diff options
Diffstat (limited to 'target/m68k/op_helper.c')
-rw-r--r-- | target/m68k/op_helper.c | 1110 |
1 files changed, 1110 insertions, 0 deletions
diff --git a/target/m68k/op_helper.c b/target/m68k/op_helper.c new file mode 100644 index 000000000..cfbc987ba --- /dev/null +++ b/target/m68k/op_helper.c @@ -0,0 +1,1110 @@ +/* + * M68K helper routines + * + * Copyright (c) 2007 CodeSourcery + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/helper-proto.h" +#include "exec/exec-all.h" +#include "exec/cpu_ldst.h" +#include "semihosting/semihost.h" + +#if !defined(CONFIG_USER_ONLY) + +static void cf_rte(CPUM68KState *env) +{ + uint32_t sp; + uint32_t fmt; + + sp = env->aregs[7]; + fmt = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0); + env->pc = cpu_ldl_mmuidx_ra(env, sp + 4, MMU_KERNEL_IDX, 0); + sp |= (fmt >> 28) & 3; + env->aregs[7] = sp + 8; + + cpu_m68k_set_sr(env, fmt); +} + +static void m68k_rte(CPUM68KState *env) +{ + uint32_t sp; + uint16_t fmt; + uint16_t sr; + + sp = env->aregs[7]; +throwaway: + sr = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0); + sp += 2; + env->pc = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0); + sp += 4; + if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) { + /* all except 68000 */ + fmt = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0); + sp += 2; + switch (fmt >> 12) { + case 0: + break; + case 1: + env->aregs[7] = sp; + cpu_m68k_set_sr(env, sr); + goto throwaway; + case 2: + case 3: + sp += 4; + break; + case 4: + sp += 8; + break; + case 7: + sp += 52; + break; + } + } + env->aregs[7] = sp; + cpu_m68k_set_sr(env, sr); +} + +static const char *m68k_exception_name(int index) +{ + switch (index) { + case EXCP_ACCESS: + return "Access Fault"; + case EXCP_ADDRESS: + return "Address Error"; + case EXCP_ILLEGAL: + return "Illegal Instruction"; + case EXCP_DIV0: + return "Divide by Zero"; + case EXCP_CHK: + return "CHK/CHK2"; + case EXCP_TRAPCC: + return "FTRAPcc, TRAPcc, TRAPV"; + case EXCP_PRIVILEGE: + return "Privilege Violation"; + case EXCP_TRACE: + return "Trace"; + case EXCP_LINEA: + return "A-Line"; + case EXCP_LINEF: + return "F-Line"; + case EXCP_DEBEGBP: /* 68020/030 only */ + return "Copro Protocol Violation"; + case EXCP_FORMAT: + return "Format Error"; + case EXCP_UNINITIALIZED: + return "Uninitialized Interrupt"; + case EXCP_SPURIOUS: + return "Spurious Interrupt"; + case EXCP_INT_LEVEL_1: + return "Level 1 Interrupt"; + case EXCP_INT_LEVEL_1 + 1: + return "Level 2 Interrupt"; + case EXCP_INT_LEVEL_1 + 2: + return "Level 3 Interrupt"; + case EXCP_INT_LEVEL_1 + 3: + return "Level 4 Interrupt"; + case EXCP_INT_LEVEL_1 + 4: + return "Level 5 Interrupt"; + case EXCP_INT_LEVEL_1 + 5: + return "Level 6 Interrupt"; + case EXCP_INT_LEVEL_1 + 6: + return "Level 7 Interrupt"; + case EXCP_TRAP0: + return "TRAP #0"; + case EXCP_TRAP0 + 1: + return "TRAP #1"; + case EXCP_TRAP0 + 2: + return "TRAP #2"; + case EXCP_TRAP0 + 3: + return "TRAP #3"; + case EXCP_TRAP0 + 4: + return "TRAP #4"; + case EXCP_TRAP0 + 5: + return "TRAP #5"; + case EXCP_TRAP0 + 6: + return "TRAP #6"; + case EXCP_TRAP0 + 7: + return "TRAP #7"; + case EXCP_TRAP0 + 8: + return "TRAP #8"; + case EXCP_TRAP0 + 9: + return "TRAP #9"; + case EXCP_TRAP0 + 10: + return "TRAP #10"; + case EXCP_TRAP0 + 11: + return "TRAP #11"; + case EXCP_TRAP0 + 12: + return "TRAP #12"; + case EXCP_TRAP0 + 13: + return "TRAP #13"; + case EXCP_TRAP0 + 14: + return "TRAP #14"; + case EXCP_TRAP0 + 15: + return "TRAP #15"; + case EXCP_FP_BSUN: + return "FP Branch/Set on unordered condition"; + case EXCP_FP_INEX: + return "FP Inexact Result"; + case EXCP_FP_DZ: + return "FP Divide by Zero"; + case EXCP_FP_UNFL: + return "FP Underflow"; + case EXCP_FP_OPERR: + return "FP Operand Error"; + case EXCP_FP_OVFL: + return "FP Overflow"; + case EXCP_FP_SNAN: + return "FP Signaling NAN"; + case EXCP_FP_UNIMP: + return "FP Unimplemented Data Type"; + case EXCP_MMU_CONF: /* 68030/68851 only */ + return "MMU Configuration Error"; + case EXCP_MMU_ILLEGAL: /* 68851 only */ + return "MMU Illegal Operation"; + case EXCP_MMU_ACCESS: /* 68851 only */ + return "MMU Access Level Violation"; + case 64 ... 255: + return "User Defined Vector"; + } + return "Unassigned"; +} + +static void cf_interrupt_all(CPUM68KState *env, int is_hw) +{ + CPUState *cs = env_cpu(env); + uint32_t sp; + uint32_t sr; + uint32_t fmt; + uint32_t retaddr; + uint32_t vector; + + fmt = 0; + retaddr = env->pc; + + if (!is_hw) { + switch (cs->exception_index) { + case EXCP_RTE: + /* Return from an exception. */ + cf_rte(env); + return; + case EXCP_HALT_INSN: + if (semihosting_enabled() + && (env->sr & SR_S) != 0 + && (env->pc & 3) == 0 + && cpu_lduw_code(env, env->pc - 4) == 0x4e71 + && cpu_ldl_code(env, env->pc) == 0x4e7bf000) { + env->pc += 4; + do_m68k_semihosting(env, env->dregs[0]); + return; + } + cs->halted = 1; + cs->exception_index = EXCP_HLT; + cpu_loop_exit(cs); + return; + } + if (cs->exception_index >= EXCP_TRAP0 + && cs->exception_index <= EXCP_TRAP15) { + /* Move the PC after the trap instruction. */ + retaddr += 2; + } + } + + vector = cs->exception_index << 2; + + sr = env->sr | cpu_m68k_get_ccr(env); + if (qemu_loglevel_mask(CPU_LOG_INT)) { + static int count; + qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n", + ++count, m68k_exception_name(cs->exception_index), + vector, env->pc, env->aregs[7], sr); + } + + fmt |= 0x40000000; + fmt |= vector << 16; + fmt |= sr; + + env->sr |= SR_S; + if (is_hw) { + env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT); + env->sr &= ~SR_M; + } + m68k_switch_sp(env); + sp = env->aregs[7]; + fmt |= (sp & 3) << 28; + + /* ??? This could cause MMU faults. */ + sp &= ~3; + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, retaddr, MMU_KERNEL_IDX, 0); + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, fmt, MMU_KERNEL_IDX, 0); + env->aregs[7] = sp; + /* Jump to vector. */ + env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0); +} + +static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp, + uint16_t format, uint16_t sr, + uint32_t addr, uint32_t retaddr) +{ + if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) { + /* all except 68000 */ + CPUState *cs = env_cpu(env); + switch (format) { + case 4: + *sp -= 4; + cpu_stl_mmuidx_ra(env, *sp, env->pc, MMU_KERNEL_IDX, 0); + *sp -= 4; + cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0); + break; + case 3: + case 2: + *sp -= 4; + cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0); + break; + } + *sp -= 2; + cpu_stw_mmuidx_ra(env, *sp, (format << 12) + (cs->exception_index << 2), + MMU_KERNEL_IDX, 0); + } + *sp -= 4; + cpu_stl_mmuidx_ra(env, *sp, retaddr, MMU_KERNEL_IDX, 0); + *sp -= 2; + cpu_stw_mmuidx_ra(env, *sp, sr, MMU_KERNEL_IDX, 0); +} + +static void m68k_interrupt_all(CPUM68KState *env, int is_hw) +{ + CPUState *cs = env_cpu(env); + uint32_t sp; + uint32_t retaddr; + uint32_t vector; + uint16_t sr, oldsr; + + retaddr = env->pc; + + if (!is_hw) { + switch (cs->exception_index) { + case EXCP_RTE: + /* Return from an exception. */ + m68k_rte(env); + return; + case EXCP_TRAP0 ... EXCP_TRAP15: + /* Move the PC after the trap instruction. */ + retaddr += 2; + break; + } + } + + vector = cs->exception_index << 2; + + sr = env->sr | cpu_m68k_get_ccr(env); + if (qemu_loglevel_mask(CPU_LOG_INT)) { + static int count; + qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n", + ++count, m68k_exception_name(cs->exception_index), + vector, env->pc, env->aregs[7], sr); + } + + /* + * MC68040UM/AD, chapter 9.3.10 + */ + + /* "the processor first make an internal copy" */ + oldsr = sr; + /* "set the mode to supervisor" */ + sr |= SR_S; + /* "suppress tracing" */ + sr &= ~SR_T; + /* "sets the processor interrupt mask" */ + if (is_hw) { + sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT); + } + cpu_m68k_set_sr(env, sr); + sp = env->aregs[7]; + + if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) { + sp &= ~1; + } + + if (cs->exception_index == EXCP_ACCESS) { + if (env->mmu.fault) { + cpu_abort(cs, "DOUBLE MMU FAULT\n"); + } + env->mmu.fault = true; + /* push data 3 */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* push data 2 */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* push data 1 */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* write back 1 / push data 0 */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* write back 1 address */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* write back 2 data */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* write back 2 address */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* write back 3 data */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* write back 3 address */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0); + /* fault address */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0); + /* write back 1 status */ + sp -= 2; + cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* write back 2 status */ + sp -= 2; + cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* write back 3 status */ + sp -= 2; + cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); + /* special status word */ + sp -= 2; + cpu_stw_mmuidx_ra(env, sp, env->mmu.ssw, MMU_KERNEL_IDX, 0); + /* effective address */ + sp -= 4; + cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0); + + do_stack_frame(env, &sp, 7, oldsr, 0, retaddr); + env->mmu.fault = false; + if (qemu_loglevel_mask(CPU_LOG_INT)) { + qemu_log(" " + "ssw: %08x ea: %08x sfc: %d dfc: %d\n", + env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc); + } + } else if (cs->exception_index == EXCP_ADDRESS) { + do_stack_frame(env, &sp, 2, oldsr, 0, retaddr); + } else if (cs->exception_index == EXCP_ILLEGAL || + cs->exception_index == EXCP_DIV0 || + cs->exception_index == EXCP_CHK || + cs->exception_index == EXCP_TRAPCC || + cs->exception_index == EXCP_TRACE) { + /* FIXME: addr is not only env->pc */ + do_stack_frame(env, &sp, 2, oldsr, env->pc, retaddr); + } else if (is_hw && oldsr & SR_M && + cs->exception_index >= EXCP_SPURIOUS && + cs->exception_index <= EXCP_INT_LEVEL_7) { + do_stack_frame(env, &sp, 0, oldsr, 0, retaddr); + oldsr = sr; + env->aregs[7] = sp; + cpu_m68k_set_sr(env, sr &= ~SR_M); + sp = env->aregs[7] & ~1; + do_stack_frame(env, &sp, 1, oldsr, 0, retaddr); + } else { + do_stack_frame(env, &sp, 0, oldsr, 0, retaddr); + } + + env->aregs[7] = sp; + /* Jump to vector. */ + env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0); +} + +static void do_interrupt_all(CPUM68KState *env, int is_hw) +{ + if (m68k_feature(env, M68K_FEATURE_M68000)) { + m68k_interrupt_all(env, is_hw); + return; + } + cf_interrupt_all(env, is_hw); +} + +void m68k_cpu_do_interrupt(CPUState *cs) +{ + M68kCPU *cpu = M68K_CPU(cs); + CPUM68KState *env = &cpu->env; + + do_interrupt_all(env, 0); +} + +static inline void do_interrupt_m68k_hardirq(CPUM68KState *env) +{ + do_interrupt_all(env, 1); +} + +void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, + unsigned size, MMUAccessType access_type, + int mmu_idx, MemTxAttrs attrs, + MemTxResult response, uintptr_t retaddr) +{ + M68kCPU *cpu = M68K_CPU(cs); + CPUM68KState *env = &cpu->env; + + cpu_restore_state(cs, retaddr, true); + + if (m68k_feature(env, M68K_FEATURE_M68040)) { + env->mmu.mmusr = 0; + + /* + * According to the MC68040 users manual the ATC bit of the SSW is + * used to distinguish between ATC faults and physical bus errors. + * In the case of a bus error e.g. during nubus read from an empty + * slot this bit should not be set + */ + if (response != MEMTX_DECODE_ERROR) { + env->mmu.ssw |= M68K_ATC_040; + } + + /* FIXME: manage MMU table access error */ + env->mmu.ssw &= ~M68K_TM_040; + if (env->sr & SR_S) { /* SUPERVISOR */ + env->mmu.ssw |= M68K_TM_040_SUPER; + } + if (access_type == MMU_INST_FETCH) { /* instruction or data */ + env->mmu.ssw |= M68K_TM_040_CODE; + } else { + env->mmu.ssw |= M68K_TM_040_DATA; + } + env->mmu.ssw &= ~M68K_BA_SIZE_MASK; + switch (size) { + case 1: + env->mmu.ssw |= M68K_BA_SIZE_BYTE; + break; + case 2: + env->mmu.ssw |= M68K_BA_SIZE_WORD; + break; + case 4: + env->mmu.ssw |= M68K_BA_SIZE_LONG; + break; + } + + if (access_type != MMU_DATA_STORE) { + env->mmu.ssw |= M68K_RW_040; + } + + env->mmu.ar = addr; + + cs->exception_index = EXCP_ACCESS; + cpu_loop_exit(cs); + } +} + +bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request) +{ + M68kCPU *cpu = M68K_CPU(cs); + CPUM68KState *env = &cpu->env; + + if (interrupt_request & CPU_INTERRUPT_HARD + && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) { + /* + * Real hardware gets the interrupt vector via an IACK cycle + * at this point. Current emulated hardware doesn't rely on + * this, so we provide/save the vector when the interrupt is + * first signalled. + */ + cs->exception_index = env->pending_vector; + do_interrupt_m68k_hardirq(env); + return true; + } + return false; +} + +#endif /* !CONFIG_USER_ONLY */ + +static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr) +{ + CPUState *cs = env_cpu(env); + + cs->exception_index = tt; + cpu_loop_exit_restore(cs, raddr); +} + +static void raise_exception(CPUM68KState *env, int tt) +{ + raise_exception_ra(env, tt, 0); +} + +void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt) +{ + raise_exception(env, tt); +} + +void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den) +{ + uint32_t num = env->dregs[destr]; + uint32_t quot, rem; + + if (den == 0) { + raise_exception_ra(env, EXCP_DIV0, GETPC()); + } + quot = num / den; + rem = num % den; + + env->cc_c = 0; /* always cleared, even if overflow */ + if (quot > 0xffff) { + env->cc_v = -1; + /* + * real 68040 keeps N and unset Z on overflow, + * whereas documentation says "undefined" + */ + env->cc_z = 1; + return; + } + env->dregs[destr] = deposit32(quot, 16, 16, rem); + env->cc_z = (int16_t)quot; + env->cc_n = (int16_t)quot; + env->cc_v = 0; +} + +void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den) +{ + int32_t num = env->dregs[destr]; + uint32_t quot, rem; + + if (den == 0) { + raise_exception_ra(env, EXCP_DIV0, GETPC()); + } + quot = num / den; + rem = num % den; + + env->cc_c = 0; /* always cleared, even if overflow */ + if (quot != (int16_t)quot) { + env->cc_v = -1; + /* nothing else is modified */ + /* + * real 68040 keeps N and unset Z on overflow, + * whereas documentation says "undefined" + */ + env->cc_z = 1; + return; + } + env->dregs[destr] = deposit32(quot, 16, 16, rem); + env->cc_z = (int16_t)quot; + env->cc_n = (int16_t)quot; + env->cc_v = 0; +} + +void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den) +{ + uint32_t num = env->dregs[numr]; + uint32_t quot, rem; + + if (den == 0) { + raise_exception_ra(env, EXCP_DIV0, GETPC()); + } + quot = num / den; + rem = num % den; + + env->cc_c = 0; + env->cc_z = quot; + env->cc_n = quot; + env->cc_v = 0; + + if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { + if (numr == regr) { + env->dregs[numr] = quot; + } else { + env->dregs[regr] = rem; + } + } else { + env->dregs[regr] = rem; + env->dregs[numr] = quot; + } +} + +void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den) +{ + int32_t num = env->dregs[numr]; + int32_t quot, rem; + + if (den == 0) { + raise_exception_ra(env, EXCP_DIV0, GETPC()); + } + quot = num / den; + rem = num % den; + + env->cc_c = 0; + env->cc_z = quot; + env->cc_n = quot; + env->cc_v = 0; + + if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { + if (numr == regr) { + env->dregs[numr] = quot; + } else { + env->dregs[regr] = rem; + } + } else { + env->dregs[regr] = rem; + env->dregs[numr] = quot; + } +} + +void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den) +{ + uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); + uint64_t quot; + uint32_t rem; + + if (den == 0) { + raise_exception_ra(env, EXCP_DIV0, GETPC()); + } + quot = num / den; + rem = num % den; + + env->cc_c = 0; /* always cleared, even if overflow */ + if (quot > 0xffffffffULL) { + env->cc_v = -1; + /* + * real 68040 keeps N and unset Z on overflow, + * whereas documentation says "undefined" + */ + env->cc_z = 1; + return; + } + env->cc_z = quot; + env->cc_n = quot; + env->cc_v = 0; + + /* + * If Dq and Dr are the same, the quotient is returned. + * therefore we set Dq last. + */ + + env->dregs[regr] = rem; + env->dregs[numr] = quot; +} + +void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den) +{ + int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); + int64_t quot; + int32_t rem; + + if (den == 0) { + raise_exception_ra(env, EXCP_DIV0, GETPC()); + } + quot = num / den; + rem = num % den; + + env->cc_c = 0; /* always cleared, even if overflow */ + if (quot != (int32_t)quot) { + env->cc_v = -1; + /* + * real 68040 keeps N and unset Z on overflow, + * whereas documentation says "undefined" + */ + env->cc_z = 1; + return; + } + env->cc_z = quot; + env->cc_n = quot; + env->cc_v = 0; + + /* + * If Dq and Dr are the same, the quotient is returned. + * therefore we set Dq last. + */ + + env->dregs[regr] = rem; + env->dregs[numr] = quot; +} + +/* We're executing in a serial context -- no need to be atomic. */ +void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) +{ + uint32_t Dc1 = extract32(regs, 9, 3); + uint32_t Dc2 = extract32(regs, 6, 3); + uint32_t Du1 = extract32(regs, 3, 3); + uint32_t Du2 = extract32(regs, 0, 3); + int16_t c1 = env->dregs[Dc1]; + int16_t c2 = env->dregs[Dc2]; + int16_t u1 = env->dregs[Du1]; + int16_t u2 = env->dregs[Du2]; + int16_t l1, l2; + uintptr_t ra = GETPC(); + + l1 = cpu_lduw_data_ra(env, a1, ra); + l2 = cpu_lduw_data_ra(env, a2, ra); + if (l1 == c1 && l2 == c2) { + cpu_stw_data_ra(env, a1, u1, ra); + cpu_stw_data_ra(env, a2, u2, ra); + } + + if (c1 != l1) { + env->cc_n = l1; + env->cc_v = c1; + } else { + env->cc_n = l2; + env->cc_v = c2; + } + env->cc_op = CC_OP_CMPW; + env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1); + env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2); +} + +static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2, + bool parallel) +{ + uint32_t Dc1 = extract32(regs, 9, 3); + uint32_t Dc2 = extract32(regs, 6, 3); + uint32_t Du1 = extract32(regs, 3, 3); + uint32_t Du2 = extract32(regs, 0, 3); + uint32_t c1 = env->dregs[Dc1]; + uint32_t c2 = env->dregs[Dc2]; + uint32_t u1 = env->dregs[Du1]; + uint32_t u2 = env->dregs[Du2]; + uint32_t l1, l2; + uintptr_t ra = GETPC(); +#if defined(CONFIG_ATOMIC64) + int mmu_idx = cpu_mmu_index(env, 0); + MemOpIdx oi = make_memop_idx(MO_BEQ, mmu_idx); +#endif + + if (parallel) { + /* We're executing in a parallel context -- must be atomic. */ +#ifdef CONFIG_ATOMIC64 + uint64_t c, u, l; + if ((a1 & 7) == 0 && a2 == a1 + 4) { + c = deposit64(c2, 32, 32, c1); + u = deposit64(u2, 32, 32, u1); + l = cpu_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra); + l1 = l >> 32; + l2 = l; + } else if ((a2 & 7) == 0 && a1 == a2 + 4) { + c = deposit64(c1, 32, 32, c2); + u = deposit64(u1, 32, 32, u2); + l = cpu_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra); + l2 = l >> 32; + l1 = l; + } else +#endif + { + /* Tell the main loop we need to serialize this insn. */ + cpu_loop_exit_atomic(env_cpu(env), ra); + } + } else { + /* We're executing in a serial context -- no need to be atomic. */ + l1 = cpu_ldl_data_ra(env, a1, ra); + l2 = cpu_ldl_data_ra(env, a2, ra); + if (l1 == c1 && l2 == c2) { + cpu_stl_data_ra(env, a1, u1, ra); + cpu_stl_data_ra(env, a2, u2, ra); + } + } + + if (c1 != l1) { + env->cc_n = l1; + env->cc_v = c1; + } else { + env->cc_n = l2; + env->cc_v = c2; + } + env->cc_op = CC_OP_CMPL; + env->dregs[Dc1] = l1; + env->dregs[Dc2] = l2; +} + +void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) +{ + do_cas2l(env, regs, a1, a2, false); +} + +void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1, + uint32_t a2) +{ + do_cas2l(env, regs, a1, a2, true); +} + +struct bf_data { + uint32_t addr; + uint32_t bofs; + uint32_t blen; + uint32_t len; +}; + +static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len) +{ + int bofs, blen; + + /* Bound length; map 0 to 32. */ + len = ((len - 1) & 31) + 1; + + /* Note that ofs is signed. */ + addr += ofs / 8; + bofs = ofs % 8; + if (bofs < 0) { + bofs += 8; + addr -= 1; + } + + /* + * Compute the number of bytes required (minus one) to + * satisfy the bitfield. + */ + blen = (bofs + len - 1) / 8; + + /* + * Canonicalize the bit offset for data loaded into a 64-bit big-endian + * word. For the cases where BLEN is not a power of 2, adjust ADDR so + * that we can use the next power of two sized load without crossing a + * page boundary, unless the field itself crosses the boundary. + */ + switch (blen) { + case 0: + bofs += 56; + break; + case 1: + bofs += 48; + break; + case 2: + if (addr & 1) { + bofs += 8; + addr -= 1; + } + /* fallthru */ + case 3: + bofs += 32; + break; + case 4: + if (addr & 3) { + bofs += 8 * (addr & 3); + addr &= -4; + } + break; + default: + g_assert_not_reached(); + } + + return (struct bf_data){ + .addr = addr, + .bofs = bofs, + .blen = blen, + .len = len, + }; +} + +static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen, + uintptr_t ra) +{ + switch (blen) { + case 0: + return cpu_ldub_data_ra(env, addr, ra); + case 1: + return cpu_lduw_data_ra(env, addr, ra); + case 2: + case 3: + return cpu_ldl_data_ra(env, addr, ra); + case 4: + return cpu_ldq_data_ra(env, addr, ra); + default: + g_assert_not_reached(); + } +} + +static void bf_store(CPUM68KState *env, uint32_t addr, int blen, + uint64_t data, uintptr_t ra) +{ + switch (blen) { + case 0: + cpu_stb_data_ra(env, addr, data, ra); + break; + case 1: + cpu_stw_data_ra(env, addr, data, ra); + break; + case 2: + case 3: + cpu_stl_data_ra(env, addr, data, ra); + break; + case 4: + cpu_stq_data_ra(env, addr, data, ra); + break; + default: + g_assert_not_reached(); + } +} + +uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr, + int32_t ofs, uint32_t len) +{ + uintptr_t ra = GETPC(); + struct bf_data d = bf_prep(addr, ofs, len); + uint64_t data = bf_load(env, d.addr, d.blen, ra); + + return (int64_t)(data << d.bofs) >> (64 - d.len); +} + +uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr, + int32_t ofs, uint32_t len) +{ + uintptr_t ra = GETPC(); + struct bf_data d = bf_prep(addr, ofs, len); + uint64_t data = bf_load(env, d.addr, d.blen, ra); + + /* + * Put CC_N at the top of the high word; put the zero-extended value + * at the bottom of the low word. + */ + data <<= d.bofs; + data >>= 64 - d.len; + data |= data << (64 - d.len); + + return data; +} + +uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val, + int32_t ofs, uint32_t len) +{ + uintptr_t ra = GETPC(); + struct bf_data d = bf_prep(addr, ofs, len); + uint64_t data = bf_load(env, d.addr, d.blen, ra); + uint64_t mask = -1ull << (64 - d.len) >> d.bofs; + + data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs); + + bf_store(env, d.addr, d.blen, data, ra); + + /* The field at the top of the word is also CC_N for CC_OP_LOGIC. */ + return val << (32 - d.len); +} + +uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr, + int32_t ofs, uint32_t len) +{ + uintptr_t ra = GETPC(); + struct bf_data d = bf_prep(addr, ofs, len); + uint64_t data = bf_load(env, d.addr, d.blen, ra); + uint64_t mask = -1ull << (64 - d.len) >> d.bofs; + + bf_store(env, d.addr, d.blen, data ^ mask, ra); + + return ((data & mask) << d.bofs) >> 32; +} + +uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr, + int32_t ofs, uint32_t len) +{ + uintptr_t ra = GETPC(); + struct bf_data d = bf_prep(addr, ofs, len); + uint64_t data = bf_load(env, d.addr, d.blen, ra); + uint64_t mask = -1ull << (64 - d.len) >> d.bofs; + + bf_store(env, d.addr, d.blen, data & ~mask, ra); + + return ((data & mask) << d.bofs) >> 32; +} + +uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr, + int32_t ofs, uint32_t len) +{ + uintptr_t ra = GETPC(); + struct bf_data d = bf_prep(addr, ofs, len); + uint64_t data = bf_load(env, d.addr, d.blen, ra); + uint64_t mask = -1ull << (64 - d.len) >> d.bofs; + + bf_store(env, d.addr, d.blen, data | mask, ra); + + return ((data & mask) << d.bofs) >> 32; +} + +uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len) +{ + return (n ? clz32(n) : len) + ofs; +} + +uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr, + int32_t ofs, uint32_t len) +{ + uintptr_t ra = GETPC(); + struct bf_data d = bf_prep(addr, ofs, len); + uint64_t data = bf_load(env, d.addr, d.blen, ra); + uint64_t mask = -1ull << (64 - d.len) >> d.bofs; + uint64_t n = (data & mask) << d.bofs; + uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len); + + /* + * Return FFO in the low word and N in the high word. + * Note that because of MASK and the shift, the low word + * is already zero. + */ + return n | ffo; +} + +void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub) +{ + /* + * From the specs: + * X: Not affected, C,V,Z: Undefined, + * N: Set if val < 0; cleared if val > ub, undefined otherwise + * We implement here values found from a real MC68040: + * X,V,Z: Not affected + * N: Set if val < 0; cleared if val >= 0 + * C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise + * if 0 > ub: set if val > ub and val < 0, cleared otherwise + */ + env->cc_n = val; + env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0; + + if (val < 0 || val > ub) { + CPUState *cs = env_cpu(env); + + /* Recover PC and CC_OP for the beginning of the insn. */ + cpu_restore_state(cs, GETPC(), true); + + /* flags have been modified by gen_flush_flags() */ + env->cc_op = CC_OP_FLAGS; + /* Adjust PC to end of the insn. */ + env->pc += 2; + + cs->exception_index = EXCP_CHK; + cpu_loop_exit(cs); + } +} + +void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub) +{ + /* + * From the specs: + * X: Not affected, N,V: Undefined, + * Z: Set if val is equal to lb or ub + * C: Set if val < lb or val > ub, cleared otherwise + * We implement here values found from a real MC68040: + * X,N,V: Not affected + * Z: Set if val is equal to lb or ub + * C: if lb <= ub: set if val < lb or val > ub, cleared otherwise + * if lb > ub: set if val > ub and val < lb, cleared otherwise + */ + env->cc_z = val != lb && val != ub; + env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb; + + if (env->cc_c) { + CPUState *cs = env_cpu(env); + + /* Recover PC and CC_OP for the beginning of the insn. */ + cpu_restore_state(cs, GETPC(), true); + + /* flags have been modified by gen_flush_flags() */ + env->cc_op = CC_OP_FLAGS; + /* Adjust PC to end of the insn. */ + env->pc += 4; + + cs->exception_index = EXCP_CHK; + cpu_loop_exit(cs); + } +} |