diff options
Diffstat (limited to 'target/ppc/fpu_helper.c')
-rw-r--r-- | target/ppc/fpu_helper.c | 3289 |
1 files changed, 3289 insertions, 0 deletions
diff --git a/target/ppc/fpu_helper.c b/target/ppc/fpu_helper.c new file mode 100644 index 000000000..c4896cecc --- /dev/null +++ b/target/ppc/fpu_helper.c @@ -0,0 +1,3289 @@ +/* + * PowerPC floating point and SPE emulation helpers for QEMU. + * + * Copyright (c) 2003-2007 Jocelyn Mayer + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/helper-proto.h" +#include "exec/exec-all.h" +#include "internal.h" +#include "fpu/softfloat.h" + +static inline float128 float128_snan_to_qnan(float128 x) +{ + float128 r; + + r.high = x.high | 0x0000800000000000; + r.low = x.low; + return r; +} + +#define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL) +#define float32_snan_to_qnan(x) ((x) | 0x00400000) +#define float16_snan_to_qnan(x) ((x) | 0x0200) + +static inline bool fp_exceptions_enabled(CPUPPCState *env) +{ +#ifdef CONFIG_USER_ONLY + return true; +#else + return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0; +#endif +} + +/*****************************************************************************/ +/* Floating point operations helpers */ + +/* + * This is the non-arithmatic conversion that happens e.g. on loads. + * In the Power ISA pseudocode, this is called DOUBLE. + */ +uint64_t helper_todouble(uint32_t arg) +{ + uint32_t abs_arg = arg & 0x7fffffff; + uint64_t ret; + + if (likely(abs_arg >= 0x00800000)) { + if (unlikely(extract32(arg, 23, 8) == 0xff)) { + /* Inf or NAN. */ + ret = (uint64_t)extract32(arg, 31, 1) << 63; + ret |= (uint64_t)0x7ff << 52; + ret |= (uint64_t)extract32(arg, 0, 23) << 29; + } else { + /* Normalized operand. */ + ret = (uint64_t)extract32(arg, 30, 2) << 62; + ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59; + ret |= (uint64_t)extract32(arg, 0, 30) << 29; + } + } else { + /* Zero or Denormalized operand. */ + ret = (uint64_t)extract32(arg, 31, 1) << 63; + if (unlikely(abs_arg != 0)) { + /* + * Denormalized operand. + * Shift fraction so that the msb is in the implicit bit position. + * Thus, shift is in the range [1:23]. + */ + int shift = clz32(abs_arg) - 8; + /* + * The first 3 terms compute the float64 exponent. We then bias + * this result by -1 so that we can swallow the implicit bit below. + */ + int exp = -126 - shift + 1023 - 1; + + ret |= (uint64_t)exp << 52; + ret += (uint64_t)abs_arg << (52 - 23 + shift); + } + } + return ret; +} + +/* + * This is the non-arithmatic conversion that happens e.g. on stores. + * In the Power ISA pseudocode, this is called SINGLE. + */ +uint32_t helper_tosingle(uint64_t arg) +{ + int exp = extract64(arg, 52, 11); + uint32_t ret; + + if (likely(exp > 896)) { + /* No denormalization required (includes Inf, NaN). */ + ret = extract64(arg, 62, 2) << 30; + ret |= extract64(arg, 29, 30); + } else { + /* + * Zero or Denormal result. If the exponent is in bounds for + * a single-precision denormal result, extract the proper + * bits. If the input is not zero, and the exponent is out of + * bounds, then the result is undefined; this underflows to + * zero. + */ + ret = extract64(arg, 63, 1) << 31; + if (unlikely(exp >= 874)) { + /* Denormal result. */ + ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp); + } + } + return ret; +} + +static inline int ppc_float32_get_unbiased_exp(float32 f) +{ + return ((f >> 23) & 0xFF) - 127; +} + +static inline int ppc_float64_get_unbiased_exp(float64 f) +{ + return ((f >> 52) & 0x7FF) - 1023; +} + +/* Classify a floating-point number. */ +enum { + is_normal = 1, + is_zero = 2, + is_denormal = 4, + is_inf = 8, + is_qnan = 16, + is_snan = 32, + is_neg = 64, +}; + +#define COMPUTE_CLASS(tp) \ +static int tp##_classify(tp arg) \ +{ \ + int ret = tp##_is_neg(arg) * is_neg; \ + if (unlikely(tp##_is_any_nan(arg))) { \ + float_status dummy = { }; /* snan_bit_is_one = 0 */ \ + ret |= (tp##_is_signaling_nan(arg, &dummy) \ + ? is_snan : is_qnan); \ + } else if (unlikely(tp##_is_infinity(arg))) { \ + ret |= is_inf; \ + } else if (tp##_is_zero(arg)) { \ + ret |= is_zero; \ + } else if (tp##_is_zero_or_denormal(arg)) { \ + ret |= is_denormal; \ + } else { \ + ret |= is_normal; \ + } \ + return ret; \ +} + +COMPUTE_CLASS(float16) +COMPUTE_CLASS(float32) +COMPUTE_CLASS(float64) +COMPUTE_CLASS(float128) + +static void set_fprf_from_class(CPUPPCState *env, int class) +{ + static const uint8_t fprf[6][2] = { + { 0x04, 0x08 }, /* normalized */ + { 0x02, 0x12 }, /* zero */ + { 0x14, 0x18 }, /* denormalized */ + { 0x05, 0x09 }, /* infinity */ + { 0x11, 0x11 }, /* qnan */ + { 0x00, 0x00 }, /* snan -- flags are undefined */ + }; + bool isneg = class & is_neg; + + env->fpscr &= ~FP_FPRF; + env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF; +} + +#define COMPUTE_FPRF(tp) \ +void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \ +{ \ + set_fprf_from_class(env, tp##_classify(arg)); \ +} + +COMPUTE_FPRF(float16) +COMPUTE_FPRF(float32) +COMPUTE_FPRF(float64) +COMPUTE_FPRF(float128) + +/* Floating-point invalid operations exception */ +static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr) +{ + /* Update the floating-point invalid operation summary */ + env->fpscr |= FP_VX; + /* Update the floating-point exception summary */ + env->fpscr |= FP_FX; + if (fpscr_ve != 0) { + /* Update the floating-point enabled exception summary */ + env->fpscr |= FP_FEX; + if (fp_exceptions_enabled(env)) { + raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, + POWERPC_EXCP_FP | op, retaddr); + } + } +} + +static void finish_invalid_op_arith(CPUPPCState *env, int op, + bool set_fpcc, uintptr_t retaddr) +{ + env->fpscr &= ~(FP_FR | FP_FI); + if (fpscr_ve == 0) { + if (set_fpcc) { + env->fpscr &= ~FP_FPCC; + env->fpscr |= (FP_C | FP_FU); + } + } + finish_invalid_op_excp(env, op, retaddr); +} + +/* Signalling NaN */ +static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr) +{ + env->fpscr |= FP_VXSNAN; + finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr); +} + +/* Magnitude subtraction of infinities */ +static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc, + uintptr_t retaddr) +{ + env->fpscr |= FP_VXISI; + finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr); +} + +/* Division of infinity by infinity */ +static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc, + uintptr_t retaddr) +{ + env->fpscr |= FP_VXIDI; + finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr); +} + +/* Division of zero by zero */ +static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc, + uintptr_t retaddr) +{ + env->fpscr |= FP_VXZDZ; + finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr); +} + +/* Multiplication of zero by infinity */ +static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc, + uintptr_t retaddr) +{ + env->fpscr |= FP_VXIMZ; + finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr); +} + +/* Square root of a negative number */ +static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc, + uintptr_t retaddr) +{ + env->fpscr |= FP_VXSQRT; + finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr); +} + +/* Ordered comparison of NaN */ +static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc, + uintptr_t retaddr) +{ + env->fpscr |= FP_VXVC; + if (set_fpcc) { + env->fpscr &= ~FP_FPCC; + env->fpscr |= (FP_C | FP_FU); + } + /* Update the floating-point invalid operation summary */ + env->fpscr |= FP_VX; + /* Update the floating-point exception summary */ + env->fpscr |= FP_FX; + /* We must update the target FPR before raising the exception */ + if (fpscr_ve != 0) { + CPUState *cs = env_cpu(env); + + cs->exception_index = POWERPC_EXCP_PROGRAM; + env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; + /* Update the floating-point enabled exception summary */ + env->fpscr |= FP_FEX; + /* Exception is deferred */ + } +} + +/* Invalid conversion */ +static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc, + uintptr_t retaddr) +{ + env->fpscr |= FP_VXCVI; + env->fpscr &= ~(FP_FR | FP_FI); + if (fpscr_ve == 0) { + if (set_fpcc) { + env->fpscr &= ~FP_FPCC; + env->fpscr |= (FP_C | FP_FU); + } + } + finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr); +} + +static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr) +{ + env->fpscr |= FP_ZX; + env->fpscr &= ~(FP_FR | FP_FI); + /* Update the floating-point exception summary */ + env->fpscr |= FP_FX; + if (fpscr_ze != 0) { + /* Update the floating-point enabled exception summary */ + env->fpscr |= FP_FEX; + if (fp_exceptions_enabled(env)) { + raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, + POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX, + raddr); + } + } +} + +static inline void float_overflow_excp(CPUPPCState *env) +{ + CPUState *cs = env_cpu(env); + + env->fpscr |= FP_OX; + /* Update the floating-point exception summary */ + env->fpscr |= FP_FX; + if (fpscr_oe != 0) { + /* XXX: should adjust the result */ + /* Update the floating-point enabled exception summary */ + env->fpscr |= FP_FEX; + /* We must update the target FPR before raising the exception */ + cs->exception_index = POWERPC_EXCP_PROGRAM; + env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; + } else { + env->fpscr |= FP_XX; + env->fpscr |= FP_FI; + } +} + +static inline void float_underflow_excp(CPUPPCState *env) +{ + CPUState *cs = env_cpu(env); + + env->fpscr |= FP_UX; + /* Update the floating-point exception summary */ + env->fpscr |= FP_FX; + if (fpscr_ue != 0) { + /* XXX: should adjust the result */ + /* Update the floating-point enabled exception summary */ + env->fpscr |= FP_FEX; + /* We must update the target FPR before raising the exception */ + cs->exception_index = POWERPC_EXCP_PROGRAM; + env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; + } +} + +static inline void float_inexact_excp(CPUPPCState *env) +{ + CPUState *cs = env_cpu(env); + + env->fpscr |= FP_FI; + env->fpscr |= FP_XX; + /* Update the floating-point exception summary */ + env->fpscr |= FP_FX; + if (fpscr_xe != 0) { + /* Update the floating-point enabled exception summary */ + env->fpscr |= FP_FEX; + /* We must update the target FPR before raising the exception */ + cs->exception_index = POWERPC_EXCP_PROGRAM; + env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; + } +} + +void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit) +{ + uint32_t mask = 1u << bit; + if (env->fpscr & mask) { + ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask); + } +} + +void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit) +{ + uint32_t mask = 1u << bit; + if (!(env->fpscr & mask)) { + ppc_store_fpscr(env, env->fpscr | mask); + } +} + +void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles) +{ + target_ulong mask = 0; + int i; + + /* TODO: push this extension back to translation time */ + for (i = 0; i < sizeof(target_ulong) * 2; i++) { + if (nibbles & (1 << i)) { + mask |= (target_ulong) 0xf << (4 * i); + } + } + val = (val & mask) | (env->fpscr & ~mask); + ppc_store_fpscr(env, val); +} + +static void do_float_check_status(CPUPPCState *env, uintptr_t raddr) +{ + CPUState *cs = env_cpu(env); + int status = get_float_exception_flags(&env->fp_status); + + if (status & float_flag_overflow) { + float_overflow_excp(env); + } else if (status & float_flag_underflow) { + float_underflow_excp(env); + } + if (status & float_flag_inexact) { + float_inexact_excp(env); + } else { + env->fpscr &= ~FP_FI; /* clear the FPSCR[FI] bit */ + } + + if (cs->exception_index == POWERPC_EXCP_PROGRAM && + (env->error_code & POWERPC_EXCP_FP)) { + /* Deferred floating-point exception after target FPR update */ + if (fp_exceptions_enabled(env)) { + raise_exception_err_ra(env, cs->exception_index, + env->error_code, raddr); + } + } +} + +void helper_float_check_status(CPUPPCState *env) +{ + do_float_check_status(env, GETPC()); +} + +void helper_reset_fpstatus(CPUPPCState *env) +{ + set_float_exception_flags(0, &env->fp_status); +} + +static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc, + uintptr_t retaddr, int classes) +{ + if ((classes & ~is_neg) == is_inf) { + /* Magnitude subtraction of infinities */ + float_invalid_op_vxisi(env, set_fpcc, retaddr); + } else if (classes & is_snan) { + float_invalid_op_vxsnan(env, retaddr); + } +} + +/* fadd - fadd. */ +float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2) +{ + float64 ret = float64_add(arg1, arg2, &env->fp_status); + int status = get_float_exception_flags(&env->fp_status); + + if (unlikely(status & float_flag_invalid)) { + float_invalid_op_addsub(env, 1, GETPC(), + float64_classify(arg1) | + float64_classify(arg2)); + } + + return ret; +} + +/* fsub - fsub. */ +float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2) +{ + float64 ret = float64_sub(arg1, arg2, &env->fp_status); + int status = get_float_exception_flags(&env->fp_status); + + if (unlikely(status & float_flag_invalid)) { + float_invalid_op_addsub(env, 1, GETPC(), + float64_classify(arg1) | + float64_classify(arg2)); + } + + return ret; +} + +static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc, + uintptr_t retaddr, int classes) +{ + if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) { + /* Multiplication of zero by infinity */ + float_invalid_op_vximz(env, set_fprc, retaddr); + } else if (classes & is_snan) { + float_invalid_op_vxsnan(env, retaddr); + } +} + +/* fmul - fmul. */ +float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2) +{ + float64 ret = float64_mul(arg1, arg2, &env->fp_status); + int status = get_float_exception_flags(&env->fp_status); + + if (unlikely(status & float_flag_invalid)) { + float_invalid_op_mul(env, 1, GETPC(), + float64_classify(arg1) | + float64_classify(arg2)); + } + + return ret; +} + +static void float_invalid_op_div(CPUPPCState *env, bool set_fprc, + uintptr_t retaddr, int classes) +{ + classes &= ~is_neg; + if (classes == is_inf) { + /* Division of infinity by infinity */ + float_invalid_op_vxidi(env, set_fprc, retaddr); + } else if (classes == is_zero) { + /* Division of zero by zero */ + float_invalid_op_vxzdz(env, set_fprc, retaddr); + } else if (classes & is_snan) { + float_invalid_op_vxsnan(env, retaddr); + } +} + +/* fdiv - fdiv. */ +float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2) +{ + float64 ret = float64_div(arg1, arg2, &env->fp_status); + int status = get_float_exception_flags(&env->fp_status); + + if (unlikely(status)) { + if (status & float_flag_invalid) { + float_invalid_op_div(env, 1, GETPC(), + float64_classify(arg1) | + float64_classify(arg2)); + } + if (status & float_flag_divbyzero) { + float_zero_divide_excp(env, GETPC()); + } + } + + return ret; +} + +static void float_invalid_cvt(CPUPPCState *env, bool set_fprc, + uintptr_t retaddr, int class1) +{ + float_invalid_op_vxcvi(env, set_fprc, retaddr); + if (class1 & is_snan) { + float_invalid_op_vxsnan(env, retaddr); + } +} + +#define FPU_FCTI(op, cvt, nanval) \ +uint64_t helper_##op(CPUPPCState *env, float64 arg) \ +{ \ + uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \ + int status = get_float_exception_flags(&env->fp_status); \ + \ + if (unlikely(status)) { \ + if (status & float_flag_invalid) { \ + float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \ + ret = nanval; \ + } \ + do_float_check_status(env, GETPC()); \ + } \ + return ret; \ +} + +FPU_FCTI(fctiw, int32, 0x80000000U) +FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U) +FPU_FCTI(fctiwu, uint32, 0x00000000U) +FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U) +FPU_FCTI(fctid, int64, 0x8000000000000000ULL) +FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL) +FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL) +FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL) + +#define FPU_FCFI(op, cvtr, is_single) \ +uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \ +{ \ + CPU_DoubleU farg; \ + \ + if (is_single) { \ + float32 tmp = cvtr(arg, &env->fp_status); \ + farg.d = float32_to_float64(tmp, &env->fp_status); \ + } else { \ + farg.d = cvtr(arg, &env->fp_status); \ + } \ + do_float_check_status(env, GETPC()); \ + return farg.ll; \ +} + +FPU_FCFI(fcfid, int64_to_float64, 0) +FPU_FCFI(fcfids, int64_to_float32, 1) +FPU_FCFI(fcfidu, uint64_to_float64, 0) +FPU_FCFI(fcfidus, uint64_to_float32, 1) + +static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg, + int rounding_mode) +{ + CPU_DoubleU farg; + FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status); + + farg.ll = arg; + + if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) { + /* sNaN round */ + float_invalid_op_vxsnan(env, GETPC()); + farg.ll = arg | 0x0008000000000000ULL; + } else { + int inexact = get_float_exception_flags(&env->fp_status) & + float_flag_inexact; + set_float_rounding_mode(rounding_mode, &env->fp_status); + farg.ll = float64_round_to_int(farg.d, &env->fp_status); + set_float_rounding_mode(old_rounding_mode, &env->fp_status); + + /* fri* does not set FPSCR[XX] */ + if (!inexact) { + env->fp_status.float_exception_flags &= ~float_flag_inexact; + } + } + do_float_check_status(env, GETPC()); + return farg.ll; +} + +uint64_t helper_frin(CPUPPCState *env, uint64_t arg) +{ + return do_fri(env, arg, float_round_ties_away); +} + +uint64_t helper_friz(CPUPPCState *env, uint64_t arg) +{ + return do_fri(env, arg, float_round_to_zero); +} + +uint64_t helper_frip(CPUPPCState *env, uint64_t arg) +{ + return do_fri(env, arg, float_round_up); +} + +uint64_t helper_frim(CPUPPCState *env, uint64_t arg) +{ + return do_fri(env, arg, float_round_down); +} + +#define FPU_MADDSUB_UPDATE(NAME, TP) \ +static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \ + unsigned int madd_flags, uintptr_t retaddr) \ +{ \ + if (TP##_is_signaling_nan(arg1, &env->fp_status) || \ + TP##_is_signaling_nan(arg2, &env->fp_status) || \ + TP##_is_signaling_nan(arg3, &env->fp_status)) { \ + /* sNaN operation */ \ + float_invalid_op_vxsnan(env, retaddr); \ + } \ + if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \ + (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \ + /* Multiplication of zero by infinity */ \ + float_invalid_op_vximz(env, 1, retaddr); \ + } \ + if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \ + TP##_is_infinity(arg3)) { \ + uint8_t aSign, bSign, cSign; \ + \ + aSign = TP##_is_neg(arg1); \ + bSign = TP##_is_neg(arg2); \ + cSign = TP##_is_neg(arg3); \ + if (madd_flags & float_muladd_negate_c) { \ + cSign ^= 1; \ + } \ + if (aSign ^ bSign ^ cSign) { \ + float_invalid_op_vxisi(env, 1, retaddr); \ + } \ + } \ +} +FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32) +FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64) + +#define FPU_FMADD(op, madd_flags) \ +uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \ + uint64_t arg2, uint64_t arg3) \ +{ \ + uint32_t flags; \ + float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \ + &env->fp_status); \ + flags = get_float_exception_flags(&env->fp_status); \ + if (flags) { \ + if (flags & float_flag_invalid) { \ + float64_maddsub_update_excp(env, arg1, arg2, arg3, \ + madd_flags, GETPC()); \ + } \ + do_float_check_status(env, GETPC()); \ + } \ + return ret; \ +} + +#define MADD_FLGS 0 +#define MSUB_FLGS float_muladd_negate_c +#define NMADD_FLGS float_muladd_negate_result +#define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result) + +FPU_FMADD(fmadd, MADD_FLGS) +FPU_FMADD(fnmadd, NMADD_FLGS) +FPU_FMADD(fmsub, MSUB_FLGS) +FPU_FMADD(fnmsub, NMSUB_FLGS) + +/* frsp - frsp. */ +uint64_t helper_frsp(CPUPPCState *env, uint64_t arg) +{ + CPU_DoubleU farg; + float32 f32; + + farg.ll = arg; + + if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) { + float_invalid_op_vxsnan(env, GETPC()); + } + f32 = float64_to_float32(farg.d, &env->fp_status); + farg.d = float32_to_float64(f32, &env->fp_status); + + return farg.ll; +} + +/* fsqrt - fsqrt. */ +float64 helper_fsqrt(CPUPPCState *env, float64 arg) +{ + float64 ret = float64_sqrt(arg, &env->fp_status); + int status = get_float_exception_flags(&env->fp_status); + + if (unlikely(status & float_flag_invalid)) { + if (unlikely(float64_is_any_nan(arg))) { + if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) { + /* sNaN square root */ + float_invalid_op_vxsnan(env, GETPC()); + } + } else { + /* Square root of a negative nonzero number */ + float_invalid_op_vxsqrt(env, 1, GETPC()); + } + } + + return ret; +} + +/* fre - fre. */ +float64 helper_fre(CPUPPCState *env, float64 arg) +{ + /* "Estimate" the reciprocal with actual division. */ + float64 ret = float64_div(float64_one, arg, &env->fp_status); + int status = get_float_exception_flags(&env->fp_status); + + if (unlikely(status)) { + if (status & float_flag_invalid) { + if (float64_is_signaling_nan(arg, &env->fp_status)) { + /* sNaN reciprocal */ + float_invalid_op_vxsnan(env, GETPC()); + } + } + if (status & float_flag_divbyzero) { + float_zero_divide_excp(env, GETPC()); + /* For FPSCR.ZE == 0, the result is 1/2. */ + ret = float64_set_sign(float64_half, float64_is_neg(arg)); + } + } + + return ret; +} + +/* fres - fres. */ +uint64_t helper_fres(CPUPPCState *env, uint64_t arg) +{ + CPU_DoubleU farg; + float32 f32; + + farg.ll = arg; + + if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) { + /* sNaN reciprocal */ + float_invalid_op_vxsnan(env, GETPC()); + } + farg.d = float64_div(float64_one, farg.d, &env->fp_status); + f32 = float64_to_float32(farg.d, &env->fp_status); + farg.d = float32_to_float64(f32, &env->fp_status); + + return farg.ll; +} + +/* frsqrte - frsqrte. */ +float64 helper_frsqrte(CPUPPCState *env, float64 arg) +{ + /* "Estimate" the reciprocal with actual division. */ + float64 rets = float64_sqrt(arg, &env->fp_status); + float64 retd = float64_div(float64_one, rets, &env->fp_status); + int status = get_float_exception_flags(&env->fp_status); + + if (unlikely(status)) { + if (status & float_flag_invalid) { + if (float64_is_signaling_nan(arg, &env->fp_status)) { + /* sNaN reciprocal */ + float_invalid_op_vxsnan(env, GETPC()); + } else { + /* Square root of a negative nonzero number */ + float_invalid_op_vxsqrt(env, 1, GETPC()); + } + } + if (status & float_flag_divbyzero) { + /* Reciprocal of (square root of) zero. */ + float_zero_divide_excp(env, GETPC()); + } + } + + return retd; +} + +/* fsel - fsel. */ +uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2, + uint64_t arg3) +{ + CPU_DoubleU farg1; + + farg1.ll = arg1; + + if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && + !float64_is_any_nan(farg1.d)) { + return arg2; + } else { + return arg3; + } +} + +uint32_t helper_ftdiv(uint64_t fra, uint64_t frb) +{ + int fe_flag = 0; + int fg_flag = 0; + + if (unlikely(float64_is_infinity(fra) || + float64_is_infinity(frb) || + float64_is_zero(frb))) { + fe_flag = 1; + fg_flag = 1; + } else { + int e_a = ppc_float64_get_unbiased_exp(fra); + int e_b = ppc_float64_get_unbiased_exp(frb); + + if (unlikely(float64_is_any_nan(fra) || + float64_is_any_nan(frb))) { + fe_flag = 1; + } else if ((e_b <= -1022) || (e_b >= 1021)) { + fe_flag = 1; + } else if (!float64_is_zero(fra) && + (((e_a - e_b) >= 1023) || + ((e_a - e_b) <= -1021) || + (e_a <= -970))) { + fe_flag = 1; + } + + if (unlikely(float64_is_zero_or_denormal(frb))) { + /* XB is not zero because of the above check and */ + /* so must be denormalized. */ + fg_flag = 1; + } + } + + return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); +} + +uint32_t helper_ftsqrt(uint64_t frb) +{ + int fe_flag = 0; + int fg_flag = 0; + + if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) { + fe_flag = 1; + fg_flag = 1; + } else { + int e_b = ppc_float64_get_unbiased_exp(frb); + + if (unlikely(float64_is_any_nan(frb))) { + fe_flag = 1; + } else if (unlikely(float64_is_zero(frb))) { + fe_flag = 1; + } else if (unlikely(float64_is_neg(frb))) { + fe_flag = 1; + } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) { + fe_flag = 1; + } + + if (unlikely(float64_is_zero_or_denormal(frb))) { + /* XB is not zero because of the above check and */ + /* therefore must be denormalized. */ + fg_flag = 1; + } + } + + return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); +} + +void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2, + uint32_t crfD) +{ + CPU_DoubleU farg1, farg2; + uint32_t ret = 0; + + farg1.ll = arg1; + farg2.ll = arg2; + + if (unlikely(float64_is_any_nan(farg1.d) || + float64_is_any_nan(farg2.d))) { + ret = 0x01UL; + } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { + ret = 0x08UL; + } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { + ret = 0x04UL; + } else { + ret = 0x02UL; + } + + env->fpscr &= ~FP_FPCC; + env->fpscr |= ret << FPSCR_FPCC; + env->crf[crfD] = ret; + if (unlikely(ret == 0x01UL + && (float64_is_signaling_nan(farg1.d, &env->fp_status) || + float64_is_signaling_nan(farg2.d, &env->fp_status)))) { + /* sNaN comparison */ + float_invalid_op_vxsnan(env, GETPC()); + } +} + +void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2, + uint32_t crfD) +{ + CPU_DoubleU farg1, farg2; + uint32_t ret = 0; + + farg1.ll = arg1; + farg2.ll = arg2; + + if (unlikely(float64_is_any_nan(farg1.d) || + float64_is_any_nan(farg2.d))) { + ret = 0x01UL; + } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { + ret = 0x08UL; + } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { + ret = 0x04UL; + } else { + ret = 0x02UL; + } + + env->fpscr &= ~FP_FPCC; + env->fpscr |= ret << FPSCR_FPCC; + env->crf[crfD] = (uint32_t) ret; + if (unlikely(ret == 0x01UL)) { + float_invalid_op_vxvc(env, 1, GETPC()); + if (float64_is_signaling_nan(farg1.d, &env->fp_status) || + float64_is_signaling_nan(farg2.d, &env->fp_status)) { + /* sNaN comparison */ + float_invalid_op_vxsnan(env, GETPC()); + } + } +} + +/* Single-precision floating-point conversions */ +static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + + u.f = int32_to_float32(val, &env->vec_status); + + return u.l; +} + +static inline uint32_t efscfui(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + + u.f = uint32_to_float32(val, &env->vec_status); + + return u.l; +} + +static inline int32_t efsctsi(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + + u.l = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { + return 0; + } + + return float32_to_int32(u.f, &env->vec_status); +} + +static inline uint32_t efsctui(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + + u.l = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { + return 0; + } + + return float32_to_uint32(u.f, &env->vec_status); +} + +static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + + u.l = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { + return 0; + } + + return float32_to_int32_round_to_zero(u.f, &env->vec_status); +} + +static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + + u.l = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { + return 0; + } + + return float32_to_uint32_round_to_zero(u.f, &env->vec_status); +} + +static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + float32 tmp; + + u.f = int32_to_float32(val, &env->vec_status); + tmp = int64_to_float32(1ULL << 32, &env->vec_status); + u.f = float32_div(u.f, tmp, &env->vec_status); + + return u.l; +} + +static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + float32 tmp; + + u.f = uint32_to_float32(val, &env->vec_status); + tmp = uint64_to_float32(1ULL << 32, &env->vec_status); + u.f = float32_div(u.f, tmp, &env->vec_status); + + return u.l; +} + +static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + float32 tmp; + + u.l = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { + return 0; + } + tmp = uint64_to_float32(1ULL << 32, &env->vec_status); + u.f = float32_mul(u.f, tmp, &env->vec_status); + + return float32_to_int32(u.f, &env->vec_status); +} + +static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val) +{ + CPU_FloatU u; + float32 tmp; + + u.l = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { + return 0; + } + tmp = uint64_to_float32(1ULL << 32, &env->vec_status); + u.f = float32_mul(u.f, tmp, &env->vec_status); + + return float32_to_uint32(u.f, &env->vec_status); +} + +#define HELPER_SPE_SINGLE_CONV(name) \ + uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \ + { \ + return e##name(env, val); \ + } +/* efscfsi */ +HELPER_SPE_SINGLE_CONV(fscfsi); +/* efscfui */ +HELPER_SPE_SINGLE_CONV(fscfui); +/* efscfuf */ +HELPER_SPE_SINGLE_CONV(fscfuf); +/* efscfsf */ +HELPER_SPE_SINGLE_CONV(fscfsf); +/* efsctsi */ +HELPER_SPE_SINGLE_CONV(fsctsi); +/* efsctui */ +HELPER_SPE_SINGLE_CONV(fsctui); +/* efsctsiz */ +HELPER_SPE_SINGLE_CONV(fsctsiz); +/* efsctuiz */ +HELPER_SPE_SINGLE_CONV(fsctuiz); +/* efsctsf */ +HELPER_SPE_SINGLE_CONV(fsctsf); +/* efsctuf */ +HELPER_SPE_SINGLE_CONV(fsctuf); + +#define HELPER_SPE_VECTOR_CONV(name) \ + uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \ + { \ + return ((uint64_t)e##name(env, val >> 32) << 32) | \ + (uint64_t)e##name(env, val); \ + } +/* evfscfsi */ +HELPER_SPE_VECTOR_CONV(fscfsi); +/* evfscfui */ +HELPER_SPE_VECTOR_CONV(fscfui); +/* evfscfuf */ +HELPER_SPE_VECTOR_CONV(fscfuf); +/* evfscfsf */ +HELPER_SPE_VECTOR_CONV(fscfsf); +/* evfsctsi */ +HELPER_SPE_VECTOR_CONV(fsctsi); +/* evfsctui */ +HELPER_SPE_VECTOR_CONV(fsctui); +/* evfsctsiz */ +HELPER_SPE_VECTOR_CONV(fsctsiz); +/* evfsctuiz */ +HELPER_SPE_VECTOR_CONV(fsctuiz); +/* evfsctsf */ +HELPER_SPE_VECTOR_CONV(fsctsf); +/* evfsctuf */ +HELPER_SPE_VECTOR_CONV(fsctuf); + +/* Single-precision floating-point arithmetic */ +static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + CPU_FloatU u1, u2; + + u1.l = op1; + u2.l = op2; + u1.f = float32_add(u1.f, u2.f, &env->vec_status); + return u1.l; +} + +static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + CPU_FloatU u1, u2; + + u1.l = op1; + u2.l = op2; + u1.f = float32_sub(u1.f, u2.f, &env->vec_status); + return u1.l; +} + +static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + CPU_FloatU u1, u2; + + u1.l = op1; + u2.l = op2; + u1.f = float32_mul(u1.f, u2.f, &env->vec_status); + return u1.l; +} + +static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + CPU_FloatU u1, u2; + + u1.l = op1; + u2.l = op2; + u1.f = float32_div(u1.f, u2.f, &env->vec_status); + return u1.l; +} + +#define HELPER_SPE_SINGLE_ARITH(name) \ + uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ + { \ + return e##name(env, op1, op2); \ + } +/* efsadd */ +HELPER_SPE_SINGLE_ARITH(fsadd); +/* efssub */ +HELPER_SPE_SINGLE_ARITH(fssub); +/* efsmul */ +HELPER_SPE_SINGLE_ARITH(fsmul); +/* efsdiv */ +HELPER_SPE_SINGLE_ARITH(fsdiv); + +#define HELPER_SPE_VECTOR_ARITH(name) \ + uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ + { \ + return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \ + (uint64_t)e##name(env, op1, op2); \ + } +/* evfsadd */ +HELPER_SPE_VECTOR_ARITH(fsadd); +/* evfssub */ +HELPER_SPE_VECTOR_ARITH(fssub); +/* evfsmul */ +HELPER_SPE_VECTOR_ARITH(fsmul); +/* evfsdiv */ +HELPER_SPE_VECTOR_ARITH(fsdiv); + +/* Single-precision floating-point comparisons */ +static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + CPU_FloatU u1, u2; + + u1.l = op1; + u2.l = op2; + return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; +} + +static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + CPU_FloatU u1, u2; + + u1.l = op1; + u2.l = op2; + return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; +} + +static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + CPU_FloatU u1, u2; + + u1.l = op1; + u2.l = op2; + return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; +} + +static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + /* XXX: TODO: ignore special values (NaN, infinites, ...) */ + return efscmplt(env, op1, op2); +} + +static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + /* XXX: TODO: ignore special values (NaN, infinites, ...) */ + return efscmpgt(env, op1, op2); +} + +static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2) +{ + /* XXX: TODO: ignore special values (NaN, infinites, ...) */ + return efscmpeq(env, op1, op2); +} + +#define HELPER_SINGLE_SPE_CMP(name) \ + uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ + { \ + return e##name(env, op1, op2); \ + } +/* efststlt */ +HELPER_SINGLE_SPE_CMP(fststlt); +/* efststgt */ +HELPER_SINGLE_SPE_CMP(fststgt); +/* efststeq */ +HELPER_SINGLE_SPE_CMP(fststeq); +/* efscmplt */ +HELPER_SINGLE_SPE_CMP(fscmplt); +/* efscmpgt */ +HELPER_SINGLE_SPE_CMP(fscmpgt); +/* efscmpeq */ +HELPER_SINGLE_SPE_CMP(fscmpeq); + +static inline uint32_t evcmp_merge(int t0, int t1) +{ + return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); +} + +#define HELPER_VECTOR_SPE_CMP(name) \ + uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ + { \ + return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \ + e##name(env, op1, op2)); \ + } +/* evfststlt */ +HELPER_VECTOR_SPE_CMP(fststlt); +/* evfststgt */ +HELPER_VECTOR_SPE_CMP(fststgt); +/* evfststeq */ +HELPER_VECTOR_SPE_CMP(fststeq); +/* evfscmplt */ +HELPER_VECTOR_SPE_CMP(fscmplt); +/* evfscmpgt */ +HELPER_VECTOR_SPE_CMP(fscmpgt); +/* evfscmpeq */ +HELPER_VECTOR_SPE_CMP(fscmpeq); + +/* Double-precision floating-point conversion */ +uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val) +{ + CPU_DoubleU u; + + u.d = int32_to_float64(val, &env->vec_status); + + return u.ll; +} + +uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + + u.d = int64_to_float64(val, &env->vec_status); + + return u.ll; +} + +uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val) +{ + CPU_DoubleU u; + + u.d = uint32_to_float64(val, &env->vec_status); + + return u.ll; +} + +uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + + u.d = uint64_to_float64(val, &env->vec_status); + + return u.ll; +} + +uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + + u.ll = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float64_is_any_nan(u.d))) { + return 0; + } + + return float64_to_int32(u.d, &env->vec_status); +} + +uint32_t helper_efdctui(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + + u.ll = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float64_is_any_nan(u.d))) { + return 0; + } + + return float64_to_uint32(u.d, &env->vec_status); +} + +uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + + u.ll = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float64_is_any_nan(u.d))) { + return 0; + } + + return float64_to_int32_round_to_zero(u.d, &env->vec_status); +} + +uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + + u.ll = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float64_is_any_nan(u.d))) { + return 0; + } + + return float64_to_int64_round_to_zero(u.d, &env->vec_status); +} + +uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + + u.ll = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float64_is_any_nan(u.d))) { + return 0; + } + + return float64_to_uint32_round_to_zero(u.d, &env->vec_status); +} + +uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + + u.ll = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float64_is_any_nan(u.d))) { + return 0; + } + + return float64_to_uint64_round_to_zero(u.d, &env->vec_status); +} + +uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val) +{ + CPU_DoubleU u; + float64 tmp; + + u.d = int32_to_float64(val, &env->vec_status); + tmp = int64_to_float64(1ULL << 32, &env->vec_status); + u.d = float64_div(u.d, tmp, &env->vec_status); + + return u.ll; +} + +uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val) +{ + CPU_DoubleU u; + float64 tmp; + + u.d = uint32_to_float64(val, &env->vec_status); + tmp = int64_to_float64(1ULL << 32, &env->vec_status); + u.d = float64_div(u.d, tmp, &env->vec_status); + + return u.ll; +} + +uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + float64 tmp; + + u.ll = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float64_is_any_nan(u.d))) { + return 0; + } + tmp = uint64_to_float64(1ULL << 32, &env->vec_status); + u.d = float64_mul(u.d, tmp, &env->vec_status); + + return float64_to_int32(u.d, &env->vec_status); +} + +uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u; + float64 tmp; + + u.ll = val; + /* NaN are not treated the same way IEEE 754 does */ + if (unlikely(float64_is_any_nan(u.d))) { + return 0; + } + tmp = uint64_to_float64(1ULL << 32, &env->vec_status); + u.d = float64_mul(u.d, tmp, &env->vec_status); + + return float64_to_uint32(u.d, &env->vec_status); +} + +uint32_t helper_efscfd(CPUPPCState *env, uint64_t val) +{ + CPU_DoubleU u1; + CPU_FloatU u2; + + u1.ll = val; + u2.f = float64_to_float32(u1.d, &env->vec_status); + + return u2.l; +} + +uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val) +{ + CPU_DoubleU u2; + CPU_FloatU u1; + + u1.l = val; + u2.d = float32_to_float64(u1.f, &env->vec_status); + + return u2.ll; +} + +/* Double precision fixed-point arithmetic */ +uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + CPU_DoubleU u1, u2; + + u1.ll = op1; + u2.ll = op2; + u1.d = float64_add(u1.d, u2.d, &env->vec_status); + return u1.ll; +} + +uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + CPU_DoubleU u1, u2; + + u1.ll = op1; + u2.ll = op2; + u1.d = float64_sub(u1.d, u2.d, &env->vec_status); + return u1.ll; +} + +uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + CPU_DoubleU u1, u2; + + u1.ll = op1; + u2.ll = op2; + u1.d = float64_mul(u1.d, u2.d, &env->vec_status); + return u1.ll; +} + +uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + CPU_DoubleU u1, u2; + + u1.ll = op1; + u2.ll = op2; + u1.d = float64_div(u1.d, u2.d, &env->vec_status); + return u1.ll; +} + +/* Double precision floating point helpers */ +uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + CPU_DoubleU u1, u2; + + u1.ll = op1; + u2.ll = op2; + return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; +} + +uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + CPU_DoubleU u1, u2; + + u1.ll = op1; + u2.ll = op2; + return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; +} + +uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + CPU_DoubleU u1, u2; + + u1.ll = op1; + u2.ll = op2; + return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; +} + +uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + /* XXX: TODO: test special values (NaN, infinites, ...) */ + return helper_efdtstlt(env, op1, op2); +} + +uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + /* XXX: TODO: test special values (NaN, infinites, ...) */ + return helper_efdtstgt(env, op1, op2); +} + +uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) +{ + /* XXX: TODO: test special values (NaN, infinites, ...) */ + return helper_efdtsteq(env, op1, op2); +} + +#define float64_to_float64(x, env) x + + +/* + * VSX_ADD_SUB - VSX floating point add/subtract + * name - instruction mnemonic + * op - operation (add or sub) + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * sfprf - set FPRF + */ +#define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \ +void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + helper_reset_fpstatus(env); \ + \ + for (i = 0; i < nels; i++) { \ + float_status tstat = env->fp_status; \ + set_float_exception_flags(0, &tstat); \ + t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \ + env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ + \ + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ + float_invalid_op_addsub(env, sfprf, GETPC(), \ + tp##_classify(xa->fld) | \ + tp##_classify(xb->fld)); \ + } \ + \ + if (r2sp) { \ + t.fld = helper_frsp(env, t.fld); \ + } \ + \ + if (sfprf) { \ + helper_compute_fprf_float64(env, t.fld); \ + } \ + } \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0) +VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1) +VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0) +VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0) +VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0) +VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1) +VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0) +VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0) + +void helper_xsaddqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) +{ + ppc_vsr_t t = *xt; + float_status tstat; + + helper_reset_fpstatus(env); + + tstat = env->fp_status; + if (unlikely(Rc(opcode) != 0)) { + tstat.float_rounding_mode = float_round_to_odd; + } + + set_float_exception_flags(0, &tstat); + t.f128 = float128_add(xa->f128, xb->f128, &tstat); + env->fp_status.float_exception_flags |= tstat.float_exception_flags; + + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { + float_invalid_op_addsub(env, 1, GETPC(), + float128_classify(xa->f128) | + float128_classify(xb->f128)); + } + + helper_compute_fprf_float128(env, t.f128); + + *xt = t; + do_float_check_status(env, GETPC()); +} + +/* + * VSX_MUL - VSX floating point multiply + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * sfprf - set FPRF + */ +#define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + helper_reset_fpstatus(env); \ + \ + for (i = 0; i < nels; i++) { \ + float_status tstat = env->fp_status; \ + set_float_exception_flags(0, &tstat); \ + t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \ + env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ + \ + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ + float_invalid_op_mul(env, sfprf, GETPC(), \ + tp##_classify(xa->fld) | \ + tp##_classify(xb->fld)); \ + } \ + \ + if (r2sp) { \ + t.fld = helper_frsp(env, t.fld); \ + } \ + \ + if (sfprf) { \ + helper_compute_fprf_float64(env, t.fld); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0) +VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1) +VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0) +VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0) + +void helper_xsmulqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) +{ + ppc_vsr_t t = *xt; + float_status tstat; + + helper_reset_fpstatus(env); + tstat = env->fp_status; + if (unlikely(Rc(opcode) != 0)) { + tstat.float_rounding_mode = float_round_to_odd; + } + + set_float_exception_flags(0, &tstat); + t.f128 = float128_mul(xa->f128, xb->f128, &tstat); + env->fp_status.float_exception_flags |= tstat.float_exception_flags; + + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { + float_invalid_op_mul(env, 1, GETPC(), + float128_classify(xa->f128) | + float128_classify(xb->f128)); + } + helper_compute_fprf_float128(env, t.f128); + + *xt = t; + do_float_check_status(env, GETPC()); +} + +/* + * VSX_DIV - VSX floating point divide + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * sfprf - set FPRF + */ +#define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + helper_reset_fpstatus(env); \ + \ + for (i = 0; i < nels; i++) { \ + float_status tstat = env->fp_status; \ + set_float_exception_flags(0, &tstat); \ + t.fld = tp##_div(xa->fld, xb->fld, &tstat); \ + env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ + \ + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ + float_invalid_op_div(env, sfprf, GETPC(), \ + tp##_classify(xa->fld) | \ + tp##_classify(xb->fld)); \ + } \ + if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \ + float_zero_divide_excp(env, GETPC()); \ + } \ + \ + if (r2sp) { \ + t.fld = helper_frsp(env, t.fld); \ + } \ + \ + if (sfprf) { \ + helper_compute_fprf_float64(env, t.fld); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0) +VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1) +VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0) +VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0) + +void helper_xsdivqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) +{ + ppc_vsr_t t = *xt; + float_status tstat; + + helper_reset_fpstatus(env); + tstat = env->fp_status; + if (unlikely(Rc(opcode) != 0)) { + tstat.float_rounding_mode = float_round_to_odd; + } + + set_float_exception_flags(0, &tstat); + t.f128 = float128_div(xa->f128, xb->f128, &tstat); + env->fp_status.float_exception_flags |= tstat.float_exception_flags; + + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { + float_invalid_op_div(env, 1, GETPC(), + float128_classify(xa->f128) | + float128_classify(xb->f128)); + } + if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { + float_zero_divide_excp(env, GETPC()); + } + + helper_compute_fprf_float128(env, t.f128); + *xt = t; + do_float_check_status(env, GETPC()); +} + +/* + * VSX_RE - VSX floating point reciprocal estimate + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * sfprf - set FPRF + */ +#define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + helper_reset_fpstatus(env); \ + \ + for (i = 0; i < nels; i++) { \ + if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + } \ + t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \ + \ + if (r2sp) { \ + t.fld = helper_frsp(env, t.fld); \ + } \ + \ + if (sfprf) { \ + helper_compute_fprf_float64(env, t.fld); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0) +VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1) +VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0) +VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0) + +/* + * VSX_SQRT - VSX floating point square root + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * sfprf - set FPRF + */ +#define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + helper_reset_fpstatus(env); \ + \ + for (i = 0; i < nels; i++) { \ + float_status tstat = env->fp_status; \ + set_float_exception_flags(0, &tstat); \ + t.fld = tp##_sqrt(xb->fld, &tstat); \ + env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ + \ + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ + if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \ + float_invalid_op_vxsqrt(env, sfprf, GETPC()); \ + } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + } \ + } \ + \ + if (r2sp) { \ + t.fld = helper_frsp(env, t.fld); \ + } \ + \ + if (sfprf) { \ + helper_compute_fprf_float64(env, t.fld); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0) +VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1) +VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0) +VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0) + +/* + *VSX_RSQRTE - VSX floating point reciprocal square root estimate + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * sfprf - set FPRF + */ +#define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + helper_reset_fpstatus(env); \ + \ + for (i = 0; i < nels; i++) { \ + float_status tstat = env->fp_status; \ + set_float_exception_flags(0, &tstat); \ + t.fld = tp##_sqrt(xb->fld, &tstat); \ + t.fld = tp##_div(tp##_one, t.fld, &tstat); \ + env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ + \ + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ + if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \ + float_invalid_op_vxsqrt(env, sfprf, GETPC()); \ + } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + } \ + } \ + \ + if (r2sp) { \ + t.fld = helper_frsp(env, t.fld); \ + } \ + \ + if (sfprf) { \ + helper_compute_fprf_float64(env, t.fld); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0) +VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1) +VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0) +VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0) + +/* + * VSX_TDIV - VSX floating point test for divide + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * emin - minimum unbiased exponent + * emax - maximum unbiased exponent + * nbits - number of fraction bits + */ +#define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ +{ \ + int i; \ + int fe_flag = 0; \ + int fg_flag = 0; \ + \ + for (i = 0; i < nels; i++) { \ + if (unlikely(tp##_is_infinity(xa->fld) || \ + tp##_is_infinity(xb->fld) || \ + tp##_is_zero(xb->fld))) { \ + fe_flag = 1; \ + fg_flag = 1; \ + } else { \ + int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \ + int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ + \ + if (unlikely(tp##_is_any_nan(xa->fld) || \ + tp##_is_any_nan(xb->fld))) { \ + fe_flag = 1; \ + } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \ + fe_flag = 1; \ + } else if (!tp##_is_zero(xa->fld) && \ + (((e_a - e_b) >= emax) || \ + ((e_a - e_b) <= (emin + 1)) || \ + (e_a <= (emin + nbits)))) { \ + fe_flag = 1; \ + } \ + \ + if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ + /* \ + * XB is not zero because of the above check and so \ + * must be denormalized. \ + */ \ + fg_flag = 1; \ + } \ + } \ + } \ + \ + env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ +} + +VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52) +VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52) +VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23) + +/* + * VSX_TSQRT - VSX floating point test for square root + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * emin - minimum unbiased exponent + * emax - maximum unbiased exponent + * nbits - number of fraction bits + */ +#define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \ +{ \ + int i; \ + int fe_flag = 0; \ + int fg_flag = 0; \ + \ + for (i = 0; i < nels; i++) { \ + if (unlikely(tp##_is_infinity(xb->fld) || \ + tp##_is_zero(xb->fld))) { \ + fe_flag = 1; \ + fg_flag = 1; \ + } else { \ + int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ + \ + if (unlikely(tp##_is_any_nan(xb->fld))) { \ + fe_flag = 1; \ + } else if (unlikely(tp##_is_zero(xb->fld))) { \ + fe_flag = 1; \ + } else if (unlikely(tp##_is_neg(xb->fld))) { \ + fe_flag = 1; \ + } else if (!tp##_is_zero(xb->fld) && \ + (e_b <= (emin + nbits))) { \ + fe_flag = 1; \ + } \ + \ + if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ + /* \ + * XB is not zero because of the above check and \ + * therefore must be denormalized. \ + */ \ + fg_flag = 1; \ + } \ + } \ + } \ + \ + env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ +} + +VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52) +VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52) +VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23) + +/* + * VSX_MADD - VSX floating point muliply/add variations + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * maddflgs - flags for the float*muladd routine that control the + * various forms (madd, msub, nmadd, nmsub) + * sfprf - set FPRF + */ +#define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + helper_reset_fpstatus(env); \ + \ + for (i = 0; i < nels; i++) { \ + float_status tstat = env->fp_status; \ + set_float_exception_flags(0, &tstat); \ + if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\ + /* \ + * Avoid double rounding errors by rounding the intermediate \ + * result to odd. \ + */ \ + set_float_rounding_mode(float_round_to_zero, &tstat); \ + t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \ + maddflgs, &tstat); \ + t.fld |= (get_float_exception_flags(&tstat) & \ + float_flag_inexact) != 0; \ + } else { \ + t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \ + maddflgs, &tstat); \ + } \ + env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ + \ + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ + tp##_maddsub_update_excp(env, xa->fld, b->fld, \ + c->fld, maddflgs, GETPC()); \ + } \ + \ + if (r2sp) { \ + t.fld = helper_frsp(env, t.fld); \ + } \ + \ + if (sfprf) { \ + helper_compute_fprf_float64(env, t.fld); \ + } \ + } \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0) +VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0) +VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0) +VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0) +VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1) +VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1) +VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1) +VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1) + +VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0) +VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0) +VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0) +VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0) + +VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0) +VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0) +VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0) +VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0) + +/* + * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision + * op - instruction mnemonic + * cmp - comparison operation + * exp - expected result of comparison + * svxvc - set VXVC bit + */ +#define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \ + \ + if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ + float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ + vxsnan_flag = true; \ + if (fpscr_ve == 0 && svxvc) { \ + vxvc_flag = true; \ + } \ + } else if (svxvc) { \ + vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \ + float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \ + } \ + if (vxsnan_flag) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + } \ + if (vxvc_flag) { \ + float_invalid_op_vxvc(env, 0, GETPC()); \ + } \ + vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \ + \ + if (!vex_flag) { \ + if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \ + &env->fp_status) == exp) { \ + t.VsrD(0) = -1; \ + t.VsrD(1) = 0; \ + } else { \ + t.VsrD(0) = 0; \ + t.VsrD(1) = 0; \ + } \ + } \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0) +VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1) +VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1) +VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0) + +void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xa, ppc_vsr_t *xb) +{ + int64_t exp_a, exp_b; + uint32_t cc; + + exp_a = extract64(xa->VsrD(0), 52, 11); + exp_b = extract64(xb->VsrD(0), 52, 11); + + if (unlikely(float64_is_any_nan(xa->VsrD(0)) || + float64_is_any_nan(xb->VsrD(0)))) { + cc = CRF_SO; + } else { + if (exp_a < exp_b) { + cc = CRF_LT; + } else if (exp_a > exp_b) { + cc = CRF_GT; + } else { + cc = CRF_EQ; + } + } + + env->fpscr &= ~FP_FPCC; + env->fpscr |= cc << FPSCR_FPCC; + env->crf[BF(opcode)] = cc; + + do_float_check_status(env, GETPC()); +} + +void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xa, ppc_vsr_t *xb) +{ + int64_t exp_a, exp_b; + uint32_t cc; + + exp_a = extract64(xa->VsrD(0), 48, 15); + exp_b = extract64(xb->VsrD(0), 48, 15); + + if (unlikely(float128_is_any_nan(xa->f128) || + float128_is_any_nan(xb->f128))) { + cc = CRF_SO; + } else { + if (exp_a < exp_b) { + cc = CRF_LT; + } else if (exp_a > exp_b) { + cc = CRF_GT; + } else { + cc = CRF_EQ; + } + } + + env->fpscr &= ~FP_FPCC; + env->fpscr |= cc << FPSCR_FPCC; + env->crf[BF(opcode)] = cc; + + do_float_check_status(env, GETPC()); +} + +static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb, + int crf_idx, bool ordered) +{ + uint32_t cc; + bool vxsnan_flag = false, vxvc_flag = false; + + helper_reset_fpstatus(env); + + switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { + case float_relation_less: + cc = CRF_LT; + break; + case float_relation_equal: + cc = CRF_EQ; + break; + case float_relation_greater: + cc = CRF_GT; + break; + case float_relation_unordered: + cc = CRF_SO; + + if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || + float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { + vxsnan_flag = true; + if (fpscr_ve == 0 && ordered) { + vxvc_flag = true; + } + } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || + float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { + if (ordered) { + vxvc_flag = true; + } + } + + break; + default: + g_assert_not_reached(); + } + + env->fpscr &= ~FP_FPCC; + env->fpscr |= cc << FPSCR_FPCC; + env->crf[crf_idx] = cc; + + if (vxsnan_flag) { + float_invalid_op_vxsnan(env, GETPC()); + } + if (vxvc_flag) { + float_invalid_op_vxvc(env, 0, GETPC()); + } + + do_float_check_status(env, GETPC()); +} + +void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, + ppc_vsr_t *xb) +{ + do_scalar_cmp(env, xa, xb, BF(opcode), true); +} + +void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, + ppc_vsr_t *xb) +{ + do_scalar_cmp(env, xa, xb, BF(opcode), false); +} + +static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa, + ppc_vsr_t *xb, int crf_idx, bool ordered) +{ + uint32_t cc; + bool vxsnan_flag = false, vxvc_flag = false; + + helper_reset_fpstatus(env); + + switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) { + case float_relation_less: + cc = CRF_LT; + break; + case float_relation_equal: + cc = CRF_EQ; + break; + case float_relation_greater: + cc = CRF_GT; + break; + case float_relation_unordered: + cc = CRF_SO; + + if (float128_is_signaling_nan(xa->f128, &env->fp_status) || + float128_is_signaling_nan(xb->f128, &env->fp_status)) { + vxsnan_flag = true; + if (fpscr_ve == 0 && ordered) { + vxvc_flag = true; + } + } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || + float128_is_quiet_nan(xb->f128, &env->fp_status)) { + if (ordered) { + vxvc_flag = true; + } + } + + break; + default: + g_assert_not_reached(); + } + + env->fpscr &= ~FP_FPCC; + env->fpscr |= cc << FPSCR_FPCC; + env->crf[crf_idx] = cc; + + if (vxsnan_flag) { + float_invalid_op_vxsnan(env, GETPC()); + } + if (vxvc_flag) { + float_invalid_op_vxvc(env, 0, GETPC()); + } + + do_float_check_status(env, GETPC()); +} + +void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, + ppc_vsr_t *xb) +{ + do_scalar_cmpq(env, xa, xb, BF(opcode), true); +} + +void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, + ppc_vsr_t *xb) +{ + do_scalar_cmpq(env, xa, xb, BF(opcode), false); +} + +/* + * VSX_MAX_MIN - VSX floating point maximum/minimum + * name - instruction mnemonic + * op - operation (max or min) + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + */ +#define VSX_MAX_MIN(name, op, nels, tp, fld) \ +void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + for (i = 0; i < nels; i++) { \ + t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \ + if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ + tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0)) +VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i)) +VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i)) +VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0)) +VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i)) +VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i)) + +#define VSX_MAX_MINC(name, max) \ +void helper_##name(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + bool vxsnan_flag = false, vex_flag = false; \ + \ + if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \ + float64_is_any_nan(xb->VsrD(0)))) { \ + if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ + float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ + vxsnan_flag = true; \ + } \ + t.VsrD(0) = xb->VsrD(0); \ + } else if ((max && \ + !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \ + (!max && \ + float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \ + t.VsrD(0) = xa->VsrD(0); \ + } else { \ + t.VsrD(0) = xb->VsrD(0); \ + } \ + \ + vex_flag = fpscr_ve & vxsnan_flag; \ + if (vxsnan_flag) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + } \ + if (!vex_flag) { \ + *xt = t; \ + } \ +} \ + +VSX_MAX_MINC(xsmaxcdp, 1); +VSX_MAX_MINC(xsmincdp, 0); + +#define VSX_MAX_MINJ(name, max) \ +void helper_##name(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + bool vxsnan_flag = false, vex_flag = false; \ + \ + if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \ + if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \ + vxsnan_flag = true; \ + } \ + t.VsrD(0) = xa->VsrD(0); \ + } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \ + if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ + vxsnan_flag = true; \ + } \ + t.VsrD(0) = xb->VsrD(0); \ + } else if (float64_is_zero(xa->VsrD(0)) && \ + float64_is_zero(xb->VsrD(0))) { \ + if (max) { \ + if (!float64_is_neg(xa->VsrD(0)) || \ + !float64_is_neg(xb->VsrD(0))) { \ + t.VsrD(0) = 0ULL; \ + } else { \ + t.VsrD(0) = 0x8000000000000000ULL; \ + } \ + } else { \ + if (float64_is_neg(xa->VsrD(0)) || \ + float64_is_neg(xb->VsrD(0))) { \ + t.VsrD(0) = 0x8000000000000000ULL; \ + } else { \ + t.VsrD(0) = 0ULL; \ + } \ + } \ + } else if ((max && \ + !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \ + (!max && \ + float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \ + t.VsrD(0) = xa->VsrD(0); \ + } else { \ + t.VsrD(0) = xb->VsrD(0); \ + } \ + \ + vex_flag = fpscr_ve & vxsnan_flag; \ + if (vxsnan_flag) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + } \ + if (!vex_flag) { \ + *xt = t; \ + } \ +} \ + +VSX_MAX_MINJ(xsmaxjdp, 1); +VSX_MAX_MINJ(xsminjdp, 0); + +/* + * VSX_CMP - VSX floating point compare + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * cmp - comparison operation + * svxvc - set VXVC bit + * exp - expected result of comparison + */ +#define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \ +uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + uint32_t crf6 = 0; \ + int i; \ + int all_true = 1; \ + int all_false = 1; \ + \ + for (i = 0; i < nels; i++) { \ + if (unlikely(tp##_is_any_nan(xa->fld) || \ + tp##_is_any_nan(xb->fld))) { \ + if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ + tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + } \ + if (svxvc) { \ + float_invalid_op_vxvc(env, 0, GETPC()); \ + } \ + t.fld = 0; \ + all_true = 0; \ + } else { \ + if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \ + t.fld = -1; \ + all_false = 0; \ + } else { \ + t.fld = 0; \ + all_true = 0; \ + } \ + } \ + } \ + \ + *xt = t; \ + crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \ + return crf6; \ +} + +VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1) +VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1) +VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1) +VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0) +VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1) +VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1) +VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1) +VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0) + +/* + * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * stp - source type (float32 or float64) + * ttp - target type (float32 or float64) + * sfld - source vsr_t field + * tfld - target vsr_t field (f32 or f64) + * sfprf - set FPRF + */ +#define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + for (i = 0; i < nels; i++) { \ + t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ + if (unlikely(stp##_is_signaling_nan(xb->sfld, \ + &env->fp_status))) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + t.tfld = ttp##_snan_to_qnan(t.tfld); \ + } \ + if (sfprf) { \ + helper_compute_fprf_##ttp(env, t.tfld); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1) +VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1) +VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0) +VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0) + +/* + * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * stp - source type (float32 or float64) + * ttp - target type (float32 or float64) + * sfld - source vsr_t field + * tfld - target vsr_t field (f32 or f64) + * sfprf - set FPRF + */ +#define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + for (i = 0; i < nels; i++) { \ + t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ + if (unlikely(stp##_is_signaling_nan(xb->sfld, \ + &env->fp_status))) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + t.tfld = ttp##_snan_to_qnan(t.tfld); \ + } \ + if (sfprf) { \ + helper_compute_fprf_##ttp(env, t.tfld); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1) + +/* + * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion + * involving one half precision value + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * stp - source type + * ttp - target type + * sfld - source vsr_t field + * tfld - target vsr_t field + * sfprf - set FPRF + */ +#define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = { }; \ + int i; \ + \ + for (i = 0; i < nels; i++) { \ + t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \ + if (unlikely(stp##_is_signaling_nan(xb->sfld, \ + &env->fp_status))) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + t.tfld = ttp##_snan_to_qnan(t.tfld); \ + } \ + if (sfprf) { \ + helper_compute_fprf_##ttp(env, t.tfld); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1) +VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1) +VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0) +VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0) + +/* + * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be + * added to this later. + */ +void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xb) +{ + ppc_vsr_t t = { }; + float_status tstat; + + tstat = env->fp_status; + if (unlikely(Rc(opcode) != 0)) { + tstat.float_rounding_mode = float_round_to_odd; + } + + t.VsrD(0) = float128_to_float64(xb->f128, &tstat); + env->fp_status.float_exception_flags |= tstat.float_exception_flags; + if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) { + float_invalid_op_vxsnan(env, GETPC()); + t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0)); + } + helper_compute_fprf_float64(env, t.VsrD(0)); + + *xt = t; + do_float_check_status(env, GETPC()); +} + +uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb) +{ + uint64_t result, sign, exp, frac; + + float_status tstat = env->fp_status; + set_float_exception_flags(0, &tstat); + + sign = extract64(xb, 63, 1); + exp = extract64(xb, 52, 11); + frac = extract64(xb, 0, 52) | 0x10000000000000ULL; + + if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) { + /* DP denormal operand. */ + /* Exponent override to DP min exp. */ + exp = 1; + /* Implicit bit override to 0. */ + frac = deposit64(frac, 53, 1, 0); + } + + if (unlikely(exp < 897 && frac != 0)) { + /* SP tiny operand. */ + if (897 - exp > 63) { + frac = 0; + } else { + /* Denormalize until exp = SP min exp. */ + frac >>= (897 - exp); + } + /* Exponent override to SP min exp - 1. */ + exp = 896; + } + + result = sign << 31; + result |= extract64(exp, 10, 1) << 30; + result |= extract64(exp, 0, 7) << 23; + result |= extract64(frac, 29, 23); + + /* hardware replicates result to both words of the doubleword result. */ + return (result << 32) | result; +} + +uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb) +{ + float_status tstat = env->fp_status; + set_float_exception_flags(0, &tstat); + + return float32_to_float64(xb >> 32, &tstat); +} + +/* + * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * stp - source type (float32 or float64) + * ttp - target type (int32, uint32, int64 or uint64) + * sfld - source vsr_t field + * tfld - target vsr_t field + * rnan - resulting NaN + */ +#define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + int all_flags = env->fp_status.float_exception_flags, flags; \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + for (i = 0; i < nels; i++) { \ + env->fp_status.float_exception_flags = 0; \ + t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ + flags = env->fp_status.float_exception_flags; \ + if (unlikely(flags & float_flag_invalid)) { \ + float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \ + t.tfld = rnan; \ + } \ + all_flags |= flags; \ + } \ + \ + *xt = t; \ + env->fp_status.float_exception_flags = all_flags; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \ + 0x8000000000000000ULL) +VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \ + 0x80000000U) +VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL) +VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U) +VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \ + 0x8000000000000000ULL) +VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \ + 0x80000000U) +VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL) +VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U) +VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \ + 0x8000000000000000ULL) +VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U) +VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL) +VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U) + +/* + * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion + * op - instruction mnemonic + * stp - source type (float32 or float64) + * ttp - target type (int32, uint32, int64 or uint64) + * sfld - source vsr_t field + * tfld - target vsr_t field + * rnan - resulting NaN + */ +#define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = { }; \ + \ + t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ + if (env->fp_status.float_exception_flags & float_flag_invalid) { \ + float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \ + t.tfld = rnan; \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \ + 0x8000000000000000ULL) + +VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \ + 0xffffffff80000000ULL) +VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL) +VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL) + +/* + * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * stp - source type (int32, uint32, int64 or uint64) + * ttp - target type (float32 or float64) + * sfld - source vsr_t field + * tfld - target vsr_t field + * jdef - definition of the j index (i or 2*i) + * sfprf - set FPRF + */ +#define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + \ + for (i = 0; i < nels; i++) { \ + t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ + if (r2sp) { \ + t.tfld = helper_frsp(env, t.tfld); \ + } \ + if (sfprf) { \ + helper_compute_fprf_float64(env, t.tfld); \ + } \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0) +VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0) +VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1) +VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1) +VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0) +VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0) +VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0) +VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0) +VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0) +VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0) +VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0) +VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0) + +/* + * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion + * op - instruction mnemonic + * stp - source type (int32, uint32, int64 or uint64) + * ttp - target type (float32 or float64) + * sfld - source vsr_t field + * tfld - target vsr_t field + */ +#define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + \ + t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ + helper_compute_fprf_##ttp(env, t.tfld); \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128) +VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128) + +/* + * For "use current rounding mode", define a value that will not be + * one of the existing rounding model enums. + */ +#define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \ + float_round_up + float_round_to_zero) + +/* + * VSX_ROUND - VSX floating point round + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * rmode - rounding mode + * sfprf - set FPRF + */ +#define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ +{ \ + ppc_vsr_t t = *xt; \ + int i; \ + FloatRoundMode curr_rounding_mode; \ + \ + if (rmode != FLOAT_ROUND_CURRENT) { \ + curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \ + set_float_rounding_mode(rmode, &env->fp_status); \ + } \ + \ + for (i = 0; i < nels; i++) { \ + if (unlikely(tp##_is_signaling_nan(xb->fld, \ + &env->fp_status))) { \ + float_invalid_op_vxsnan(env, GETPC()); \ + t.fld = tp##_snan_to_qnan(xb->fld); \ + } else { \ + t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \ + } \ + if (sfprf) { \ + helper_compute_fprf_float64(env, t.fld); \ + } \ + } \ + \ + /* \ + * If this is not a "use current rounding mode" instruction, \ + * then inhibit setting of the XX bit and restore rounding \ + * mode from FPSCR \ + */ \ + if (rmode != FLOAT_ROUND_CURRENT) { \ + set_float_rounding_mode(curr_rounding_mode, &env->fp_status); \ + env->fp_status.float_exception_flags &= ~float_flag_inexact; \ + } \ + \ + *xt = t; \ + do_float_check_status(env, GETPC()); \ +} + +VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1) +VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1) +VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1) +VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1) +VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1) + +VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0) +VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0) +VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0) +VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0) +VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0) + +VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0) +VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0) +VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0) +VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0) +VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0) + +uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb) +{ + helper_reset_fpstatus(env); + + uint64_t xt = helper_frsp(env, xb); + + helper_compute_fprf_float64(env, xt); + do_float_check_status(env, GETPC()); + return xt; +} + +#define VSX_XXPERM(op, indexed) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *pcv) \ +{ \ + ppc_vsr_t t = *xt; \ + int i, idx; \ + \ + for (i = 0; i < 16; i++) { \ + idx = pcv->VsrB(i) & 0x1F; \ + if (indexed) { \ + idx = 31 - idx; \ + } \ + t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \ + : xt->VsrB(idx - 16); \ + } \ + *xt = t; \ +} + +VSX_XXPERM(xxperm, 0) +VSX_XXPERM(xxpermr, 1) + +void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) +{ + ppc_vsr_t t = { }; + uint32_t exp, i, fraction; + + for (i = 0; i < 4; i++) { + exp = (xb->VsrW(i) >> 23) & 0xFF; + fraction = xb->VsrW(i) & 0x7FFFFF; + if (exp != 0 && exp != 255) { + t.VsrW(i) = fraction | 0x00800000; + } else { + t.VsrW(i) = fraction; + } + } + *xt = t; +} + +/* + * VSX_TEST_DC - VSX floating point test data class + * op - instruction mnemonic + * nels - number of elements (1, 2 or 4) + * xbn - VSR register number + * tp - type (float32 or float64) + * fld - vsr_t field (VsrD(*) or VsrW(*)) + * tfld - target vsr_t field (VsrD(*) or VsrW(*)) + * fld_max - target field max + * scrf - set result in CR and FPCC + */ +#define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \ +void helper_##op(CPUPPCState *env, uint32_t opcode) \ +{ \ + ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \ + ppc_vsr_t *xb = &env->vsr[xbn]; \ + ppc_vsr_t t = { }; \ + uint32_t i, sign, dcmx; \ + uint32_t cc, match = 0; \ + \ + if (!scrf) { \ + dcmx = DCMX_XV(opcode); \ + } else { \ + t = *xt; \ + dcmx = DCMX(opcode); \ + } \ + \ + for (i = 0; i < nels; i++) { \ + sign = tp##_is_neg(xb->fld); \ + if (tp##_is_any_nan(xb->fld)) { \ + match = extract32(dcmx, 6, 1); \ + } else if (tp##_is_infinity(xb->fld)) { \ + match = extract32(dcmx, 4 + !sign, 1); \ + } else if (tp##_is_zero(xb->fld)) { \ + match = extract32(dcmx, 2 + !sign, 1); \ + } else if (tp##_is_zero_or_denormal(xb->fld)) { \ + match = extract32(dcmx, 0 + !sign, 1); \ + } \ + \ + if (scrf) { \ + cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \ + env->fpscr &= ~FP_FPCC; \ + env->fpscr |= cc << FPSCR_FPCC; \ + env->crf[BF(opcode)] = cc; \ + } else { \ + t.tfld = match ? fld_max : 0; \ + } \ + match = 0; \ + } \ + if (!scrf) { \ + *xt = t; \ + } \ +} + +VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0) +VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0) +VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1) +VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1) + +void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) +{ + uint32_t dcmx, sign, exp; + uint32_t cc, match = 0, not_sp = 0; + + dcmx = DCMX(opcode); + exp = (xb->VsrD(0) >> 52) & 0x7FF; + + sign = float64_is_neg(xb->VsrD(0)); + if (float64_is_any_nan(xb->VsrD(0))) { + match = extract32(dcmx, 6, 1); + } else if (float64_is_infinity(xb->VsrD(0))) { + match = extract32(dcmx, 4 + !sign, 1); + } else if (float64_is_zero(xb->VsrD(0))) { + match = extract32(dcmx, 2 + !sign, 1); + } else if (float64_is_zero_or_denormal(xb->VsrD(0)) || + (exp > 0 && exp < 0x381)) { + match = extract32(dcmx, 0 + !sign, 1); + } + + not_sp = !float64_eq(xb->VsrD(0), + float32_to_float64( + float64_to_float32(xb->VsrD(0), &env->fp_status), + &env->fp_status), &env->fp_status); + + cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT; + env->fpscr &= ~FP_FPCC; + env->fpscr |= cc << FPSCR_FPCC; + env->crf[BF(opcode)] = cc; +} + +void helper_xsrqpi(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xb) +{ + ppc_vsr_t t = { }; + uint8_t r = Rrm(opcode); + uint8_t ex = Rc(opcode); + uint8_t rmc = RMC(opcode); + uint8_t rmode = 0; + float_status tstat; + + helper_reset_fpstatus(env); + + if (r == 0 && rmc == 0) { + rmode = float_round_ties_away; + } else if (r == 0 && rmc == 0x3) { + rmode = fpscr_rn; + } else if (r == 1) { + switch (rmc) { + case 0: + rmode = float_round_nearest_even; + break; + case 1: + rmode = float_round_to_zero; + break; + case 2: + rmode = float_round_up; + break; + case 3: + rmode = float_round_down; + break; + default: + abort(); + } + } + + tstat = env->fp_status; + set_float_exception_flags(0, &tstat); + set_float_rounding_mode(rmode, &tstat); + t.f128 = float128_round_to_int(xb->f128, &tstat); + env->fp_status.float_exception_flags |= tstat.float_exception_flags; + + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { + if (float128_is_signaling_nan(xb->f128, &tstat)) { + float_invalid_op_vxsnan(env, GETPC()); + t.f128 = float128_snan_to_qnan(t.f128); + } + } + + if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) { + env->fp_status.float_exception_flags &= ~float_flag_inexact; + } + + helper_compute_fprf_float128(env, t.f128); + do_float_check_status(env, GETPC()); + *xt = t; +} + +void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xb) +{ + ppc_vsr_t t = { }; + uint8_t r = Rrm(opcode); + uint8_t rmc = RMC(opcode); + uint8_t rmode = 0; + floatx80 round_res; + float_status tstat; + + helper_reset_fpstatus(env); + + if (r == 0 && rmc == 0) { + rmode = float_round_ties_away; + } else if (r == 0 && rmc == 0x3) { + rmode = fpscr_rn; + } else if (r == 1) { + switch (rmc) { + case 0: + rmode = float_round_nearest_even; + break; + case 1: + rmode = float_round_to_zero; + break; + case 2: + rmode = float_round_up; + break; + case 3: + rmode = float_round_down; + break; + default: + abort(); + } + } + + tstat = env->fp_status; + set_float_exception_flags(0, &tstat); + set_float_rounding_mode(rmode, &tstat); + round_res = float128_to_floatx80(xb->f128, &tstat); + t.f128 = floatx80_to_float128(round_res, &tstat); + env->fp_status.float_exception_flags |= tstat.float_exception_flags; + + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { + if (float128_is_signaling_nan(xb->f128, &tstat)) { + float_invalid_op_vxsnan(env, GETPC()); + t.f128 = float128_snan_to_qnan(t.f128); + } + } + + helper_compute_fprf_float128(env, t.f128); + *xt = t; + do_float_check_status(env, GETPC()); +} + +void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xb) +{ + ppc_vsr_t t = { }; + float_status tstat; + + helper_reset_fpstatus(env); + + tstat = env->fp_status; + if (unlikely(Rc(opcode) != 0)) { + tstat.float_rounding_mode = float_round_to_odd; + } + + set_float_exception_flags(0, &tstat); + t.f128 = float128_sqrt(xb->f128, &tstat); + env->fp_status.float_exception_flags |= tstat.float_exception_flags; + + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { + if (float128_is_signaling_nan(xb->f128, &tstat)) { + float_invalid_op_vxsnan(env, GETPC()); + t.f128 = float128_snan_to_qnan(xb->f128); + } else if (float128_is_quiet_nan(xb->f128, &tstat)) { + t.f128 = xb->f128; + } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) { + float_invalid_op_vxsqrt(env, 1, GETPC()); + t.f128 = float128_default_nan(&env->fp_status); + } + } + + helper_compute_fprf_float128(env, t.f128); + *xt = t; + do_float_check_status(env, GETPC()); +} + +void helper_xssubqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) +{ + ppc_vsr_t t = *xt; + float_status tstat; + + helper_reset_fpstatus(env); + + tstat = env->fp_status; + if (unlikely(Rc(opcode) != 0)) { + tstat.float_rounding_mode = float_round_to_odd; + } + + set_float_exception_flags(0, &tstat); + t.f128 = float128_sub(xa->f128, xb->f128, &tstat); + env->fp_status.float_exception_flags |= tstat.float_exception_flags; + + if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { + float_invalid_op_addsub(env, 1, GETPC(), + float128_classify(xa->f128) | + float128_classify(xb->f128)); + } + + helper_compute_fprf_float128(env, t.f128); + *xt = t; + do_float_check_status(env, GETPC()); +} |