ + /* a->size is as for trans_VMULLP_B */ + static MVEGenTwoOpFn * const fns[] = { + NULL, + gen_helper_mve_vmullpth, + gen_helper_mve_vmullptw, + NULL, + }; + return do_2op(s, a, fns[a->size]); +} + +/* + * VADC and VSBC: these perform an add-with-carry or subtract-with-carry + * of the 32-bit elements in each lane of the input vectors, where the + * carry-out of each add is the carry-in of the next. The initial carry + * input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C + * (for VADC and VSBC); the carry out at the end is written back to FPSCR.C. + * These insns are subject to beat-wise execution. Partial execution + * of an I=1 (initial carry input fixed) insn which does not + * execute the first beat must start with the current FPSCR.NZCV + * value, not the fixed constant input. + */ +static bool trans_VADC(DisasContext *s, arg_2op *a) +{ + return do_2op(s, a, gen_helper_mve_vadc); +} + +static bool trans_VADCI(DisasContext *s, arg_2op *a) +{ + if (mve_skip_first_beat(s)) { + return trans_VADC(s, a); + } + return do_2op(s, a, gen_helper_mve_vadci); +} + +static bool trans_VSBC(DisasContext *s, arg_2op *a) +{ + return do_2op(s, a, gen_helper_mve_vsbc); +} + +static bool trans_VSBCI(DisasContext *s, arg_2op *a) +{ + if (mve_skip_first_beat(s)) { + return trans_VSBC(s, a); + } + return do_2op(s, a, gen_helper_mve_vsbci); +} + +#define DO_2OP_FP(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_2op *a) \ + { \ + static MVEGenTwoOpFn * const fns[] = { \ + NULL, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##s, \ + NULL, \ + }; \ + if (!dc_isar_feature(aa32_mve_fp, s)) { \ + return false; \ + } \ + return do_2op(s, a, fns[a->size]); \ + } + +DO_2OP_FP(VADD_fp, vfadd) +DO_2OP_FP(VSUB_fp, vfsub) +DO_2OP_FP(VMUL_fp, vfmul) +DO_2OP_FP(VABD_fp, vfabd) +DO_2OP_FP(VMAXNM, vmaxnm) +DO_2OP_FP(VMINNM, vminnm) +DO_2OP_FP(VCADD90_fp, vfcadd90) +DO_2OP_FP(VCADD270_fp, vfcadd270) +DO_2OP_FP(VFMA, vfma) +DO_2OP_FP(VFMS, vfms) +DO_2OP_FP(VCMUL0, vcmul0) +DO_2OP_FP(VCMUL90, vcmul90) +DO_2OP_FP(VCMUL180, vcmul180) +DO_2OP_FP(VCMUL270, vcmul270) +DO_2OP_FP(VCMLA0, vcmla0) +DO_2OP_FP(VCMLA90, vcmla90) +DO_2OP_FP(VCMLA180, vcmla180) +DO_2OP_FP(VCMLA270, vcmla270) +DO_2OP_FP(VMAXNMA, vmaxnma) +DO_2OP_FP(VMINNMA, vminnma) + +static bool do_2op_scalar(DisasContext *s, arg_2scalar *a, + MVEGenTwoOpScalarFn fn) +{ + TCGv_ptr qd, qn; + TCGv_i32 rm; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd | a->qn) || + !fn) { + return false; + } + if (a->rm == 13 || a->rm == 15) { + /* UNPREDICTABLE */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qd = mve_qreg_ptr(a->qd); + qn = mve_qreg_ptr(a->qn); + rm = load_reg(s, a->rm); + fn(cpu_env, qd, qn, rm); + tcg_temp_free_i32(rm); + tcg_temp_free_ptr(qd); + tcg_temp_free_ptr(qn); + mve_update_eci(s); + return true; +} + +#define DO_2OP_SCALAR(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \ + { \ + static MVEGenTwoOpScalarFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##w, \ + NULL, \ + }; \ + return do_2op_scalar(s, a, fns[a->size]); \ + } + +DO_2OP_SCALAR(VADD_scalar, vadd_scalar) +DO_2OP_SCALAR(VSUB_scalar, vsub_scalar) +DO_2OP_SCALAR(VMUL_scalar, vmul_scalar) +DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar) +DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar) +DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar) +DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar) +DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar) +DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar) +DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar) +DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar) +DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar) +DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar) +DO_2OP_SCALAR(VBRSR, vbrsr) +DO_2OP_SCALAR(VMLA, vmla) +DO_2OP_SCALAR(VMLAS, vmlas) +DO_2OP_SCALAR(VQDMLAH, vqdmlah) +DO_2OP_SCALAR(VQRDMLAH, vqrdmlah) +DO_2OP_SCALAR(VQDMLASH, vqdmlash) +DO_2OP_SCALAR(VQRDMLASH, vqrdmlash) + +static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a) +{ + static MVEGenTwoOpScalarFn * const fns[] = { + NULL, + gen_helper_mve_vqdmullb_scalarh, + gen_helper_mve_vqdmullb_scalarw, + NULL, + }; + if (a->qd == a->qn && a->size == MO_32) { + /* UNPREDICTABLE; we choose to undef */ + return false; + } + return do_2op_scalar(s, a, fns[a->size]); +} + +static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a) +{ + static MVEGenTwoOpScalarFn * const fns[] = { + NULL, + gen_helper_mve_vqdmullt_scalarh, + gen_helper_mve_vqdmullt_scalarw, + NULL, + }; + if (a->qd == a->qn && a->size == MO_32) { + /* UNPREDICTABLE; we choose to undef */ + return false; + } + return do_2op_scalar(s, a, fns[a->size]); +} + + +#define DO_2OP_FP_SCALAR(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \ + { \ + static MVEGenTwoOpScalarFn * const fns[] = { \ + NULL, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##s, \ + NULL, \ + }; \ + if (!dc_isar_feature(aa32_mve_fp, s)) { \ + return false; \ + } \ + return do_2op_scalar(s, a, fns[a->size]); \ + } + +DO_2OP_FP_SCALAR(VADD_fp_scalar, vfadd_scalar) +DO_2OP_FP_SCALAR(VSUB_fp_scalar, vfsub_scalar) +DO_2OP_FP_SCALAR(VMUL_fp_scalar, vfmul_scalar) +DO_2OP_FP_SCALAR(VFMA_scalar, vfma_scalar) +DO_2OP_FP_SCALAR(VFMAS_scalar, vfmas_scalar) + +static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a, + MVEGenLongDualAccOpFn *fn) +{ + TCGv_ptr qn, qm; + TCGv_i64 rda; + TCGv_i32 rdalo, rdahi; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qn | a->qm) || + !fn) { + return false; + } + /* + * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related + * encoding; rdalo always has bit 0 clear so cannot be 13 or 15. + */ + if (a->rdahi == 13 || a->rdahi == 15) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qn = mve_qreg_ptr(a->qn); + qm = mve_qreg_ptr(a->qm); + + /* + * This insn is subject to beat-wise execution. Partial execution + * of an A=0 (no-accumulate) insn which does not execute the first + * beat must start with the current rda value, not 0. + */ + if (a->a || mve_skip_first_beat(s)) { + rda = tcg_temp_new_i64(); + rdalo = load_reg(s, a->rdalo); + rdahi = load_reg(s, a->rdahi); + tcg_gen_concat_i32_i64(rda, rdalo, rdahi); + tcg_temp_free_i32(rdalo); + tcg_temp_free_i32(rdahi); + } else { + rda = tcg_const_i64(0); + } + + fn(rda, cpu_env, qn, qm, rda); + tcg_temp_free_ptr(qn); + tcg_temp_free_ptr(qm); + + rdalo = tcg_temp_new_i32(); + rdahi = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(rdalo, rda); + tcg_gen_extrh_i64_i32(rdahi, rda); + store_reg(s, a->rdalo, rdalo); + store_reg(s, a->rdahi, rdahi); + tcg_temp_free_i64(rda); + mve_update_eci(s); + return true; +} + +static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a) +{ + static MVEGenLongDualAccOpFn * const fns[4][2] = { + { NULL, NULL }, + { gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh }, + { gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw }, + { NULL, NULL }, + }; + return do_long_dual_acc(s, a, fns[a->size][a->x]); +} + +static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a) +{ + static MVEGenLongDualAccOpFn * const fns[4][2] = { + { NULL, NULL }, + { gen_helper_mve_vmlaldavuh, NULL }, + { gen_helper_mve_vmlaldavuw, NULL }, + { NULL, NULL }, + }; + return do_long_dual_acc(s, a, fns[a->size][a->x]); +} + +static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a) +{ + static MVEGenLongDualAccOpFn * const fns[4][2] = { + { NULL, NULL }, + { gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh }, + { gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw }, + { NULL, NULL }, + }; + return do_long_dual_acc(s, a, fns[a->size][a->x]); +} + +static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a) +{ + static MVEGenLongDualAccOpFn * const fns[] = { + gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw, + }; + return do_long_dual_acc(s, a, fns[a->x]); +} + +static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a) +{ + static MVEGenLongDualAccOpFn * const fns[] = { + gen_helper_mve_vrmlaldavhuw, NULL, + }; + return do_long_dual_acc(s, a, fns[a->x]); +} + +static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a) +{ + static MVEGenLongDualAccOpFn * const fns[] = { + gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw, + }; + return do_long_dual_acc(s, a, fns[a->x]); +} + +static bool do_dual_acc(DisasContext *s, arg_vmladav *a, MVEGenDualAccOpFn *fn) +{ + TCGv_ptr qn, qm; + TCGv_i32 rda; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qn) || + !fn) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qn = mve_qreg_ptr(a->qn); + qm = mve_qreg_ptr(a->qm); + + /* + * This insn is subject to beat-wise execution. Partial execution + * of an A=0 (no-accumulate) insn which does not execute the first + * beat must start with the current rda value, not 0. + */ + if (a->a || mve_skip_first_beat(s)) { + rda = load_reg(s, a->rda); + } else { + rda = tcg_const_i32(0); + } + + fn(rda, cpu_env, qn, qm, rda); + store_reg(s, a->rda, rda); + tcg_temp_free_ptr(qn); + tcg_temp_free_ptr(qm); + + mve_update_eci(s); + return true; +} + +#define DO_DUAL_ACC(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_vmladav *a) \ + { \ + static MVEGenDualAccOpFn * const fns[4][2] = { \ + { gen_helper_mve_##FN##b, gen_helper_mve_##FN##xb }, \ + { gen_helper_mve_##FN##h, gen_helper_mve_##FN##xh }, \ + { gen_helper_mve_##FN##w, gen_helper_mve_##FN##xw }, \ + { NULL, NULL }, \ + }; \ + return do_dual_acc(s, a, fns[a->size][a->x]); \ + } + +DO_DUAL_ACC(VMLADAV_S, vmladavs) +DO_DUAL_ACC(VMLSDAV, vmlsdav) + +static bool trans_VMLADAV_U(DisasContext *s, arg_vmladav *a) +{ + static MVEGenDualAccOpFn * const fns[4][2] = { + { gen_helper_mve_vmladavub, NULL }, + { gen_helper_mve_vmladavuh, NULL }, + { gen_helper_mve_vmladavuw, NULL }, + { NULL, NULL }, + }; + return do_dual_acc(s, a, fns[a->size][a->x]); +} + +static void gen_vpst(DisasContext *s, uint32_t mask) +{ + /* + * Set the VPR mask fields. We take advantage of MASK01 and MASK23 + * being adjacent fields in the register. + * + * Updating the masks is not predicated, but it is subject to beat-wise + * execution, and the mask is updated on the odd-numbered beats. + * So if PSR.ECI says we should skip beat 1, we mustn't update the + * 01 mask field. + */ + TCGv_i32 vpr = load_cpu_field(v7m.vpr); + switch (s->eci) { + case ECI_NONE: + case ECI_A0: + /* Update both 01 and 23 fields */ + tcg_gen_deposit_i32(vpr, vpr, + tcg_constant_i32(mask | (mask << 4)), + R_V7M_VPR_MASK01_SHIFT, + R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH); + break; + case ECI_A0A1: + case ECI_A0A1A2: + case ECI_A0A1A2B0: + /* Update only the 23 mask field */ + tcg_gen_deposit_i32(vpr, vpr, + tcg_constant_i32(mask), + R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH); + break; + default: + g_assert_not_reached(); + } + store_cpu_field(vpr, v7m.vpr); +} + +static bool trans_VPST(DisasContext *s, arg_VPST *a) +{ + /* mask == 0 is a "related encoding" */ + if (!dc_isar_feature(aa32_mve, s) || !a->mask) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + gen_vpst(s, a->mask); + mve_update_and_store_eci(s); + return true; +} + +static bool trans_VPNOT(DisasContext *s, arg_VPNOT *a) +{ + /* + * Invert the predicate in VPR.P0. We have call out to + * a helper because this insn itself is beatwise and can + * be predicated. + */ + if (!dc_isar_feature(aa32_mve, s)) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + gen_helper_mve_vpnot(cpu_env); + /* This insn updates predication bits */ + s->base.is_jmp = DISAS_UPDATE_NOCHAIN; + mve_update_eci(s); + return true; +} + +static bool trans_VADDV(DisasContext *s, arg_VADDV *a) +{ + /* VADDV: vector add across vector */ + static MVEGenVADDVFn * const fns[4][2] = { + { gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub }, + { gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh }, + { gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw }, + { NULL, NULL } + }; + TCGv_ptr qm; + TCGv_i32 rda; + + if (!dc_isar_feature(aa32_mve, s) || + a->size == 3) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + /* + * This insn is subject to beat-wise execution. Partial execution + * of an A=0 (no-accumulate) insn which does not execute the first + * beat must start with the current value of Rda, not zero. + */ + if (a->a || mve_skip_first_beat(s)) { + /* Accumulate input from Rda */ + rda = load_reg(s, a->rda); + } else { + /* Accumulate starting at zero */ + rda = tcg_const_i32(0); + } + + qm = mve_qreg_ptr(a->qm); + fns[a->size][a->u](rda, cpu_env, qm, rda); + store_reg(s, a->rda, rda); + tcg_temp_free_ptr(qm); + + mve_update_eci(s); + return true; +} + +static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a) +{ + /* + * Vector Add Long Across Vector: accumulate the 32-bit + * elements of the vector into a 64-bit result stored in + * a pair of general-purpose registers. + * No need to check Qm's bank: it is only 3 bits in decode. + */ + TCGv_ptr qm; + TCGv_i64 rda; + TCGv_i32 rdalo, rdahi; + + if (!dc_isar_feature(aa32_mve, s)) { + return false; + } + /* + * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related + * encoding; rdalo always has bit 0 clear so cannot be 13 or 15. + */ + if (a->rdahi == 13 || a->rdahi == 15) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + /* + * This insn is subject to beat-wise execution. Partial execution + * of an A=0 (no-accumulate) insn which does not execute the first + * beat must start with the current value of RdaHi:RdaLo, not zero. + */ + if (a->a || mve_skip_first_beat(s)) { + /* Accumulate input from RdaHi:RdaLo */ + rda = tcg_temp_new_i64(); + rdalo = load_reg(s, a->rdalo); + rdahi = load_reg(s, a->rdahi); + tcg_gen_concat_i32_i64(rda, rdalo, rdahi); + tcg_temp_free_i32(rdalo); + tcg_temp_free_i32(rdahi); + } else { + /* Accumulate starting at zero */ + rda = tcg_const_i64(0); + } + + qm = mve_qreg_ptr(a->qm); + if (a->u) { + gen_helper_mve_vaddlv_u(rda, cpu_env, qm, rda); + } else { + gen_helper_mve_vaddlv_s(rda, cpu_env, qm, rda); + } + tcg_temp_free_ptr(qm); + + rdalo = tcg_temp_new_i32(); + rdahi = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(rdalo, rda); + tcg_gen_extrh_i64_i32(rdahi, rda); + store_reg(s, a->rdalo, rdalo); + store_reg(s, a->rdahi, rdahi); + tcg_temp_free_i64(rda); + mve_update_eci(s); + return true; +} + +static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn, + GVecGen2iFn *vecfn) +{ + TCGv_ptr qd; + uint64_t imm; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd) || + !fn) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + imm = asimd_imm_const(a->imm, a->cmode, a->op); + + if (vecfn && mve_no_predication(s)) { + vecfn(MO_64, mve_qreg_offset(a->qd), mve_qreg_offset(a->qd), + imm, 16, 16); + } else { + qd = mve_qreg_ptr(a->qd); + fn(cpu_env, qd, tcg_constant_i64(imm)); + tcg_temp_free_ptr(qd); + } + mve_update_eci(s); + return true; +} + +static void gen_gvec_vmovi(unsigned vece, uint32_t dofs, uint32_t aofs, + int64_t c, uint32_t oprsz, uint32_t maxsz) +{ + tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, c); +} + +static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a) +{ + /* Handle decode of cmode/op here between VORR/VBIC/VMOV */ + MVEGenOneOpImmFn *fn; + GVecGen2iFn *vecfn; + + if ((a->cmode & 1) && a->cmode < 12) { + if (a->op) { + /* + * For op=1, the immediate will be inverted by asimd_imm_const(), + * so the VBIC becomes a logical AND operation. + */ + fn = gen_helper_mve_vandi; + vecfn = tcg_gen_gvec_andi; + } else { + fn = gen_helper_mve_vorri; + vecfn = tcg_gen_gvec_ori; + } + } else { + /* There is one unallocated cmode/op combination in this space */ + if (a->cmode == 15 && a->op == 1) { + return false; + } + /* asimd_imm_const() sorts out VMVNI vs VMOVI for us */ + fn = gen_helper_mve_vmovi; + vecfn = gen_gvec_vmovi; + } + return do_1imm(s, a, fn, vecfn); +} + +static bool do_2shift_vec(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn, + bool negateshift, GVecGen2iFn vecfn) +{ + TCGv_ptr qd, qm; + int shift = a->shift; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qd | a->qm) || + !fn) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + /* + * When we handle a right shift insn using a left-shift helper + * which permits a negative shift count to indicate a right-shift, + * we must negate the shift count. + */ + if (negateshift) { + shift = -shift; + } + + if (vecfn && mve_no_predication(s)) { + vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm), + shift, 16, 16); + } else { + qd = mve_qreg_ptr(a->qd); + qm = mve_qreg_ptr(a->qm); + fn(cpu_env, qd, qm, tcg_constant_i32(shift)); + tcg_temp_free_ptr(qd); + tcg_temp_free_ptr(qm); + } + mve_update_eci(s); + return true; +} + +static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn, + bool negateshift) +{ + return do_2shift_vec(s, a, fn, negateshift, NULL); +} + +#define DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, VECFN) \ + static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ + { \ + static MVEGenTwoOpShiftFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##w, \ + NULL, \ + }; \ + return do_2shift_vec(s, a, fns[a->size], NEGATESHIFT, VECFN); \ + } + +#define DO_2SHIFT(INSN, FN, NEGATESHIFT) \ + DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, NULL) + +static void do_gvec_shri_s(unsigned vece, uint32_t dofs, uint32_t aofs, + int64_t shift, uint32_t oprsz, uint32_t maxsz) +{ + /* + * We get here with a negated shift count, and we must handle + * shifts by the element size, which tcg_gen_gvec_sari() does not do. + */ + shift = -shift; + if (shift == (8 << vece)) { + shift--; + } + tcg_gen_gvec_sari(vece, dofs, aofs, shift, oprsz, maxsz); +} + +static void do_gvec_shri_u(unsigned vece, uint32_t dofs, uint32_t aofs, + int64_t shift, uint32_t oprsz, uint32_t maxsz) +{ + /* + * We get here with a negated shift count, and we must handle + * shifts by the element size, which tcg_gen_gvec_shri() does not do. + */ + shift = -shift; + if (shift == (8 << vece)) { + tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, 0); + } else { + tcg_gen_gvec_shri(vece, dofs, aofs, shift, oprsz, maxsz); + } +} + +DO_2SHIFT_VEC(VSHLI, vshli_u, false, tcg_gen_gvec_shli) +DO_2SHIFT(VQSHLI_S, vqshli_s, false) +DO_2SHIFT(VQSHLI_U, vqshli_u, false) +DO_2SHIFT(VQSHLUI, vqshlui_s, false) +/* These right shifts use a left-shift helper with negated shift count */ +DO_2SHIFT_VEC(VSHRI_S, vshli_s, true, do_gvec_shri_s) +DO_2SHIFT_VEC(VSHRI_U, vshli_u, true, do_gvec_shri_u) +DO_2SHIFT(VRSHRI_S, vrshli_s, true) +DO_2SHIFT(VRSHRI_U, vrshli_u, true) + +DO_2SHIFT_VEC(VSRI, vsri, false, gen_gvec_sri) +DO_2SHIFT_VEC(VSLI, vsli, false, gen_gvec_sli) + +#define DO_2SHIFT_FP(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ + { \ + if (!dc_isar_feature(aa32_mve_fp, s)) { \ + return false; \ + } \ + return do_2shift(s, a, gen_helper_mve_##FN, false); \ + } + +DO_2SHIFT_FP(VCVT_SH_fixed, vcvt_sh) +DO_2SHIFT_FP(VCVT_UH_fixed, vcvt_uh) +DO_2SHIFT_FP(VCVT_HS_fixed, vcvt_hs) +DO_2SHIFT_FP(VCVT_HU_fixed, vcvt_hu) +DO_2SHIFT_FP(VCVT_SF_fixed, vcvt_sf) +DO_2SHIFT_FP(VCVT_UF_fixed, vcvt_uf) +DO_2SHIFT_FP(VCVT_FS_fixed, vcvt_fs) +DO_2SHIFT_FP(VCVT_FU_fixed, vcvt_fu) + +static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a, + MVEGenTwoOpShiftFn *fn) +{ + TCGv_ptr qda; + TCGv_i32 rm; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qda) || + a->rm == 13 || a->rm == 15 || !fn) { + /* Rm cases are UNPREDICTABLE */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qda = mve_qreg_ptr(a->qda); + rm = load_reg(s, a->rm); + fn(cpu_env, qda, qda, rm); + tcg_temp_free_ptr(qda); + tcg_temp_free_i32(rm); + mve_update_eci(s); + return true; +} + +#define DO_2SHIFT_SCALAR(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_shl_scalar *a) \ + { \ + static MVEGenTwoOpShiftFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##w, \ + NULL, \ + }; \ + return do_2shift_scalar(s, a, fns[a->size]); \ + } + +DO_2SHIFT_SCALAR(VSHL_S_scalar, vshli_s) +DO_2SHIFT_SCALAR(VSHL_U_scalar, vshli_u) +DO_2SHIFT_SCALAR(VRSHL_S_scalar, vrshli_s) +DO_2SHIFT_SCALAR(VRSHL_U_scalar, vrshli_u) +DO_2SHIFT_SCALAR(VQSHL_S_scalar, vqshli_s) +DO_2SHIFT_SCALAR(VQSHL_U_scalar, vqshli_u) +DO_2SHIFT_SCALAR(VQRSHL_S_scalar, vqrshli_s) +DO_2SHIFT_SCALAR(VQRSHL_U_scalar, vqrshli_u) + +#define DO_VSHLL(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ + { \ + static MVEGenTwoOpShiftFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + }; \ + return do_2shift_vec(s, a, fns[a->size], false, do_gvec_##FN); \ + } + +/* + * For the VSHLL vector helpers, the vece is the size of the input + * (ie MO_8 or MO_16); the helpers want to work in the output size. + * The shift count can be 0..<input size>, inclusive. (0 is VMOVL.) + */ +static void do_gvec_vshllbs(unsigned vece, uint32_t dofs, uint32_t aofs, + int64_t shift, uint32_t oprsz, uint32_t maxsz) +{ + unsigned ovece = vece + 1; + unsigned ibits = vece == MO_8 ? 8 : 16; + tcg_gen_gvec_shli(ovece, dofs, aofs, ibits, oprsz, maxsz); + tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz); +} + +static void do_gvec_vshllbu(unsigned vece, uint32_t dofs, uint32_t aofs, + int64_t shift, uint32_t oprsz, uint32_t maxsz) +{ + unsigned ovece = vece + 1; + tcg_gen_gvec_andi(ovece, dofs, aofs, + ovece == MO_16 ? 0xff : 0xffff, oprsz, maxsz); + tcg_gen_gvec_shli(ovece, dofs, dofs, shift, oprsz, maxsz); +} + +static void do_gvec_vshllts(unsigned vece, uint32_t dofs, uint32_t aofs, + int64_t shift, uint32_t oprsz, uint32_t maxsz) +{ + unsigned ovece = vece + 1; + unsigned ibits = vece == MO_8 ? 8 : 16; + if (shift == 0) { + tcg_gen_gvec_sari(ovece, dofs, aofs, ibits, oprsz, maxsz); + } else { + tcg_gen_gvec_andi(ovece, dofs, aofs, + ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz); + tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz); + } +} + +static void do_gvec_vshlltu(unsigned vece, uint32_t dofs, uint32_t aofs, + int64_t shift, uint32_t oprsz, uint32_t maxsz) +{ + unsigned ovece = vece + 1; + unsigned ibits = vece == MO_8 ? 8 : 16; + if (shift == 0) { + tcg_gen_gvec_shri(ovece, dofs, aofs, ibits, oprsz, maxsz); + } else { + tcg_gen_gvec_andi(ovece, dofs, aofs, + ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz); + tcg_gen_gvec_shri(ovece, dofs, dofs, ibits - shift, oprsz, maxsz); + } +} + +DO_VSHLL(VSHLL_BS, vshllbs) +DO_VSHLL(VSHLL_BU, vshllbu) +DO_VSHLL(VSHLL_TS, vshllts) +DO_VSHLL(VSHLL_TU, vshlltu) + +#define DO_2SHIFT_N(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ + { \ + static MVEGenTwoOpShiftFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + }; \ + return do_2shift(s, a, fns[a->size], false); \ + } + +DO_2SHIFT_N(VSHRNB, vshrnb) +DO_2SHIFT_N(VSHRNT, vshrnt) +DO_2SHIFT_N(VRSHRNB, vrshrnb) +DO_2SHIFT_N(VRSHRNT, vrshrnt) +DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s) +DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s) +DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u) +DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u) +DO_2SHIFT_N(VQSHRUNB, vqshrunb) +DO_2SHIFT_N(VQSHRUNT, vqshrunt) +DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s) +DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s) +DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u) +DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u) +DO_2SHIFT_N(VQRSHRUNB, vqrshrunb) +DO_2SHIFT_N(VQRSHRUNT, vqrshrunt) + +static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a) +{ + /* + * Whole Vector Left Shift with Carry. The carry is taken + * from a general purpose register and written back there. + * An imm of 0 means "shift by 32". + */ + TCGv_ptr qd; + TCGv_i32 rdm; + + if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { + return false; + } + if (a->rdm == 13 || a->rdm == 15) { + /* CONSTRAINED UNPREDICTABLE: we UNDEF */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qd = mve_qreg_ptr(a->qd); + rdm = load_reg(s, a->rdm); + gen_helper_mve_vshlc(rdm, cpu_env, qd, rdm, tcg_constant_i32(a->imm)); + store_reg(s, a->rdm, rdm); + tcg_temp_free_ptr(qd); + mve_update_eci(s); + return true; +} + +static bool do_vidup(DisasContext *s, arg_vidup *a, MVEGenVIDUPFn *fn) +{ + TCGv_ptr qd; + TCGv_i32 rn; + + /* + * Vector increment/decrement with wrap and duplicate (VIDUP, VDDUP). + * This fills the vector with elements of successively increasing + * or decreasing values, starting from Rn. + */ + if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { + return false; + } + if (a->size == MO_64) { + /* size 0b11 is another encoding */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qd = mve_qreg_ptr(a->qd); + rn = load_reg(s, a->rn); + fn(rn, cpu_env, qd, rn, tcg_constant_i32(a->imm)); + store_reg(s, a->rn, rn); + tcg_temp_free_ptr(qd); + mve_update_eci(s); + return true; +} + +static bool do_viwdup(DisasContext *s, arg_viwdup *a, MVEGenVIWDUPFn *fn) +{ + TCGv_ptr qd; + TCGv_i32 rn, rm; + + /* + * Vector increment/decrement with wrap and duplicate (VIWDUp, VDWDUP) + * This fills the vector with elements of successively increasing + * or decreasing values, starting from Rn. Rm specifies a point where + * the count wraps back around to 0. The updated offset is written back + * to Rn. + */ + if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { + return false; + } + if (!fn || a->rm == 13 || a->rm == 15) { + /* + * size 0b11 is another encoding; Rm == 13 is UNPREDICTABLE; + * Rm == 13 is VIWDUP, VDWDUP. + */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qd = mve_qreg_ptr(a->qd); + rn = load_reg(s, a->rn); + rm = load_reg(s, a->rm); + fn(rn, cpu_env, qd, rn, rm, tcg_constant_i32(a->imm)); + store_reg(s, a->rn, rn); + tcg_temp_free_ptr(qd); + tcg_temp_free_i32(rm); + mve_update_eci(s); + return true; +} + +static bool trans_VIDUP(DisasContext *s, arg_vidup *a) +{ + static MVEGenVIDUPFn * const fns[] = { + gen_helper_mve_vidupb, + gen_helper_mve_viduph, + gen_helper_mve_vidupw, + NULL, + }; + return do_vidup(s, a, fns[a->size]); +} + +static bool trans_VDDUP(DisasContext *s, arg_vidup *a) +{ + static MVEGenVIDUPFn * const fns[] = { + gen_helper_mve_vidupb, + gen_helper_mve_viduph, + gen_helper_mve_vidupw, + NULL, + }; + /* VDDUP is just like VIDUP but with a negative immediate */ + a->imm = -a->imm; + return do_vidup(s, a, fns[a->size]); +} + +static bool trans_VIWDUP(DisasContext *s, arg_viwdup *a) +{ + static MVEGenVIWDUPFn * const fns[] = { + gen_helper_mve_viwdupb, + gen_helper_mve_viwduph, + gen_helper_mve_viwdupw, + NULL, + }; + return do_viwdup(s, a, fns[a->size]); +} + +static bool trans_VDWDUP(DisasContext *s, arg_viwdup *a) +{ + static MVEGenVIWDUPFn * const fns[] = { + gen_helper_mve_vdwdupb, + gen_helper_mve_vdwduph, + gen_helper_mve_vdwdupw, + NULL, + }; + return do_viwdup(s, a, fns[a->size]); +} + +static bool do_vcmp(DisasContext *s, arg_vcmp *a, MVEGenCmpFn *fn) +{ + TCGv_ptr qn, qm; + + if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) || + !fn) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qn = mve_qreg_ptr(a->qn); + qm = mve_qreg_ptr(a->qm); + fn(cpu_env, qn, qm); + tcg_temp_free_ptr(qn); + tcg_temp_free_ptr(qm); + if (a->mask) { + /* VPT */ + gen_vpst(s, a->mask); + } + /* This insn updates predication bits */ + s->base.is_jmp = DISAS_UPDATE_NOCHAIN; + mve_update_eci(s); + return true; +} + +static bool do_vcmp_scalar(DisasContext *s, arg_vcmp_scalar *a, + MVEGenScalarCmpFn *fn) +{ + TCGv_ptr qn; + TCGv_i32 rm; + + if (!dc_isar_feature(aa32_mve, s) || !fn || a->rm == 13) { + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qn = mve_qreg_ptr(a->qn); + if (a->rm == 15) { + /* Encoding Rm=0b1111 means "constant zero" */ + rm = tcg_constant_i32(0); + } else { + rm = load_reg(s, a->rm); + } + fn(cpu_env, qn, rm); + tcg_temp_free_ptr(qn); + tcg_temp_free_i32(rm); + if (a->mask) { + /* VPT */ + gen_vpst(s, a->mask); + } + /* This insn updates predication bits */ + s->base.is_jmp = DISAS_UPDATE_NOCHAIN; + mve_update_eci(s); + return true; +} + +#define DO_VCMP(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_vcmp *a) \ + { \ + static MVEGenCmpFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##w, \ + NULL, \ + }; \ + return do_vcmp(s, a, fns[a->size]); \ + } \ + static bool trans_##INSN##_scalar(DisasContext *s, \ + arg_vcmp_scalar *a) \ + { \ + static MVEGenScalarCmpFn * const fns[] = { \ + gen_helper_mve_##FN##_scalarb, \ + gen_helper_mve_##FN##_scalarh, \ + gen_helper_mve_##FN##_scalarw, \ + NULL, \ + }; \ + return do_vcmp_scalar(s, a, fns[a->size]); \ + } + +DO_VCMP(VCMPEQ, vcmpeq) +DO_VCMP(VCMPNE, vcmpne) +DO_VCMP(VCMPCS, vcmpcs) +DO_VCMP(VCMPHI, vcmphi) +DO_VCMP(VCMPGE, vcmpge) +DO_VCMP(VCMPLT, vcmplt) +DO_VCMP(VCMPGT, vcmpgt) +DO_VCMP(VCMPLE, vcmple) + +#define DO_VCMP_FP(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_vcmp *a) \ + { \ + static MVEGenCmpFn * const fns[] = { \ + NULL, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##s, \ + NULL, \ + }; \ + if (!dc_isar_feature(aa32_mve_fp, s)) { \ + return false; \ + } \ + return do_vcmp(s, a, fns[a->size]); \ + } \ + static bool trans_##INSN##_scalar(DisasContext *s, \ + arg_vcmp_scalar *a) \ + { \ + static MVEGenScalarCmpFn * const fns[] = { \ + NULL, \ + gen_helper_mve_##FN##_scalarh, \ + gen_helper_mve_##FN##_scalars, \ + NULL, \ + }; \ + if (!dc_isar_feature(aa32_mve_fp, s)) { \ + return false; \ + } \ + return do_vcmp_scalar(s, a, fns[a->size]); \ + } + +DO_VCMP_FP(VCMPEQ_fp, vfcmpeq) +DO_VCMP_FP(VCMPNE_fp, vfcmpne) +DO_VCMP_FP(VCMPGE_fp, vfcmpge) +DO_VCMP_FP(VCMPLT_fp, vfcmplt) +DO_VCMP_FP(VCMPGT_fp, vfcmpgt) +DO_VCMP_FP(VCMPLE_fp, vfcmple) + +static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn) +{ + /* + * MIN/MAX operations across a vector: compute the min or + * max of the initial value in a general purpose register + * and all the elements in the vector, and store it back + * into the general purpose register. + */ + TCGv_ptr qm; + TCGv_i32 rda; + + if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) || + !fn || a->rda == 13 || a->rda == 15) { + /* Rda cases are UNPREDICTABLE */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qm = mve_qreg_ptr(a->qm); + rda = load_reg(s, a->rda); + fn(rda, cpu_env, qm, rda); + store_reg(s, a->rda, rda); + tcg_temp_free_ptr(qm); + mve_update_eci(s); + return true; +} + +#define DO_VMAXV(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_vmaxv *a) \ + { \ + static MVEGenVADDVFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##w, \ + NULL, \ + }; \ + return do_vmaxv(s, a, fns[a->size]); \ + } + +DO_VMAXV(VMAXV_S, vmaxvs) +DO_VMAXV(VMAXV_U, vmaxvu) +DO_VMAXV(VMAXAV, vmaxav) +DO_VMAXV(VMINV_S, vminvs) +DO_VMAXV(VMINV_U, vminvu) +DO_VMAXV(VMINAV, vminav) + +#define DO_VMAXV_FP(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_vmaxv *a) \ + { \ + static MVEGenVADDVFn * const fns[] = { \ + NULL, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##s, \ + NULL, \ + }; \ + if (!dc_isar_feature(aa32_mve_fp, s)) { \ + return false; \ + } \ + return do_vmaxv(s, a, fns[a->size]); \ + } + +DO_VMAXV_FP(VMAXNMV, vmaxnmv) +DO_VMAXV_FP(VMINNMV, vminnmv) +DO_VMAXV_FP(VMAXNMAV, vmaxnmav) +DO_VMAXV_FP(VMINNMAV, vminnmav) + +static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn) +{ + /* Absolute difference accumulated across vector */ + TCGv_ptr qn, qm; + TCGv_i32 rda; + + if (!dc_isar_feature(aa32_mve, s) || + !mve_check_qreg_bank(s, a->qm | a->qn) || + !fn || a->rda == 13 || a->rda == 15) { + /* Rda cases are UNPREDICTABLE */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + qm = mve_qreg_ptr(a->qm); + qn = mve_qreg_ptr(a->qn); + rda = load_reg(s, a->rda); + fn(rda, cpu_env, qn, qm, rda); + store_reg(s, a->rda, rda); + tcg_temp_free_ptr(qm); + tcg_temp_free_ptr(qn); + mve_update_eci(s); + return true; +} + +#define DO_VABAV(INSN, FN) \ + static bool trans_##INSN(DisasContext *s, arg_vabav *a) \ + { \ + static MVEGenVABAVFn * const fns[] = { \ + gen_helper_mve_##FN##b, \ + gen_helper_mve_##FN##h, \ + gen_helper_mve_##FN##w, \ + NULL, \ + }; \ + return do_vabav(s, a, fns[a->size]); \ + } + +DO_VABAV(VABAV_S, vabavs) +DO_VABAV(VABAV_U, vabavu) + +static bool trans_VMOV_to_2gp(DisasContext *s, arg_VMOV_to_2gp *a) +{ + /* + * VMOV two 32-bit vector lanes to two general-purpose registers. + * This insn is not predicated but it is subject to beat-wise + * execution if it is not in an IT block. For us this means + * only that if PSR.ECI says we should not be executing the beat + * corresponding to the lane of the vector register being accessed + * then we should skip perfoming the move, and that we need to do + * the usual check for bad ECI state and advance of ECI state. + * (If PSR.ECI is non-zero then we cannot be in an IT block.) + */ + TCGv_i32 tmp; + int vd; + + if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) || + a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15 || + a->rt == a->rt2) { + /* Rt/Rt2 cases are UNPREDICTABLE */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + /* Convert Qreg index to Dreg for read_neon_element32() etc */ + vd = a->qd * 2; + + if (!mve_skip_vmov(s, vd, a->idx, MO_32)) { + tmp = tcg_temp_new_i32(); + read_neon_element32(tmp, vd, a->idx, MO_32); + store_reg(s, a->rt, tmp); + } + if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) { + tmp = tcg_temp_new_i32(); + read_neon_element32(tmp, vd + 1, a->idx, MO_32); + store_reg(s, a->rt2, tmp); + } + + mve_update_and_store_eci(s); + return true; +} + +static bool trans_VMOV_from_2gp(DisasContext *s, arg_VMOV_to_2gp *a) +{ + /* + * VMOV two general-purpose registers to two 32-bit vector lanes. + * This insn is not predicated but it is subject to beat-wise + * execution if it is not in an IT block. For us this means + * only that if PSR.ECI says we should not be executing the beat + * corresponding to the lane of the vector register being accessed + * then we should skip perfoming the move, and that we need to do + * the usual check for bad ECI state and advance of ECI state. + * (If PSR.ECI is non-zero then we cannot be in an IT block.) + */ + TCGv_i32 tmp; + int vd; + + if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) || + a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15) { + /* Rt/Rt2 cases are UNPREDICTABLE */ + return false; + } + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + /* Convert Qreg idx to Dreg for read_neon_element32() etc */ + vd = a->qd * 2; + + if (!mve_skip_vmov(s, vd, a->idx, MO_32)) { + tmp = load_reg(s, a->rt); + write_neon_element32(tmp, vd, a->idx, MO_32); + tcg_temp_free_i32(tmp); + } + if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) { + tmp = load_reg(s, a->rt2); + write_neon_element32(tmp, vd + 1, a->idx, MO_32); + tcg_temp_free_i32(tmp); + } + + mve_update_and_store_eci(s); + return true; +} |