diff options
Diffstat (limited to 'target/ppc/kvm.c')
-rw-r--r-- | target/ppc/kvm.c | 2961 |
1 files changed, 2961 insertions, 0 deletions
diff --git a/target/ppc/kvm.c b/target/ppc/kvm.c new file mode 100644 index 000000000..dc93b9918 --- /dev/null +++ b/target/ppc/kvm.c @@ -0,0 +1,2961 @@ +/* + * PowerPC implementation of KVM hooks + * + * Copyright IBM Corp. 2007 + * Copyright (C) 2011 Freescale Semiconductor, Inc. + * + * Authors: + * Jerone Young <jyoung5@us.ibm.com> + * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> + * Hollis Blanchard <hollisb@us.ibm.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + */ + +#include "qemu/osdep.h" +#include <dirent.h> +#include <sys/ioctl.h> +#include <sys/vfs.h> + +#include <linux/kvm.h> + +#include "qemu-common.h" +#include "qapi/error.h" +#include "qemu/error-report.h" +#include "cpu.h" +#include "cpu-models.h" +#include "qemu/timer.h" +#include "sysemu/hw_accel.h" +#include "kvm_ppc.h" +#include "sysemu/cpus.h" +#include "sysemu/device_tree.h" +#include "mmu-hash64.h" + +#include "hw/sysbus.h" +#include "hw/ppc/spapr.h" +#include "hw/ppc/spapr_cpu_core.h" +#include "hw/hw.h" +#include "hw/ppc/ppc.h" +#include "migration/qemu-file-types.h" +#include "sysemu/watchdog.h" +#include "trace.h" +#include "exec/gdbstub.h" +#include "exec/memattrs.h" +#include "exec/ram_addr.h" +#include "sysemu/hostmem.h" +#include "qemu/cutils.h" +#include "qemu/main-loop.h" +#include "qemu/mmap-alloc.h" +#include "elf.h" +#include "sysemu/kvm_int.h" + +#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" + +#define DEBUG_RETURN_GUEST 0 +#define DEBUG_RETURN_GDB 1 + +const KVMCapabilityInfo kvm_arch_required_capabilities[] = { + KVM_CAP_LAST_INFO +}; + +static int cap_interrupt_unset; +static int cap_segstate; +static int cap_booke_sregs; +static int cap_ppc_smt; +static int cap_ppc_smt_possible; +static int cap_spapr_tce; +static int cap_spapr_tce_64; +static int cap_spapr_multitce; +static int cap_spapr_vfio; +static int cap_hior; +static int cap_one_reg; +static int cap_epr; +static int cap_ppc_watchdog; +static int cap_papr; +static int cap_htab_fd; +static int cap_fixup_hcalls; +static int cap_htm; /* Hardware transactional memory support */ +static int cap_mmu_radix; +static int cap_mmu_hash_v3; +static int cap_xive; +static int cap_resize_hpt; +static int cap_ppc_pvr_compat; +static int cap_ppc_safe_cache; +static int cap_ppc_safe_bounds_check; +static int cap_ppc_safe_indirect_branch; +static int cap_ppc_count_cache_flush_assist; +static int cap_ppc_nested_kvm_hv; +static int cap_large_decr; +static int cap_fwnmi; +static int cap_rpt_invalidate; + +static uint32_t debug_inst_opcode; + +/* + * Check whether we are running with KVM-PR (instead of KVM-HV). This + * should only be used for fallback tests - generally we should use + * explicit capabilities for the features we want, rather than + * assuming what is/isn't available depending on the KVM variant. + */ +static bool kvmppc_is_pr(KVMState *ks) +{ + /* Assume KVM-PR if the GET_PVINFO capability is available */ + return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0; +} + +static int kvm_ppc_register_host_cpu_type(void); +static void kvmppc_get_cpu_characteristics(KVMState *s); +static int kvmppc_get_dec_bits(void); + +int kvm_arch_init(MachineState *ms, KVMState *s) +{ + cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); + cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); + cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); + cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE); + cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); + cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64); + cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); + cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO); + cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); + cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); + cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); + cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); + /* + * Note: we don't set cap_papr here, because this capability is + * only activated after this by kvmppc_set_papr() + */ + cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD); + cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); + cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT); + cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM); + cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX); + cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3); + cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE); + cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT); + kvmppc_get_cpu_characteristics(s); + cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV); + cap_large_decr = kvmppc_get_dec_bits(); + cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI); + /* + * Note: setting it to false because there is not such capability + * in KVM at this moment. + * + * TODO: call kvm_vm_check_extension() with the right capability + * after the kernel starts implementing it. + */ + cap_ppc_pvr_compat = false; + + if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) { + error_report("KVM: Host kernel doesn't have level irq capability"); + exit(1); + } + + cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE); + kvm_ppc_register_host_cpu_type(); + + return 0; +} + +int kvm_arch_irqchip_create(KVMState *s) +{ + return 0; +} + +static int kvm_arch_sync_sregs(PowerPCCPU *cpu) +{ + CPUPPCState *cenv = &cpu->env; + CPUState *cs = CPU(cpu); + struct kvm_sregs sregs; + int ret; + + if (cenv->excp_model == POWERPC_EXCP_BOOKE) { + /* + * What we're really trying to say is "if we're on BookE, we + * use the native PVR for now". This is the only sane way to + * check it though, so we potentially confuse users that they + * can run BookE guests on BookS. Let's hope nobody dares + * enough :) + */ + return 0; + } else { + if (!cap_segstate) { + fprintf(stderr, "kvm error: missing PVR setting capability\n"); + return -ENOSYS; + } + } + + ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); + if (ret) { + return ret; + } + + sregs.pvr = cenv->spr[SPR_PVR]; + return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); +} + +/* Set up a shared TLB array with KVM */ +static int kvm_booke206_tlb_init(PowerPCCPU *cpu) +{ + CPUPPCState *env = &cpu->env; + CPUState *cs = CPU(cpu); + struct kvm_book3e_206_tlb_params params = {}; + struct kvm_config_tlb cfg = {}; + unsigned int entries = 0; + int ret, i; + + if (!kvm_enabled() || + !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { + return 0; + } + + assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); + + for (i = 0; i < BOOKE206_MAX_TLBN; i++) { + params.tlb_sizes[i] = booke206_tlb_size(env, i); + params.tlb_ways[i] = booke206_tlb_ways(env, i); + entries += params.tlb_sizes[i]; + } + + assert(entries == env->nb_tlb); + assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); + + env->tlb_dirty = true; + + cfg.array = (uintptr_t)env->tlb.tlbm; + cfg.array_len = sizeof(ppcmas_tlb_t) * entries; + cfg.params = (uintptr_t)¶ms; + cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; + + ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); + if (ret < 0) { + fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", + __func__, strerror(-ret)); + return ret; + } + + env->kvm_sw_tlb = true; + return 0; +} + + +#if defined(TARGET_PPC64) +static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp) +{ + int ret; + + assert(kvm_state != NULL); + + if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { + error_setg(errp, "KVM doesn't expose the MMU features it supports"); + error_append_hint(errp, "Consider switching to a newer KVM\n"); + return; + } + + ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info); + if (ret == 0) { + return; + } + + error_setg_errno(errp, -ret, + "KVM failed to provide the MMU features it supports"); +} + +struct ppc_radix_page_info *kvm_get_radix_page_info(void) +{ + KVMState *s = KVM_STATE(current_accel()); + struct ppc_radix_page_info *radix_page_info; + struct kvm_ppc_rmmu_info rmmu_info; + int i; + + if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) { + return NULL; + } + if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) { + return NULL; + } + radix_page_info = g_malloc0(sizeof(*radix_page_info)); + radix_page_info->count = 0; + for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { + if (rmmu_info.ap_encodings[i]) { + radix_page_info->entries[i] = rmmu_info.ap_encodings[i]; + radix_page_info->count++; + } + } + return radix_page_info; +} + +target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu, + bool radix, bool gtse, + uint64_t proc_tbl) +{ + CPUState *cs = CPU(cpu); + int ret; + uint64_t flags = 0; + struct kvm_ppc_mmuv3_cfg cfg = { + .process_table = proc_tbl, + }; + + if (radix) { + flags |= KVM_PPC_MMUV3_RADIX; + } + if (gtse) { + flags |= KVM_PPC_MMUV3_GTSE; + } + cfg.flags = flags; + ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg); + switch (ret) { + case 0: + return H_SUCCESS; + case -EINVAL: + return H_PARAMETER; + case -ENODEV: + return H_NOT_AVAILABLE; + default: + return H_HARDWARE; + } +} + +bool kvmppc_hpt_needs_host_contiguous_pages(void) +{ + static struct kvm_ppc_smmu_info smmu_info; + + if (!kvm_enabled()) { + return false; + } + + kvm_get_smmu_info(&smmu_info, &error_fatal); + return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL); +} + +void kvm_check_mmu(PowerPCCPU *cpu, Error **errp) +{ + struct kvm_ppc_smmu_info smmu_info; + int iq, ik, jq, jk; + Error *local_err = NULL; + + /* For now, we only have anything to check on hash64 MMUs */ + if (!cpu->hash64_opts || !kvm_enabled()) { + return; + } + + kvm_get_smmu_info(&smmu_info, &local_err); + if (local_err) { + error_propagate(errp, local_err); + return; + } + + if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG) + && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { + error_setg(errp, + "KVM does not support 1TiB segments which guest expects"); + return; + } + + if (smmu_info.slb_size < cpu->hash64_opts->slb_size) { + error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u", + smmu_info.slb_size, cpu->hash64_opts->slb_size); + return; + } + + /* + * Verify that every pagesize supported by the cpu model is + * supported by KVM with the same encodings + */ + for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) { + PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq]; + struct kvm_ppc_one_seg_page_size *ksps; + + for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) { + if (qsps->page_shift == smmu_info.sps[ik].page_shift) { + break; + } + } + if (ik >= ARRAY_SIZE(smmu_info.sps)) { + error_setg(errp, "KVM doesn't support for base page shift %u", + qsps->page_shift); + return; + } + + ksps = &smmu_info.sps[ik]; + if (ksps->slb_enc != qsps->slb_enc) { + error_setg(errp, +"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x", + ksps->slb_enc, ksps->page_shift, qsps->slb_enc); + return; + } + + for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) { + for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) { + if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) { + break; + } + } + + if (jk >= ARRAY_SIZE(ksps->enc)) { + error_setg(errp, "KVM doesn't support page shift %u/%u", + qsps->enc[jq].page_shift, qsps->page_shift); + return; + } + if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) { + error_setg(errp, +"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x", + ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift, + qsps->page_shift, qsps->enc[jq].pte_enc); + return; + } + } + } + + if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { + /* + * Mostly what guest pagesizes we can use are related to the + * host pages used to map guest RAM, which is handled in the + * platform code. Cache-Inhibited largepages (64k) however are + * used for I/O, so if they're mapped to the host at all it + * will be a normal mapping, not a special hugepage one used + * for RAM. + */ + if (qemu_real_host_page_size < 0x10000) { + error_setg(errp, + "KVM can't supply 64kiB CI pages, which guest expects"); + } + } +} +#endif /* !defined (TARGET_PPC64) */ + +unsigned long kvm_arch_vcpu_id(CPUState *cpu) +{ + return POWERPC_CPU(cpu)->vcpu_id; +} + +/* + * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports + * only 1 watchpoint, so array size of 4 is sufficient for now. + */ +#define MAX_HW_BKPTS 4 + +static struct HWBreakpoint { + target_ulong addr; + int type; +} hw_debug_points[MAX_HW_BKPTS]; + +static CPUWatchpoint hw_watchpoint; + +/* Default there is no breakpoint and watchpoint supported */ +static int max_hw_breakpoint; +static int max_hw_watchpoint; +static int nb_hw_breakpoint; +static int nb_hw_watchpoint; + +static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) +{ + if (cenv->excp_model == POWERPC_EXCP_BOOKE) { + max_hw_breakpoint = 2; + max_hw_watchpoint = 2; + } + + if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { + fprintf(stderr, "Error initializing h/w breakpoints\n"); + return; + } +} + +int kvm_arch_init_vcpu(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *cenv = &cpu->env; + int ret; + + /* Synchronize sregs with kvm */ + ret = kvm_arch_sync_sregs(cpu); + if (ret) { + if (ret == -EINVAL) { + error_report("Register sync failed... If you're using kvm-hv.ko," + " only \"-cpu host\" is possible"); + } + return ret; + } + + switch (cenv->mmu_model) { + case POWERPC_MMU_BOOKE206: + /* This target supports access to KVM's guest TLB */ + ret = kvm_booke206_tlb_init(cpu); + break; + case POWERPC_MMU_2_07: + if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { + /* + * KVM-HV has transactional memory on POWER8 also without + * the KVM_CAP_PPC_HTM extension, so enable it here + * instead as long as it's available to userspace on the + * host. + */ + if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) { + cap_htm = true; + } + } + break; + default: + break; + } + + kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); + kvmppc_hw_debug_points_init(cenv); + + return ret; +} + +int kvm_arch_destroy_vcpu(CPUState *cs) +{ + return 0; +} + +static void kvm_sw_tlb_put(PowerPCCPU *cpu) +{ + CPUPPCState *env = &cpu->env; + CPUState *cs = CPU(cpu); + struct kvm_dirty_tlb dirty_tlb; + unsigned char *bitmap; + int ret; + + if (!env->kvm_sw_tlb) { + return; + } + + bitmap = g_malloc((env->nb_tlb + 7) / 8); + memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); + + dirty_tlb.bitmap = (uintptr_t)bitmap; + dirty_tlb.num_dirty = env->nb_tlb; + + ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); + if (ret) { + fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", + __func__, strerror(-ret)); + } + + g_free(bitmap); +} + +static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + union { + uint32_t u32; + uint64_t u64; + } val; + struct kvm_one_reg reg = { + .id = id, + .addr = (uintptr_t) &val, + }; + int ret; + + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret != 0) { + trace_kvm_failed_spr_get(spr, strerror(errno)); + } else { + switch (id & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U32: + env->spr[spr] = val.u32; + break; + + case KVM_REG_SIZE_U64: + env->spr[spr] = val.u64; + break; + + default: + /* Don't handle this size yet */ + abort(); + } + } +} + +static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + union { + uint32_t u32; + uint64_t u64; + } val; + struct kvm_one_reg reg = { + .id = id, + .addr = (uintptr_t) &val, + }; + int ret; + + switch (id & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U32: + val.u32 = env->spr[spr]; + break; + + case KVM_REG_SIZE_U64: + val.u64 = env->spr[spr]; + break; + + default: + /* Don't handle this size yet */ + abort(); + } + + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret != 0) { + trace_kvm_failed_spr_set(spr, strerror(errno)); + } +} + +static int kvm_put_fp(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_one_reg reg; + int i; + int ret; + + if (env->insns_flags & PPC_FLOAT) { + uint64_t fpscr = env->fpscr; + bool vsx = !!(env->insns_flags2 & PPC2_VSX); + + reg.id = KVM_REG_PPC_FPSCR; + reg.addr = (uintptr_t)&fpscr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_fpscr_set(strerror(errno)); + return ret; + } + + for (i = 0; i < 32; i++) { + uint64_t vsr[2]; + uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); + uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); + +#ifdef HOST_WORDS_BIGENDIAN + vsr[0] = float64_val(*fpr); + vsr[1] = *vsrl; +#else + vsr[0] = *vsrl; + vsr[1] = float64_val(*fpr); +#endif + reg.addr = (uintptr_t) &vsr; + reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); + + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i, + strerror(errno)); + return ret; + } + } + } + + if (env->insns_flags & PPC_ALTIVEC) { + reg.id = KVM_REG_PPC_VSCR; + reg.addr = (uintptr_t)&env->vscr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_vscr_set(strerror(errno)); + return ret; + } + + for (i = 0; i < 32; i++) { + reg.id = KVM_REG_PPC_VR(i); + reg.addr = (uintptr_t)cpu_avr_ptr(env, i); + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_vr_set(i, strerror(errno)); + return ret; + } + } + } + + return 0; +} + +static int kvm_get_fp(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_one_reg reg; + int i; + int ret; + + if (env->insns_flags & PPC_FLOAT) { + uint64_t fpscr; + bool vsx = !!(env->insns_flags2 & PPC2_VSX); + + reg.id = KVM_REG_PPC_FPSCR; + reg.addr = (uintptr_t)&fpscr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_fpscr_get(strerror(errno)); + return ret; + } else { + env->fpscr = fpscr; + } + + for (i = 0; i < 32; i++) { + uint64_t vsr[2]; + uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); + uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); + + reg.addr = (uintptr_t) &vsr; + reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); + + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i, + strerror(errno)); + return ret; + } else { +#ifdef HOST_WORDS_BIGENDIAN + *fpr = vsr[0]; + if (vsx) { + *vsrl = vsr[1]; + } +#else + *fpr = vsr[1]; + if (vsx) { + *vsrl = vsr[0]; + } +#endif + } + } + } + + if (env->insns_flags & PPC_ALTIVEC) { + reg.id = KVM_REG_PPC_VSCR; + reg.addr = (uintptr_t)&env->vscr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_vscr_get(strerror(errno)); + return ret; + } + + for (i = 0; i < 32; i++) { + reg.id = KVM_REG_PPC_VR(i); + reg.addr = (uintptr_t)cpu_avr_ptr(env, i); + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_vr_get(i, strerror(errno)); + return ret; + } + } + } + + return 0; +} + +#if defined(TARGET_PPC64) +static int kvm_get_vpa(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); + struct kvm_one_reg reg; + int ret; + + reg.id = KVM_REG_PPC_VPA_ADDR; + reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_vpa_addr_get(strerror(errno)); + return ret; + } + + assert((uintptr_t)&spapr_cpu->slb_shadow_size + == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); + reg.id = KVM_REG_PPC_VPA_SLB; + reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_slb_get(strerror(errno)); + return ret; + } + + assert((uintptr_t)&spapr_cpu->dtl_size + == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); + reg.id = KVM_REG_PPC_VPA_DTL; + reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_dtl_get(strerror(errno)); + return ret; + } + + return 0; +} + +static int kvm_put_vpa(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); + struct kvm_one_reg reg; + int ret; + + /* + * SLB shadow or DTL can't be registered unless a master VPA is + * registered. That means when restoring state, if a VPA *is* + * registered, we need to set that up first. If not, we need to + * deregister the others before deregistering the master VPA + */ + assert(spapr_cpu->vpa_addr + || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr)); + + if (spapr_cpu->vpa_addr) { + reg.id = KVM_REG_PPC_VPA_ADDR; + reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_vpa_addr_set(strerror(errno)); + return ret; + } + } + + assert((uintptr_t)&spapr_cpu->slb_shadow_size + == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); + reg.id = KVM_REG_PPC_VPA_SLB; + reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_slb_set(strerror(errno)); + return ret; + } + + assert((uintptr_t)&spapr_cpu->dtl_size + == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); + reg.id = KVM_REG_PPC_VPA_DTL; + reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_dtl_set(strerror(errno)); + return ret; + } + + if (!spapr_cpu->vpa_addr) { + reg.id = KVM_REG_PPC_VPA_ADDR; + reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + trace_kvm_failed_null_vpa_addr_set(strerror(errno)); + return ret; + } + } + + return 0; +} +#endif /* TARGET_PPC64 */ + +int kvmppc_put_books_sregs(PowerPCCPU *cpu) +{ + CPUPPCState *env = &cpu->env; + struct kvm_sregs sregs; + int i; + + sregs.pvr = env->spr[SPR_PVR]; + + if (cpu->vhyp) { + PPCVirtualHypervisorClass *vhc = + PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp); + sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp); + } else { + sregs.u.s.sdr1 = env->spr[SPR_SDR1]; + } + + /* Sync SLB */ +#ifdef TARGET_PPC64 + for (i = 0; i < ARRAY_SIZE(env->slb); i++) { + sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; + if (env->slb[i].esid & SLB_ESID_V) { + sregs.u.s.ppc64.slb[i].slbe |= i; + } + sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; + } +#endif + + /* Sync SRs */ + for (i = 0; i < 16; i++) { + sregs.u.s.ppc32.sr[i] = env->sr[i]; + } + + /* Sync BATs */ + for (i = 0; i < 8; i++) { + /* Beware. We have to swap upper and lower bits here */ + sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) + | env->DBAT[1][i]; + sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) + | env->IBAT[1][i]; + } + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); +} + +int kvm_arch_put_registers(CPUState *cs, int level) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_regs regs; + int ret; + int i; + + ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); + if (ret < 0) { + return ret; + } + + regs.ctr = env->ctr; + regs.lr = env->lr; + regs.xer = cpu_read_xer(env); + regs.msr = env->msr; + regs.pc = env->nip; + + regs.srr0 = env->spr[SPR_SRR0]; + regs.srr1 = env->spr[SPR_SRR1]; + + regs.sprg0 = env->spr[SPR_SPRG0]; + regs.sprg1 = env->spr[SPR_SPRG1]; + regs.sprg2 = env->spr[SPR_SPRG2]; + regs.sprg3 = env->spr[SPR_SPRG3]; + regs.sprg4 = env->spr[SPR_SPRG4]; + regs.sprg5 = env->spr[SPR_SPRG5]; + regs.sprg6 = env->spr[SPR_SPRG6]; + regs.sprg7 = env->spr[SPR_SPRG7]; + + regs.pid = env->spr[SPR_BOOKE_PID]; + + for (i = 0; i < 32; i++) { + regs.gpr[i] = env->gpr[i]; + } + + regs.cr = 0; + for (i = 0; i < 8; i++) { + regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); + } + + ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); + if (ret < 0) { + return ret; + } + + kvm_put_fp(cs); + + if (env->tlb_dirty) { + kvm_sw_tlb_put(cpu); + env->tlb_dirty = false; + } + + if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { + ret = kvmppc_put_books_sregs(cpu); + if (ret < 0) { + return ret; + } + } + + if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { + kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); + } + + if (cap_one_reg) { + int i; + + /* + * We deliberately ignore errors here, for kernels which have + * the ONE_REG calls, but don't support the specific + * registers, there's a reasonable chance things will still + * work, at least until we try to migrate. + */ + for (i = 0; i < 1024; i++) { + uint64_t id = env->spr_cb[i].one_reg_id; + + if (id != 0) { + kvm_put_one_spr(cs, id, i); + } + } + +#ifdef TARGET_PPC64 + if (msr_ts) { + for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { + kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); + } + for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { + kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); + } + kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); + } + + if (cap_papr) { + if (kvm_put_vpa(cs) < 0) { + trace_kvm_failed_put_vpa(); + } + } + + kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); + + if (level > KVM_PUT_RUNTIME_STATE) { + kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); + } +#endif /* TARGET_PPC64 */ + } + + return ret; +} + +static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) +{ + env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; +} + +static int kvmppc_get_booke_sregs(PowerPCCPU *cpu) +{ + CPUPPCState *env = &cpu->env; + struct kvm_sregs sregs; + int ret; + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); + if (ret < 0) { + return ret; + } + + if (sregs.u.e.features & KVM_SREGS_E_BASE) { + env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; + env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; + env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; + env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; + env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; + env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; + env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; + env->spr[SPR_DECR] = sregs.u.e.dec; + env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; + env->spr[SPR_TBU] = sregs.u.e.tb >> 32; + env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; + } + + if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { + env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; + env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; + env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; + env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; + env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; + } + + if (sregs.u.e.features & KVM_SREGS_E_64) { + env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; + } + + if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { + env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; + } + + if (sregs.u.e.features & KVM_SREGS_E_IVOR) { + env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; + kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); + env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; + kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); + env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; + kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); + env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; + kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); + env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; + kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); + env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; + kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); + env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; + kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); + env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; + kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); + env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; + kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); + env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; + kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); + env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; + kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); + env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; + kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); + env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; + kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); + env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; + kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); + env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; + kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); + env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; + kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); + + if (sregs.u.e.features & KVM_SREGS_E_SPE) { + env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; + kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); + env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; + kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); + env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; + kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); + } + + if (sregs.u.e.features & KVM_SREGS_E_PM) { + env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; + kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); + } + + if (sregs.u.e.features & KVM_SREGS_E_PC) { + env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; + kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); + env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; + kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); + } + } + + if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { + env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; + env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; + env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; + env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; + env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; + env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; + env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; + env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; + env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; + env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; + } + + if (sregs.u.e.features & KVM_SREGS_EXP) { + env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; + } + + if (sregs.u.e.features & KVM_SREGS_E_PD) { + env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; + env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; + } + + if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { + env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; + env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; + env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; + + if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { + env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; + env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; + } + } + + return 0; +} + +static int kvmppc_get_books_sregs(PowerPCCPU *cpu) +{ + CPUPPCState *env = &cpu->env; + struct kvm_sregs sregs; + int ret; + int i; + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); + if (ret < 0) { + return ret; + } + + if (!cpu->vhyp) { + ppc_store_sdr1(env, sregs.u.s.sdr1); + } + + /* Sync SLB */ +#ifdef TARGET_PPC64 + /* + * The packed SLB array we get from KVM_GET_SREGS only contains + * information about valid entries. So we flush our internal copy + * to get rid of stale ones, then put all valid SLB entries back + * in. + */ + memset(env->slb, 0, sizeof(env->slb)); + for (i = 0; i < ARRAY_SIZE(env->slb); i++) { + target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; + target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; + /* + * Only restore valid entries + */ + if (rb & SLB_ESID_V) { + ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs); + } + } +#endif + + /* Sync SRs */ + for (i = 0; i < 16; i++) { + env->sr[i] = sregs.u.s.ppc32.sr[i]; + } + + /* Sync BATs */ + for (i = 0; i < 8; i++) { + env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; + env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; + env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; + env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; + } + + return 0; +} + +int kvm_arch_get_registers(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_regs regs; + uint32_t cr; + int i, ret; + + ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); + if (ret < 0) { + return ret; + } + + cr = regs.cr; + for (i = 7; i >= 0; i--) { + env->crf[i] = cr & 15; + cr >>= 4; + } + + env->ctr = regs.ctr; + env->lr = regs.lr; + cpu_write_xer(env, regs.xer); + env->msr = regs.msr; + env->nip = regs.pc; + + env->spr[SPR_SRR0] = regs.srr0; + env->spr[SPR_SRR1] = regs.srr1; + + env->spr[SPR_SPRG0] = regs.sprg0; + env->spr[SPR_SPRG1] = regs.sprg1; + env->spr[SPR_SPRG2] = regs.sprg2; + env->spr[SPR_SPRG3] = regs.sprg3; + env->spr[SPR_SPRG4] = regs.sprg4; + env->spr[SPR_SPRG5] = regs.sprg5; + env->spr[SPR_SPRG6] = regs.sprg6; + env->spr[SPR_SPRG7] = regs.sprg7; + + env->spr[SPR_BOOKE_PID] = regs.pid; + + for (i = 0; i < 32; i++) { + env->gpr[i] = regs.gpr[i]; + } + + kvm_get_fp(cs); + + if (cap_booke_sregs) { + ret = kvmppc_get_booke_sregs(cpu); + if (ret < 0) { + return ret; + } + } + + if (cap_segstate) { + ret = kvmppc_get_books_sregs(cpu); + if (ret < 0) { + return ret; + } + } + + if (cap_hior) { + kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); + } + + if (cap_one_reg) { + int i; + + /* + * We deliberately ignore errors here, for kernels which have + * the ONE_REG calls, but don't support the specific + * registers, there's a reasonable chance things will still + * work, at least until we try to migrate. + */ + for (i = 0; i < 1024; i++) { + uint64_t id = env->spr_cb[i].one_reg_id; + + if (id != 0) { + kvm_get_one_spr(cs, id, i); + } + } + +#ifdef TARGET_PPC64 + if (msr_ts) { + for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { + kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); + } + for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { + kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); + } + kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); + } + + if (cap_papr) { + if (kvm_get_vpa(cs) < 0) { + trace_kvm_failed_get_vpa(); + } + } + + kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); + kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); +#endif + } + + return 0; +} + +int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) +{ + unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; + + if (irq != PPC_INTERRUPT_EXT) { + return 0; + } + + if (!kvm_enabled() || !cap_interrupt_unset) { + return 0; + } + + kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); + + return 0; +} + +void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) +{ + return; +} + +MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) +{ + return MEMTXATTRS_UNSPECIFIED; +} + +int kvm_arch_process_async_events(CPUState *cs) +{ + return cs->halted; +} + +static int kvmppc_handle_halt(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUPPCState *env = &cpu->env; + + if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { + cs->halted = 1; + cs->exception_index = EXCP_HLT; + } + + return 0; +} + +/* map dcr access to existing qemu dcr emulation */ +static int kvmppc_handle_dcr_read(CPUPPCState *env, + uint32_t dcrn, uint32_t *data) +{ + if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) { + fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); + } + + return 0; +} + +static int kvmppc_handle_dcr_write(CPUPPCState *env, + uint32_t dcrn, uint32_t data) +{ + if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) { + fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); + } + + return 0; +} + +int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + /* Mixed endian case is not handled */ + uint32_t sc = debug_inst_opcode; + + if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, + sizeof(sc), 0) || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { + return -EINVAL; + } + + return 0; +} + +int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + uint32_t sc; + + if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || + sc != debug_inst_opcode || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, + sizeof(sc), 1)) { + return -EINVAL; + } + + return 0; +} + +static int find_hw_breakpoint(target_ulong addr, int type) +{ + int n; + + assert((nb_hw_breakpoint + nb_hw_watchpoint) + <= ARRAY_SIZE(hw_debug_points)); + + for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { + if (hw_debug_points[n].addr == addr && + hw_debug_points[n].type == type) { + return n; + } + } + + return -1; +} + +static int find_hw_watchpoint(target_ulong addr, int *flag) +{ + int n; + + n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); + if (n >= 0) { + *flag = BP_MEM_ACCESS; + return n; + } + + n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); + if (n >= 0) { + *flag = BP_MEM_WRITE; + return n; + } + + n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); + if (n >= 0) { + *flag = BP_MEM_READ; + return n; + } + + return -1; +} + +int kvm_arch_insert_hw_breakpoint(target_ulong addr, + target_ulong len, int type) +{ + if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) { + return -ENOBUFS; + } + + hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr; + hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type; + + switch (type) { + case GDB_BREAKPOINT_HW: + if (nb_hw_breakpoint >= max_hw_breakpoint) { + return -ENOBUFS; + } + + if (find_hw_breakpoint(addr, type) >= 0) { + return -EEXIST; + } + + nb_hw_breakpoint++; + break; + + case GDB_WATCHPOINT_WRITE: + case GDB_WATCHPOINT_READ: + case GDB_WATCHPOINT_ACCESS: + if (nb_hw_watchpoint >= max_hw_watchpoint) { + return -ENOBUFS; + } + + if (find_hw_breakpoint(addr, type) >= 0) { + return -EEXIST; + } + + nb_hw_watchpoint++; + break; + + default: + return -ENOSYS; + } + + return 0; +} + +int kvm_arch_remove_hw_breakpoint(target_ulong addr, + target_ulong len, int type) +{ + int n; + + n = find_hw_breakpoint(addr, type); + if (n < 0) { + return -ENOENT; + } + + switch (type) { + case GDB_BREAKPOINT_HW: + nb_hw_breakpoint--; + break; + + case GDB_WATCHPOINT_WRITE: + case GDB_WATCHPOINT_READ: + case GDB_WATCHPOINT_ACCESS: + nb_hw_watchpoint--; + break; + + default: + return -ENOSYS; + } + hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; + + return 0; +} + +void kvm_arch_remove_all_hw_breakpoints(void) +{ + nb_hw_breakpoint = nb_hw_watchpoint = 0; +} + +void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) +{ + int n; + + /* Software Breakpoint updates */ + if (kvm_sw_breakpoints_active(cs)) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; + } + + assert((nb_hw_breakpoint + nb_hw_watchpoint) + <= ARRAY_SIZE(hw_debug_points)); + assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); + + if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; + memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); + for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { + switch (hw_debug_points[n].type) { + case GDB_BREAKPOINT_HW: + dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; + break; + case GDB_WATCHPOINT_WRITE: + dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; + break; + case GDB_WATCHPOINT_READ: + dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; + break; + case GDB_WATCHPOINT_ACCESS: + dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | + KVMPPC_DEBUG_WATCH_READ; + break; + default: + cpu_abort(cs, "Unsupported breakpoint type\n"); + } + dbg->arch.bp[n].addr = hw_debug_points[n].addr; + } + } +} + +static int kvm_handle_hw_breakpoint(CPUState *cs, + struct kvm_debug_exit_arch *arch_info) +{ + int handle = DEBUG_RETURN_GUEST; + int n; + int flag = 0; + + if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { + if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { + n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); + if (n >= 0) { + handle = DEBUG_RETURN_GDB; + } + } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | + KVMPPC_DEBUG_WATCH_WRITE)) { + n = find_hw_watchpoint(arch_info->address, &flag); + if (n >= 0) { + handle = DEBUG_RETURN_GDB; + cs->watchpoint_hit = &hw_watchpoint; + hw_watchpoint.vaddr = hw_debug_points[n].addr; + hw_watchpoint.flags = flag; + } + } + } + return handle; +} + +static int kvm_handle_singlestep(void) +{ + return DEBUG_RETURN_GDB; +} + +static int kvm_handle_sw_breakpoint(void) +{ + return DEBUG_RETURN_GDB; +} + +static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) +{ + CPUState *cs = CPU(cpu); + CPUPPCState *env = &cpu->env; + struct kvm_debug_exit_arch *arch_info = &run->debug.arch; + + if (cs->singlestep_enabled) { + return kvm_handle_singlestep(); + } + + if (arch_info->status) { + return kvm_handle_hw_breakpoint(cs, arch_info); + } + + if (kvm_find_sw_breakpoint(cs, arch_info->address)) { + return kvm_handle_sw_breakpoint(); + } + + /* + * QEMU is not able to handle debug exception, so inject + * program exception to guest; + * Yes program exception NOT debug exception !! + * When QEMU is using debug resources then debug exception must + * be always set. To achieve this we set MSR_DE and also set + * MSRP_DEP so guest cannot change MSR_DE. + * When emulating debug resource for guest we want guest + * to control MSR_DE (enable/disable debug interrupt on need). + * Supporting both configurations are NOT possible. + * So the result is that we cannot share debug resources + * between QEMU and Guest on BOOKE architecture. + * In the current design QEMU gets the priority over guest, + * this means that if QEMU is using debug resources then guest + * cannot use them; + * For software breakpoint QEMU uses a privileged instruction; + * So there cannot be any reason that we are here for guest + * set debug exception, only possibility is guest executed a + * privileged / illegal instruction and that's why we are + * injecting a program interrupt. + */ + cpu_synchronize_state(cs); + /* + * env->nip is PC, so increment this by 4 to use + * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. + */ + env->nip += 4; + cs->exception_index = POWERPC_EXCP_PROGRAM; + env->error_code = POWERPC_EXCP_INVAL; + ppc_cpu_do_interrupt(cs); + + return DEBUG_RETURN_GUEST; +} + +int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + int ret; + + qemu_mutex_lock_iothread(); + + switch (run->exit_reason) { + case KVM_EXIT_DCR: + if (run->dcr.is_write) { + trace_kvm_handle_dcr_write(); + ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); + } else { + trace_kvm_handle_dcr_read(); + ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); + } + break; + case KVM_EXIT_HLT: + trace_kvm_handle_halt(); + ret = kvmppc_handle_halt(cpu); + break; +#if defined(TARGET_PPC64) + case KVM_EXIT_PAPR_HCALL: + trace_kvm_handle_papr_hcall(); + run->papr_hcall.ret = spapr_hypercall(cpu, + run->papr_hcall.nr, + run->papr_hcall.args); + ret = 0; + break; +#endif + case KVM_EXIT_EPR: + trace_kvm_handle_epr(); + run->epr.epr = ldl_phys(cs->as, env->mpic_iack); + ret = 0; + break; + case KVM_EXIT_WATCHDOG: + trace_kvm_handle_watchdog_expiry(); + watchdog_perform_action(); + ret = 0; + break; + + case KVM_EXIT_DEBUG: + trace_kvm_handle_debug_exception(); + if (kvm_handle_debug(cpu, run)) { + ret = EXCP_DEBUG; + break; + } + /* re-enter, this exception was guest-internal */ + ret = 0; + break; + +#if defined(TARGET_PPC64) + case KVM_EXIT_NMI: + trace_kvm_handle_nmi_exception(); + ret = kvm_handle_nmi(cpu, run); + break; +#endif + + default: + fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); + ret = -1; + break; + } + + qemu_mutex_unlock_iothread(); + return ret; +} + +int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) +{ + CPUState *cs = CPU(cpu); + uint32_t bits = tsr_bits; + struct kvm_one_reg reg = { + .id = KVM_REG_PPC_OR_TSR, + .addr = (uintptr_t) &bits, + }; + + return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); +} + +int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) +{ + + CPUState *cs = CPU(cpu); + uint32_t bits = tsr_bits; + struct kvm_one_reg reg = { + .id = KVM_REG_PPC_CLEAR_TSR, + .addr = (uintptr_t) &bits, + }; + + return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); +} + +int kvmppc_set_tcr(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUPPCState *env = &cpu->env; + uint32_t tcr = env->spr[SPR_BOOKE_TCR]; + + struct kvm_one_reg reg = { + .id = KVM_REG_PPC_TCR, + .addr = (uintptr_t) &tcr, + }; + + return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); +} + +int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + int ret; + + if (!kvm_enabled()) { + return -1; + } + + if (!cap_ppc_watchdog) { + printf("warning: KVM does not support watchdog"); + return -1; + } + + ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); + if (ret < 0) { + fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", + __func__, strerror(-ret)); + return ret; + } + + return ret; +} + +static int read_cpuinfo(const char *field, char *value, int len) +{ + FILE *f; + int ret = -1; + int field_len = strlen(field); + char line[512]; + + f = fopen("/proc/cpuinfo", "r"); + if (!f) { + return -1; + } + + do { + if (!fgets(line, sizeof(line), f)) { + break; + } + if (!strncmp(line, field, field_len)) { + pstrcpy(value, len, line); + ret = 0; + break; + } + } while (*line); + + fclose(f); + + return ret; +} + +static uint32_t kvmppc_get_tbfreq_procfs(void) +{ + char line[512]; + char *ns; + uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND; + uint32_t tbfreq_procfs; + + if (read_cpuinfo("timebase", line, sizeof(line))) { + return tbfreq_fallback; + } + + ns = strchr(line, ':'); + if (!ns) { + return tbfreq_fallback; + } + + tbfreq_procfs = atoi(++ns); + + /* 0 is certainly not acceptable by the guest, return fallback value */ + return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback; +} + +uint32_t kvmppc_get_tbfreq(void) +{ + static uint32_t cached_tbfreq; + + if (!cached_tbfreq) { + cached_tbfreq = kvmppc_get_tbfreq_procfs(); + } + + return cached_tbfreq; +} + +bool kvmppc_get_host_serial(char **value) +{ + return g_file_get_contents("/proc/device-tree/system-id", value, NULL, + NULL); +} + +bool kvmppc_get_host_model(char **value) +{ + return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); +} + +/* Try to find a device tree node for a CPU with clock-frequency property */ +static int kvmppc_find_cpu_dt(char *buf, int buf_len) +{ + struct dirent *dirp; + DIR *dp; + + dp = opendir(PROC_DEVTREE_CPU); + if (!dp) { + printf("Can't open directory " PROC_DEVTREE_CPU "\n"); + return -1; + } + + buf[0] = '\0'; + while ((dirp = readdir(dp)) != NULL) { + FILE *f; + snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, + dirp->d_name); + f = fopen(buf, "r"); + if (f) { + snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); + fclose(f); + break; + } + buf[0] = '\0'; + } + closedir(dp); + if (buf[0] == '\0') { + printf("Unknown host!\n"); + return -1; + } + + return 0; +} + +static uint64_t kvmppc_read_int_dt(const char *filename) +{ + union { + uint32_t v32; + uint64_t v64; + } u; + FILE *f; + int len; + + f = fopen(filename, "rb"); + if (!f) { + return -1; + } + + len = fread(&u, 1, sizeof(u), f); + fclose(f); + switch (len) { + case 4: + /* property is a 32-bit quantity */ + return be32_to_cpu(u.v32); + case 8: + return be64_to_cpu(u.v64); + } + + return 0; +} + +/* + * Read a CPU node property from the host device tree that's a single + * integer (32-bit or 64-bit). Returns 0 if anything goes wrong + * (can't find or open the property, or doesn't understand the format) + */ +static uint64_t kvmppc_read_int_cpu_dt(const char *propname) +{ + char buf[PATH_MAX], *tmp; + uint64_t val; + + if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { + return -1; + } + + tmp = g_strdup_printf("%s/%s", buf, propname); + val = kvmppc_read_int_dt(tmp); + g_free(tmp); + + return val; +} + +uint64_t kvmppc_get_clockfreq(void) +{ + return kvmppc_read_int_cpu_dt("clock-frequency"); +} + +static int kvmppc_get_dec_bits(void) +{ + int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits"); + + if (nr_bits > 0) { + return nr_bits; + } + return 0; +} + +static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) +{ + CPUState *cs = env_cpu(env); + + if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && + !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { + return 0; + } + + return 1; +} + +int kvmppc_get_hasidle(CPUPPCState *env) +{ + struct kvm_ppc_pvinfo pvinfo; + + if (!kvmppc_get_pvinfo(env, &pvinfo) && + (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { + return 1; + } + + return 0; +} + +int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) +{ + uint32_t *hc = (uint32_t *)buf; + struct kvm_ppc_pvinfo pvinfo; + + if (!kvmppc_get_pvinfo(env, &pvinfo)) { + memcpy(buf, pvinfo.hcall, buf_len); + return 0; + } + + /* + * Fallback to always fail hypercalls regardless of endianness: + * + * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) + * li r3, -1 + * b .+8 (becomes nop in wrong endian) + * bswap32(li r3, -1) + */ + + hc[0] = cpu_to_be32(0x08000048); + hc[1] = cpu_to_be32(0x3860ffff); + hc[2] = cpu_to_be32(0x48000008); + hc[3] = cpu_to_be32(bswap32(0x3860ffff)); + + return 1; +} + +static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) +{ + return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); +} + +void kvmppc_enable_logical_ci_hcalls(void) +{ + /* + * FIXME: it would be nice if we could detect the cases where + * we're using a device which requires the in kernel + * implementation of these hcalls, but the kernel lacks them and + * produce a warning. + */ + kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); + kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); +} + +void kvmppc_enable_set_mode_hcall(void) +{ + kvmppc_enable_hcall(kvm_state, H_SET_MODE); +} + +void kvmppc_enable_clear_ref_mod_hcalls(void) +{ + kvmppc_enable_hcall(kvm_state, H_CLEAR_REF); + kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD); +} + +void kvmppc_enable_h_page_init(void) +{ + kvmppc_enable_hcall(kvm_state, H_PAGE_INIT); +} + +void kvmppc_enable_h_rpt_invalidate(void) +{ + kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE); +} + +void kvmppc_set_papr(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + int ret; + + if (!kvm_enabled()) { + return; + } + + ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); + if (ret) { + error_report("This vCPU type or KVM version does not support PAPR"); + exit(1); + } + + /* + * Update the capability flag so we sync the right information + * with kvm + */ + cap_papr = 1; +} + +int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr) +{ + return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr); +} + +void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) +{ + CPUState *cs = CPU(cpu); + int ret; + + ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); + if (ret && mpic_proxy) { + error_report("This KVM version does not support EPR"); + exit(1); + } +} + +bool kvmppc_get_fwnmi(void) +{ + return cap_fwnmi; +} + +int kvmppc_set_fwnmi(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + + return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0); +} + +int kvmppc_smt_threads(void) +{ + return cap_ppc_smt ? cap_ppc_smt : 1; +} + +int kvmppc_set_smt_threads(int smt) +{ + int ret; + + ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0); + if (!ret) { + cap_ppc_smt = smt; + } + return ret; +} + +void kvmppc_error_append_smt_possible_hint(Error *const *errp) +{ + int i; + GString *g; + char *s; + + assert(kvm_enabled()); + if (cap_ppc_smt_possible) { + g = g_string_new("Available VSMT modes:"); + for (i = 63; i >= 0; i--) { + if ((1UL << i) & cap_ppc_smt_possible) { + g_string_append_printf(g, " %lu", (1UL << i)); + } + } + s = g_string_free(g, false); + error_append_hint(errp, "%s.\n", s); + g_free(s); + } else { + error_append_hint(errp, + "This KVM seems to be too old to support VSMT.\n"); + } +} + + +#ifdef TARGET_PPC64 +uint64_t kvmppc_vrma_limit(unsigned int hash_shift) +{ + struct kvm_ppc_smmu_info info; + long rampagesize, best_page_shift; + int i; + + /* + * Find the largest hardware supported page size that's less than + * or equal to the (logical) backing page size of guest RAM + */ + kvm_get_smmu_info(&info, &error_fatal); + rampagesize = qemu_minrampagesize(); + best_page_shift = 0; + + for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { + struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; + + if (!sps->page_shift) { + continue; + } + + if ((sps->page_shift > best_page_shift) + && ((1UL << sps->page_shift) <= rampagesize)) { + best_page_shift = sps->page_shift; + } + } + + return 1ULL << (best_page_shift + hash_shift - 7); +} +#endif + +bool kvmppc_spapr_use_multitce(void) +{ + return cap_spapr_multitce; +} + +int kvmppc_spapr_enable_inkernel_multitce(void) +{ + int ret; + + ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, + H_PUT_TCE_INDIRECT, 1); + if (!ret) { + ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, + H_STUFF_TCE, 1); + } + + return ret; +} + +void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift, + uint64_t bus_offset, uint32_t nb_table, + int *pfd, bool need_vfio) +{ + long len; + int fd; + void *table; + + /* + * Must set fd to -1 so we don't try to munmap when called for + * destroying the table, which the upper layers -will- do + */ + *pfd = -1; + if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) { + return NULL; + } + + if (cap_spapr_tce_64) { + struct kvm_create_spapr_tce_64 args = { + .liobn = liobn, + .page_shift = page_shift, + .offset = bus_offset >> page_shift, + .size = nb_table, + .flags = 0 + }; + fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args); + if (fd < 0) { + fprintf(stderr, + "KVM: Failed to create TCE64 table for liobn 0x%x\n", + liobn); + return NULL; + } + } else if (cap_spapr_tce) { + uint64_t window_size = (uint64_t) nb_table << page_shift; + struct kvm_create_spapr_tce args = { + .liobn = liobn, + .window_size = window_size, + }; + if ((window_size != args.window_size) || bus_offset) { + return NULL; + } + fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); + if (fd < 0) { + fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", + liobn); + return NULL; + } + } else { + return NULL; + } + + len = nb_table * sizeof(uint64_t); + /* FIXME: round this up to page size */ + + table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); + if (table == MAP_FAILED) { + fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", + liobn); + close(fd); + return NULL; + } + + *pfd = fd; + return table; +} + +int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) +{ + long len; + + if (fd < 0) { + return -1; + } + + len = nb_table * sizeof(uint64_t); + if ((munmap(table, len) < 0) || + (close(fd) < 0)) { + fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", + strerror(errno)); + /* Leak the table */ + } + + return 0; +} + +int kvmppc_reset_htab(int shift_hint) +{ + uint32_t shift = shift_hint; + + if (!kvm_enabled()) { + /* Full emulation, tell caller to allocate htab itself */ + return 0; + } + if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { + int ret; + ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); + if (ret == -ENOTTY) { + /* + * At least some versions of PR KVM advertise the + * capability, but don't implement the ioctl(). Oops. + * Return 0 so that we allocate the htab in qemu, as is + * correct for PR. + */ + return 0; + } else if (ret < 0) { + return ret; + } + return shift; + } + + /* + * We have a kernel that predates the htab reset calls. For PR + * KVM, we need to allocate the htab ourselves, for an HV KVM of + * this era, it has allocated a 16MB fixed size hash table + * already. + */ + if (kvmppc_is_pr(kvm_state)) { + /* PR - tell caller to allocate htab */ + return 0; + } else { + /* HV - assume 16MB kernel allocated htab */ + return 24; + } +} + +static inline uint32_t mfpvr(void) +{ + uint32_t pvr; + + asm ("mfpvr %0" + : "=r"(pvr)); + return pvr; +} + +static void alter_insns(uint64_t *word, uint64_t flags, bool on) +{ + if (on) { + *word |= flags; + } else { + *word &= ~flags; + } +} + +static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) +{ + PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); + uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); + uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); + + /* Now fix up the class with information we can query from the host */ + pcc->pvr = mfpvr(); + + alter_insns(&pcc->insns_flags, PPC_ALTIVEC, + qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC); + alter_insns(&pcc->insns_flags2, PPC2_VSX, + qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX); + alter_insns(&pcc->insns_flags2, PPC2_DFP, + qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP); + + if (dcache_size != -1) { + pcc->l1_dcache_size = dcache_size; + } + + if (icache_size != -1) { + pcc->l1_icache_size = icache_size; + } + +#if defined(TARGET_PPC64) + pcc->radix_page_info = kvm_get_radix_page_info(); + + if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) { + /* + * POWER9 DD1 has some bugs which make it not really ISA 3.00 + * compliant. More importantly, advertising ISA 3.00 + * architected mode may prevent guests from activating + * necessary DD1 workarounds. + */ + pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07 + | PCR_COMPAT_2_06 | PCR_COMPAT_2_05); + } +#endif /* defined(TARGET_PPC64) */ +} + +bool kvmppc_has_cap_epr(void) +{ + return cap_epr; +} + +bool kvmppc_has_cap_fixup_hcalls(void) +{ + return cap_fixup_hcalls; +} + +bool kvmppc_has_cap_htm(void) +{ + return cap_htm; +} + +bool kvmppc_has_cap_mmu_radix(void) +{ + return cap_mmu_radix; +} + +bool kvmppc_has_cap_mmu_hash_v3(void) +{ + return cap_mmu_hash_v3; +} + +static bool kvmppc_power8_host(void) +{ + bool ret = false; +#ifdef TARGET_PPC64 + { + uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr(); + ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) || + (base_pvr == CPU_POWERPC_POWER8NVL_BASE) || + (base_pvr == CPU_POWERPC_POWER8_BASE); + } +#endif /* TARGET_PPC64 */ + return ret; +} + +static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c) +{ + bool l1d_thread_priv_req = !kvmppc_power8_host(); + + if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) { + return 2; + } else if ((!l1d_thread_priv_req || + c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) && + (c.character & c.character_mask + & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) { + return 1; + } + + return 0; +} + +static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c) +{ + if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) { + return 2; + } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) { + return 1; + } + + return 0; +} + +static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c) +{ + if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) && + (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) && + (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) { + return SPAPR_CAP_FIXED_NA; + } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) { + return SPAPR_CAP_WORKAROUND; + } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) { + return SPAPR_CAP_FIXED_CCD; + } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) { + return SPAPR_CAP_FIXED_IBS; + } + + return 0; +} + +static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c) +{ + if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) { + return 1; + } + return 0; +} + +bool kvmppc_has_cap_xive(void) +{ + return cap_xive; +} + +static void kvmppc_get_cpu_characteristics(KVMState *s) +{ + struct kvm_ppc_cpu_char c; + int ret; + + /* Assume broken */ + cap_ppc_safe_cache = 0; + cap_ppc_safe_bounds_check = 0; + cap_ppc_safe_indirect_branch = 0; + + ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR); + if (!ret) { + return; + } + ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c); + if (ret < 0) { + return; + } + + cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c); + cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c); + cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c); + cap_ppc_count_cache_flush_assist = + parse_cap_ppc_count_cache_flush_assist(c); +} + +int kvmppc_get_cap_safe_cache(void) +{ + return cap_ppc_safe_cache; +} + +int kvmppc_get_cap_safe_bounds_check(void) +{ + return cap_ppc_safe_bounds_check; +} + +int kvmppc_get_cap_safe_indirect_branch(void) +{ + return cap_ppc_safe_indirect_branch; +} + +int kvmppc_get_cap_count_cache_flush_assist(void) +{ + return cap_ppc_count_cache_flush_assist; +} + +bool kvmppc_has_cap_nested_kvm_hv(void) +{ + return !!cap_ppc_nested_kvm_hv; +} + +int kvmppc_set_cap_nested_kvm_hv(int enable) +{ + return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable); +} + +bool kvmppc_has_cap_spapr_vfio(void) +{ + return cap_spapr_vfio; +} + +int kvmppc_get_cap_large_decr(void) +{ + return cap_large_decr; +} + +int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable) +{ + CPUState *cs = CPU(cpu); + uint64_t lpcr; + + kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); + /* Do we need to modify the LPCR? */ + if (!!(lpcr & LPCR_LD) != !!enable) { + if (enable) { + lpcr |= LPCR_LD; + } else { + lpcr &= ~LPCR_LD; + } + kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); + kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); + + if (!!(lpcr & LPCR_LD) != !!enable) { + return -1; + } + } + + return 0; +} + +int kvmppc_has_cap_rpt_invalidate(void) +{ + return cap_rpt_invalidate; +} + +PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void) +{ + uint32_t host_pvr = mfpvr(); + PowerPCCPUClass *pvr_pcc; + + pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); + if (pvr_pcc == NULL) { + pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); + } + + return pvr_pcc; +} + +static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque) +{ + MachineClass *mc = MACHINE_CLASS(oc); + + mc->default_cpu_type = TYPE_HOST_POWERPC_CPU; +} + +static int kvm_ppc_register_host_cpu_type(void) +{ + TypeInfo type_info = { + .name = TYPE_HOST_POWERPC_CPU, + .class_init = kvmppc_host_cpu_class_init, + }; + PowerPCCPUClass *pvr_pcc; + ObjectClass *oc; + DeviceClass *dc; + int i; + + pvr_pcc = kvm_ppc_get_host_cpu_class(); + if (pvr_pcc == NULL) { + return -1; + } + type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); + type_register(&type_info); + /* override TCG default cpu type with 'host' cpu model */ + object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE, + false, NULL); + + oc = object_class_by_name(type_info.name); + g_assert(oc); + + /* + * Update generic CPU family class alias (e.g. on a POWER8NVL host, + * we want "POWER8" to be a "family" alias that points to the current + * host CPU type, too) + */ + dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc)); + for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) { + if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) { + char *suffix; + + ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc)); + suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX); + if (suffix) { + *suffix = 0; + } + break; + } + } + + return 0; +} + +int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) +{ + struct kvm_rtas_token_args args = { + .token = token, + }; + + if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { + return -ENOENT; + } + + strncpy(args.name, function, sizeof(args.name) - 1); + + return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); +} + +int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp) +{ + struct kvm_get_htab_fd s = { + .flags = write ? KVM_GET_HTAB_WRITE : 0, + .start_index = index, + }; + int ret; + + if (!cap_htab_fd) { + error_setg(errp, "KVM version doesn't support %s the HPT", + write ? "writing" : "reading"); + return -ENOTSUP; + } + + ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); + if (ret < 0) { + error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s", + write ? "writing" : "reading", write ? "to" : "from", + strerror(errno)); + return -errno; + } + + return ret; +} + +int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) +{ + int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); + uint8_t buf[bufsize]; + ssize_t rc; + + do { + rc = read(fd, buf, bufsize); + if (rc < 0) { + fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", + strerror(errno)); + return rc; + } else if (rc) { + uint8_t *buffer = buf; + ssize_t n = rc; + while (n) { + struct kvm_get_htab_header *head = + (struct kvm_get_htab_header *) buffer; + size_t chunksize = sizeof(*head) + + HASH_PTE_SIZE_64 * head->n_valid; + + qemu_put_be32(f, head->index); + qemu_put_be16(f, head->n_valid); + qemu_put_be16(f, head->n_invalid); + qemu_put_buffer(f, (void *)(head + 1), + HASH_PTE_SIZE_64 * head->n_valid); + + buffer += chunksize; + n -= chunksize; + } + } + } while ((rc != 0) + && ((max_ns < 0) || + ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); + + return (rc == 0) ? 1 : 0; +} + +int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, + uint16_t n_valid, uint16_t n_invalid, Error **errp) +{ + struct kvm_get_htab_header *buf; + size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64; + ssize_t rc; + + buf = alloca(chunksize); + buf->index = index; + buf->n_valid = n_valid; + buf->n_invalid = n_invalid; + + qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid); + + rc = write(fd, buf, chunksize); + if (rc < 0) { + error_setg_errno(errp, errno, "Error writing the KVM hash table"); + return -errno; + } + if (rc != chunksize) { + /* We should never get a short write on a single chunk */ + error_setg(errp, "Short write while restoring the KVM hash table"); + return -ENOSPC; + } + return 0; +} + +bool kvm_arch_stop_on_emulation_error(CPUState *cpu) +{ + return true; +} + +void kvm_arch_init_irq_routing(KVMState *s) +{ +} + +void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n) +{ + int fd, rc; + int i; + + fd = kvmppc_get_htab_fd(false, ptex, &error_abort); + + i = 0; + while (i < n) { + struct kvm_get_htab_header *hdr; + int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP; + char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64]; + + rc = read(fd, buf, sizeof(buf)); + if (rc < 0) { + hw_error("kvmppc_read_hptes: Unable to read HPTEs"); + } + + hdr = (struct kvm_get_htab_header *)buf; + while ((i < n) && ((char *)hdr < (buf + rc))) { + int invalid = hdr->n_invalid, valid = hdr->n_valid; + + if (hdr->index != (ptex + i)) { + hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32 + " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i); + } + + if (n - i < valid) { + valid = n - i; + } + memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid); + i += valid; + + if ((n - i) < invalid) { + invalid = n - i; + } + memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64); + i += invalid; + + hdr = (struct kvm_get_htab_header *) + ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid); + } + } + + close(fd); +} + +void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1) +{ + int fd, rc; + struct { + struct kvm_get_htab_header hdr; + uint64_t pte0; + uint64_t pte1; + } buf; + + fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort); + + buf.hdr.n_valid = 1; + buf.hdr.n_invalid = 0; + buf.hdr.index = ptex; + buf.pte0 = cpu_to_be64(pte0); + buf.pte1 = cpu_to_be64(pte1); + + rc = write(fd, &buf, sizeof(buf)); + if (rc != sizeof(buf)) { + hw_error("kvmppc_write_hpte: Unable to update KVM HPT"); + } + close(fd); +} + +int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, + uint64_t address, uint32_t data, PCIDevice *dev) +{ + return 0; +} + +int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, + int vector, PCIDevice *dev) +{ + return 0; +} + +int kvm_arch_release_virq_post(int virq) +{ + return 0; +} + +int kvm_arch_msi_data_to_gsi(uint32_t data) +{ + return data & 0xffff; +} + +#if defined(TARGET_PPC64) +int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run) +{ + uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK; + + cpu_synchronize_state(CPU(cpu)); + + spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV); + + return 0; +} +#endif + +int kvmppc_enable_hwrng(void) +{ + if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) { + return -1; + } + + return kvmppc_enable_hcall(kvm_state, H_RANDOM); +} + +void kvmppc_check_papr_resize_hpt(Error **errp) +{ + if (!kvm_enabled()) { + return; /* No KVM, we're good */ + } + + if (cap_resize_hpt) { + return; /* Kernel has explicit support, we're good */ + } + + /* Otherwise fallback on looking for PR KVM */ + if (kvmppc_is_pr(kvm_state)) { + return; + } + + error_setg(errp, + "Hash page table resizing not available with this KVM version"); +} + +int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift) +{ + CPUState *cs = CPU(cpu); + struct kvm_ppc_resize_hpt rhpt = { + .flags = flags, + .shift = shift, + }; + + if (!cap_resize_hpt) { + return -ENOSYS; + } + + return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt); +} + +int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift) +{ + CPUState *cs = CPU(cpu); + struct kvm_ppc_resize_hpt rhpt = { + .flags = flags, + .shift = shift, + }; + + if (!cap_resize_hpt) { + return -ENOSYS; + } + + return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt); +} + +/* + * This is a helper function to detect a post migration scenario + * in which a guest, running as KVM-HV, freezes in cpu_post_load because + * the guest kernel can't handle a PVR value other than the actual host + * PVR in KVM_SET_SREGS, even if pvr_match() returns true. + * + * If we don't have cap_ppc_pvr_compat and we're not running in PR + * (so, we're HV), return true. The workaround itself is done in + * cpu_post_load. + * + * The order here is important: we'll only check for KVM PR as a + * fallback if the guest kernel can't handle the situation itself. + * We need to avoid as much as possible querying the running KVM type + * in QEMU level. + */ +bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + + if (!kvm_enabled()) { + return false; + } + + if (cap_ppc_pvr_compat) { + return false; + } + + return !kvmppc_is_pr(cs->kvm_state); +} + +void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online) +{ + CPUState *cs = CPU(cpu); + + if (kvm_enabled()) { + kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online); + } +} + +void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset) +{ + CPUState *cs = CPU(cpu); + + if (kvm_enabled()) { + kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset); + } +} + +bool kvm_arch_cpu_check_are_resettable(void) +{ + return true; +} |