diff options
Diffstat (limited to 'target/riscv/cpu_helper.c')
-rw-r--r-- | target/riscv/cpu_helper.c | 1138 |
1 files changed, 1138 insertions, 0 deletions
diff --git a/target/riscv/cpu_helper.c b/target/riscv/cpu_helper.c new file mode 100644 index 000000000..9eeed38c7 --- /dev/null +++ b/target/riscv/cpu_helper.c @@ -0,0 +1,1138 @@ +/* + * RISC-V CPU helpers for qemu. + * + * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu + * Copyright (c) 2017-2018 SiFive, Inc. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2 or later, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "qemu/log.h" +#include "qemu/main-loop.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "tcg/tcg-op.h" +#include "trace.h" +#include "semihosting/common-semi.h" + +int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) +{ +#ifdef CONFIG_USER_ONLY + return 0; +#else + return env->priv; +#endif +} + +static RISCVMXL cpu_get_xl(CPURISCVState *env) +{ +#if defined(TARGET_RISCV32) + return MXL_RV32; +#elif defined(CONFIG_USER_ONLY) + return MXL_RV64; +#else + RISCVMXL xl = riscv_cpu_mxl(env); + + /* + * When emulating a 32-bit-only cpu, use RV32. + * When emulating a 64-bit cpu, and MXL has been reduced to RV32, + * MSTATUSH doesn't have UXL/SXL, therefore XLEN cannot be widened + * back to RV64 for lower privs. + */ + if (xl != MXL_RV32) { + switch (env->priv) { + case PRV_M: + break; + case PRV_U: + xl = get_field(env->mstatus, MSTATUS64_UXL); + break; + default: /* PRV_S | PRV_H */ + xl = get_field(env->mstatus, MSTATUS64_SXL); + break; + } + } + return xl; +#endif +} + +void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc, + target_ulong *cs_base, uint32_t *pflags) +{ + uint32_t flags = 0; + + *pc = env->pc; + *cs_base = 0; + + if (riscv_has_ext(env, RVV)) { + uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype); + bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl); + flags = FIELD_DP32(flags, TB_FLAGS, VILL, + FIELD_EX64(env->vtype, VTYPE, VILL)); + flags = FIELD_DP32(flags, TB_FLAGS, SEW, + FIELD_EX64(env->vtype, VTYPE, VSEW)); + flags = FIELD_DP32(flags, TB_FLAGS, LMUL, + FIELD_EX64(env->vtype, VTYPE, VLMUL)); + flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); + } else { + flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); + } + +#ifdef CONFIG_USER_ONLY + flags |= TB_FLAGS_MSTATUS_FS; +#else + flags |= cpu_mmu_index(env, 0); + if (riscv_cpu_fp_enabled(env)) { + flags |= env->mstatus & MSTATUS_FS; + } + + if (riscv_has_ext(env, RVH)) { + if (env->priv == PRV_M || + (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || + (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) && + get_field(env->hstatus, HSTATUS_HU))) { + flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1); + } + + flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS, + get_field(env->mstatus_hs, MSTATUS_FS)); + } + if (riscv_has_ext(env, RVJ)) { + int priv = flags & TB_FLAGS_PRIV_MMU_MASK; + bool pm_enabled = false; + switch (priv) { + case PRV_U: + pm_enabled = env->mmte & U_PM_ENABLE; + break; + case PRV_S: + pm_enabled = env->mmte & S_PM_ENABLE; + break; + case PRV_M: + pm_enabled = env->mmte & M_PM_ENABLE; + break; + default: + g_assert_not_reached(); + } + flags = FIELD_DP32(flags, TB_FLAGS, PM_ENABLED, pm_enabled); + } +#endif + + flags = FIELD_DP32(flags, TB_FLAGS, XL, cpu_get_xl(env)); + + *pflags = flags; +} + +#ifndef CONFIG_USER_ONLY +static int riscv_cpu_local_irq_pending(CPURISCVState *env) +{ + target_ulong virt_enabled = riscv_cpu_virt_enabled(env); + + target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE); + target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE); + + target_ulong pending = env->mip & env->mie; + + target_ulong mie = env->priv < PRV_M || + (env->priv == PRV_M && mstatus_mie); + target_ulong sie = env->priv < PRV_S || + (env->priv == PRV_S && mstatus_sie); + target_ulong hsie = virt_enabled || sie; + target_ulong vsie = virt_enabled && sie; + + target_ulong irqs = + (pending & ~env->mideleg & -mie) | + (pending & env->mideleg & ~env->hideleg & -hsie) | + (pending & env->mideleg & env->hideleg & -vsie); + + if (irqs) { + return ctz64(irqs); /* since non-zero */ + } else { + return RISCV_EXCP_NONE; /* indicates no pending interrupt */ + } +} + +bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) +{ + if (interrupt_request & CPU_INTERRUPT_HARD) { + RISCVCPU *cpu = RISCV_CPU(cs); + CPURISCVState *env = &cpu->env; + int interruptno = riscv_cpu_local_irq_pending(env); + if (interruptno >= 0) { + cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; + riscv_cpu_do_interrupt(cs); + return true; + } + } + return false; +} + +/* Return true is floating point support is currently enabled */ +bool riscv_cpu_fp_enabled(CPURISCVState *env) +{ + if (env->mstatus & MSTATUS_FS) { + if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { + return false; + } + return true; + } + + return false; +} + +void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) +{ + uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS | + MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | + MSTATUS64_UXL; + bool current_virt = riscv_cpu_virt_enabled(env); + + g_assert(riscv_has_ext(env, RVH)); + + if (current_virt) { + /* Current V=1 and we are about to change to V=0 */ + env->vsstatus = env->mstatus & mstatus_mask; + env->mstatus &= ~mstatus_mask; + env->mstatus |= env->mstatus_hs; + + env->vstvec = env->stvec; + env->stvec = env->stvec_hs; + + env->vsscratch = env->sscratch; + env->sscratch = env->sscratch_hs; + + env->vsepc = env->sepc; + env->sepc = env->sepc_hs; + + env->vscause = env->scause; + env->scause = env->scause_hs; + + env->vstval = env->stval; + env->stval = env->stval_hs; + + env->vsatp = env->satp; + env->satp = env->satp_hs; + } else { + /* Current V=0 and we are about to change to V=1 */ + env->mstatus_hs = env->mstatus & mstatus_mask; + env->mstatus &= ~mstatus_mask; + env->mstatus |= env->vsstatus; + + env->stvec_hs = env->stvec; + env->stvec = env->vstvec; + + env->sscratch_hs = env->sscratch; + env->sscratch = env->vsscratch; + + env->sepc_hs = env->sepc; + env->sepc = env->vsepc; + + env->scause_hs = env->scause; + env->scause = env->vscause; + + env->stval_hs = env->stval; + env->stval = env->vstval; + + env->satp_hs = env->satp; + env->satp = env->vsatp; + } +} + +bool riscv_cpu_virt_enabled(CPURISCVState *env) +{ + if (!riscv_has_ext(env, RVH)) { + return false; + } + + return get_field(env->virt, VIRT_ONOFF); +} + +void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) +{ + if (!riscv_has_ext(env, RVH)) { + return; + } + + /* Flush the TLB on all virt mode changes. */ + if (get_field(env->virt, VIRT_ONOFF) != enable) { + tlb_flush(env_cpu(env)); + } + + env->virt = set_field(env->virt, VIRT_ONOFF, enable); +} + +bool riscv_cpu_two_stage_lookup(int mmu_idx) +{ + return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK; +} + +int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts) +{ + CPURISCVState *env = &cpu->env; + if (env->miclaim & interrupts) { + return -1; + } else { + env->miclaim |= interrupts; + return 0; + } +} + +uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value) +{ + CPURISCVState *env = &cpu->env; + CPUState *cs = CPU(cpu); + uint32_t old = env->mip; + bool locked = false; + + if (!qemu_mutex_iothread_locked()) { + locked = true; + qemu_mutex_lock_iothread(); + } + + env->mip = (env->mip & ~mask) | (value & mask); + + if (env->mip) { + cpu_interrupt(cs, CPU_INTERRUPT_HARD); + } else { + cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); + } + + if (locked) { + qemu_mutex_unlock_iothread(); + } + + return old; +} + +void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t), + uint32_t arg) +{ + env->rdtime_fn = fn; + env->rdtime_fn_arg = arg; +} + +void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) +{ + if (newpriv > PRV_M) { + g_assert_not_reached(); + } + if (newpriv == PRV_H) { + newpriv = PRV_U; + } + /* tlb_flush is unnecessary as mode is contained in mmu_idx */ + env->priv = newpriv; + + /* + * Clear the load reservation - otherwise a reservation placed in one + * context/process can be used by another, resulting in an SC succeeding + * incorrectly. Version 2.2 of the ISA specification explicitly requires + * this behaviour, while later revisions say that the kernel "should" use + * an SC instruction to force the yielding of a load reservation on a + * preemptive context switch. As a result, do both. + */ + env->load_res = -1; +} + +/* + * get_physical_address_pmp - check PMP permission for this physical address + * + * Match the PMP region and check permission for this physical address and it's + * TLB page. Returns 0 if the permission checking was successful + * + * @env: CPURISCVState + * @prot: The returned protection attributes + * @tlb_size: TLB page size containing addr. It could be modified after PMP + * permission checking. NULL if not set TLB page for addr. + * @addr: The physical address to be checked permission + * @access_type: The type of MMU access + * @mode: Indicates current privilege level. + */ +static int get_physical_address_pmp(CPURISCVState *env, int *prot, + target_ulong *tlb_size, hwaddr addr, + int size, MMUAccessType access_type, + int mode) +{ + pmp_priv_t pmp_priv; + target_ulong tlb_size_pmp = 0; + + if (!riscv_feature(env, RISCV_FEATURE_PMP)) { + *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; + return TRANSLATE_SUCCESS; + } + + if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv, + mode)) { + *prot = 0; + return TRANSLATE_PMP_FAIL; + } + + *prot = pmp_priv_to_page_prot(pmp_priv); + if (tlb_size != NULL) { + if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) { + *tlb_size = tlb_size_pmp; + } + } + + return TRANSLATE_SUCCESS; +} + +/* get_physical_address - get the physical address for this virtual address + * + * Do a page table walk to obtain the physical address corresponding to a + * virtual address. Returns 0 if the translation was successful + * + * Adapted from Spike's mmu_t::translate and mmu_t::walk + * + * @env: CPURISCVState + * @physical: This will be set to the calculated physical address + * @prot: The returned protection attributes + * @addr: The virtual address to be translated + * @fault_pte_addr: If not NULL, this will be set to fault pte address + * when a error occurs on pte address translation. + * This will already be shifted to match htval. + * @access_type: The type of MMU access + * @mmu_idx: Indicates current privilege level + * @first_stage: Are we in first stage translation? + * Second stage is used for hypervisor guest translation + * @two_stage: Are we going to perform two stage translation + * @is_debug: Is this access from a debugger or the monitor? + */ +static int get_physical_address(CPURISCVState *env, hwaddr *physical, + int *prot, target_ulong addr, + target_ulong *fault_pte_addr, + int access_type, int mmu_idx, + bool first_stage, bool two_stage, + bool is_debug) +{ + /* NOTE: the env->pc value visible here will not be + * correct, but the value visible to the exception handler + * (riscv_cpu_do_interrupt) is correct */ + MemTxResult res; + MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; + int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; + bool use_background = false; + + /* + * Check if we should use the background registers for the two + * stage translation. We don't need to check if we actually need + * two stage translation as that happened before this function + * was called. Background registers will be used if the guest has + * forced a two stage translation to be on (in HS or M mode). + */ + if (!riscv_cpu_virt_enabled(env) && two_stage) { + use_background = true; + } + + /* MPRV does not affect the virtual-machine load/store + instructions, HLV, HLVX, and HSV. */ + if (riscv_cpu_two_stage_lookup(mmu_idx)) { + mode = get_field(env->hstatus, HSTATUS_SPVP); + } else if (mode == PRV_M && access_type != MMU_INST_FETCH) { + if (get_field(env->mstatus, MSTATUS_MPRV)) { + mode = get_field(env->mstatus, MSTATUS_MPP); + } + } + + if (first_stage == false) { + /* We are in stage 2 translation, this is similar to stage 1. */ + /* Stage 2 is always taken as U-mode */ + mode = PRV_U; + } + + if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { + *physical = addr; + *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; + return TRANSLATE_SUCCESS; + } + + *prot = 0; + + hwaddr base; + int levels, ptidxbits, ptesize, vm, sum, mxr, widened; + + if (first_stage == true) { + mxr = get_field(env->mstatus, MSTATUS_MXR); + } else { + mxr = get_field(env->vsstatus, MSTATUS_MXR); + } + + if (first_stage == true) { + if (use_background) { + if (riscv_cpu_mxl(env) == MXL_RV32) { + base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; + vm = get_field(env->vsatp, SATP32_MODE); + } else { + base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; + vm = get_field(env->vsatp, SATP64_MODE); + } + } else { + if (riscv_cpu_mxl(env) == MXL_RV32) { + base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; + vm = get_field(env->satp, SATP32_MODE); + } else { + base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; + vm = get_field(env->satp, SATP64_MODE); + } + } + widened = 0; + } else { + if (riscv_cpu_mxl(env) == MXL_RV32) { + base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; + vm = get_field(env->hgatp, SATP32_MODE); + } else { + base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; + vm = get_field(env->hgatp, SATP64_MODE); + } + widened = 2; + } + /* status.SUM will be ignored if execute on background */ + sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug; + switch (vm) { + case VM_1_10_SV32: + levels = 2; ptidxbits = 10; ptesize = 4; break; + case VM_1_10_SV39: + levels = 3; ptidxbits = 9; ptesize = 8; break; + case VM_1_10_SV48: + levels = 4; ptidxbits = 9; ptesize = 8; break; + case VM_1_10_SV57: + levels = 5; ptidxbits = 9; ptesize = 8; break; + case VM_1_10_MBARE: + *physical = addr; + *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; + return TRANSLATE_SUCCESS; + default: + g_assert_not_reached(); + } + + CPUState *cs = env_cpu(env); + int va_bits = PGSHIFT + levels * ptidxbits + widened; + target_ulong mask, masked_msbs; + + if (TARGET_LONG_BITS > (va_bits - 1)) { + mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; + } else { + mask = 0; + } + masked_msbs = (addr >> (va_bits - 1)) & mask; + + if (masked_msbs != 0 && masked_msbs != mask) { + return TRANSLATE_FAIL; + } + + int ptshift = (levels - 1) * ptidxbits; + int i; + +#if !TCG_OVERSIZED_GUEST +restart: +#endif + for (i = 0; i < levels; i++, ptshift -= ptidxbits) { + target_ulong idx; + if (i == 0) { + idx = (addr >> (PGSHIFT + ptshift)) & + ((1 << (ptidxbits + widened)) - 1); + } else { + idx = (addr >> (PGSHIFT + ptshift)) & + ((1 << ptidxbits) - 1); + } + + /* check that physical address of PTE is legal */ + hwaddr pte_addr; + + if (two_stage && first_stage) { + int vbase_prot; + hwaddr vbase; + + /* Do the second stage translation on the base PTE address. */ + int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, + base, NULL, MMU_DATA_LOAD, + mmu_idx, false, true, + is_debug); + + if (vbase_ret != TRANSLATE_SUCCESS) { + if (fault_pte_addr) { + *fault_pte_addr = (base + idx * ptesize) >> 2; + } + return TRANSLATE_G_STAGE_FAIL; + } + + pte_addr = vbase + idx * ptesize; + } else { + pte_addr = base + idx * ptesize; + } + + int pmp_prot; + int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr, + sizeof(target_ulong), + MMU_DATA_LOAD, PRV_S); + if (pmp_ret != TRANSLATE_SUCCESS) { + return TRANSLATE_PMP_FAIL; + } + + target_ulong pte; + if (riscv_cpu_mxl(env) == MXL_RV32) { + pte = address_space_ldl(cs->as, pte_addr, attrs, &res); + } else { + pte = address_space_ldq(cs->as, pte_addr, attrs, &res); + } + + if (res != MEMTX_OK) { + return TRANSLATE_FAIL; + } + + hwaddr ppn = pte >> PTE_PPN_SHIFT; + + if (!(pte & PTE_V)) { + /* Invalid PTE */ + return TRANSLATE_FAIL; + } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { + /* Inner PTE, continue walking */ + base = ppn << PGSHIFT; + } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { + /* Reserved leaf PTE flags: PTE_W */ + return TRANSLATE_FAIL; + } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { + /* Reserved leaf PTE flags: PTE_W + PTE_X */ + return TRANSLATE_FAIL; + } else if ((pte & PTE_U) && ((mode != PRV_U) && + (!sum || access_type == MMU_INST_FETCH))) { + /* User PTE flags when not U mode and mstatus.SUM is not set, + or the access type is an instruction fetch */ + return TRANSLATE_FAIL; + } else if (!(pte & PTE_U) && (mode != PRV_S)) { + /* Supervisor PTE flags when not S mode */ + return TRANSLATE_FAIL; + } else if (ppn & ((1ULL << ptshift) - 1)) { + /* Misaligned PPN */ + return TRANSLATE_FAIL; + } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || + ((pte & PTE_X) && mxr))) { + /* Read access check failed */ + return TRANSLATE_FAIL; + } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { + /* Write access check failed */ + return TRANSLATE_FAIL; + } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { + /* Fetch access check failed */ + return TRANSLATE_FAIL; + } else { + /* if necessary, set accessed and dirty bits. */ + target_ulong updated_pte = pte | PTE_A | + (access_type == MMU_DATA_STORE ? PTE_D : 0); + + /* Page table updates need to be atomic with MTTCG enabled */ + if (updated_pte != pte) { + /* + * - if accessed or dirty bits need updating, and the PTE is + * in RAM, then we do so atomically with a compare and swap. + * - if the PTE is in IO space or ROM, then it can't be updated + * and we return TRANSLATE_FAIL. + * - if the PTE changed by the time we went to update it, then + * it is no longer valid and we must re-walk the page table. + */ + MemoryRegion *mr; + hwaddr l = sizeof(target_ulong), addr1; + mr = address_space_translate(cs->as, pte_addr, + &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); + if (memory_region_is_ram(mr)) { + target_ulong *pte_pa = + qemu_map_ram_ptr(mr->ram_block, addr1); +#if TCG_OVERSIZED_GUEST + /* MTTCG is not enabled on oversized TCG guests so + * page table updates do not need to be atomic */ + *pte_pa = pte = updated_pte; +#else + target_ulong old_pte = + qatomic_cmpxchg(pte_pa, pte, updated_pte); + if (old_pte != pte) { + goto restart; + } else { + pte = updated_pte; + } +#endif + } else { + /* misconfigured PTE in ROM (AD bits are not preset) or + * PTE is in IO space and can't be updated atomically */ + return TRANSLATE_FAIL; + } + } + + /* for superpage mappings, make a fake leaf PTE for the TLB's + benefit. */ + target_ulong vpn = addr >> PGSHIFT; + *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) | + (addr & ~TARGET_PAGE_MASK); + + /* set permissions on the TLB entry */ + if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { + *prot |= PAGE_READ; + } + if ((pte & PTE_X)) { + *prot |= PAGE_EXEC; + } + /* add write permission on stores or if the page is already dirty, + so that we TLB miss on later writes to update the dirty bit */ + if ((pte & PTE_W) && + (access_type == MMU_DATA_STORE || (pte & PTE_D))) { + *prot |= PAGE_WRITE; + } + return TRANSLATE_SUCCESS; + } + } + return TRANSLATE_FAIL; +} + +static void raise_mmu_exception(CPURISCVState *env, target_ulong address, + MMUAccessType access_type, bool pmp_violation, + bool first_stage, bool two_stage) +{ + CPUState *cs = env_cpu(env); + int page_fault_exceptions, vm; + uint64_t stap_mode; + + if (riscv_cpu_mxl(env) == MXL_RV32) { + stap_mode = SATP32_MODE; + } else { + stap_mode = SATP64_MODE; + } + + if (first_stage) { + vm = get_field(env->satp, stap_mode); + } else { + vm = get_field(env->hgatp, stap_mode); + } + + page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation; + + switch (access_type) { + case MMU_INST_FETCH: + if (riscv_cpu_virt_enabled(env) && !first_stage) { + cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; + } else { + cs->exception_index = page_fault_exceptions ? + RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; + } + break; + case MMU_DATA_LOAD: + if (two_stage && !first_stage) { + cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; + } else { + cs->exception_index = page_fault_exceptions ? + RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; + } + break; + case MMU_DATA_STORE: + if (two_stage && !first_stage) { + cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; + } else { + cs->exception_index = page_fault_exceptions ? + RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; + } + break; + default: + g_assert_not_reached(); + } + env->badaddr = address; + env->two_stage_lookup = two_stage; +} + +hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) +{ + RISCVCPU *cpu = RISCV_CPU(cs); + CPURISCVState *env = &cpu->env; + hwaddr phys_addr; + int prot; + int mmu_idx = cpu_mmu_index(&cpu->env, false); + + if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, + true, riscv_cpu_virt_enabled(env), true)) { + return -1; + } + + if (riscv_cpu_virt_enabled(env)) { + if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, + 0, mmu_idx, false, true, true)) { + return -1; + } + } + + return phys_addr & TARGET_PAGE_MASK; +} + +void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, + vaddr addr, unsigned size, + MMUAccessType access_type, + int mmu_idx, MemTxAttrs attrs, + MemTxResult response, uintptr_t retaddr) +{ + RISCVCPU *cpu = RISCV_CPU(cs); + CPURISCVState *env = &cpu->env; + + if (access_type == MMU_DATA_STORE) { + cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; + } else if (access_type == MMU_DATA_LOAD) { + cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; + } else { + cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; + } + + env->badaddr = addr; + env->two_stage_lookup = riscv_cpu_virt_enabled(env) || + riscv_cpu_two_stage_lookup(mmu_idx); + riscv_raise_exception(&cpu->env, cs->exception_index, retaddr); +} + +void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, + MMUAccessType access_type, int mmu_idx, + uintptr_t retaddr) +{ + RISCVCPU *cpu = RISCV_CPU(cs); + CPURISCVState *env = &cpu->env; + switch (access_type) { + case MMU_INST_FETCH: + cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; + break; + case MMU_DATA_LOAD: + cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; + break; + case MMU_DATA_STORE: + cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; + break; + default: + g_assert_not_reached(); + } + env->badaddr = addr; + env->two_stage_lookup = riscv_cpu_virt_enabled(env) || + riscv_cpu_two_stage_lookup(mmu_idx); + riscv_raise_exception(env, cs->exception_index, retaddr); +} + +bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, + MMUAccessType access_type, int mmu_idx, + bool probe, uintptr_t retaddr) +{ + RISCVCPU *cpu = RISCV_CPU(cs); + CPURISCVState *env = &cpu->env; + vaddr im_address; + hwaddr pa = 0; + int prot, prot2, prot_pmp; + bool pmp_violation = false; + bool first_stage_error = true; + bool two_stage_lookup = false; + int ret = TRANSLATE_FAIL; + int mode = mmu_idx; + /* default TLB page size */ + target_ulong tlb_size = TARGET_PAGE_SIZE; + + env->guest_phys_fault_addr = 0; + + qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", + __func__, address, access_type, mmu_idx); + + /* MPRV does not affect the virtual-machine load/store + instructions, HLV, HLVX, and HSV. */ + if (riscv_cpu_two_stage_lookup(mmu_idx)) { + mode = get_field(env->hstatus, HSTATUS_SPVP); + } else if (mode == PRV_M && access_type != MMU_INST_FETCH && + get_field(env->mstatus, MSTATUS_MPRV)) { + mode = get_field(env->mstatus, MSTATUS_MPP); + if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) { + two_stage_lookup = true; + } + } + + if (riscv_cpu_virt_enabled(env) || + ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) && + access_type != MMU_INST_FETCH)) { + /* Two stage lookup */ + ret = get_physical_address(env, &pa, &prot, address, + &env->guest_phys_fault_addr, access_type, + mmu_idx, true, true, false); + + /* + * A G-stage exception may be triggered during two state lookup. + * And the env->guest_phys_fault_addr has already been set in + * get_physical_address(). + */ + if (ret == TRANSLATE_G_STAGE_FAIL) { + first_stage_error = false; + access_type = MMU_DATA_LOAD; + } + + qemu_log_mask(CPU_LOG_MMU, + "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " + TARGET_FMT_plx " prot %d\n", + __func__, address, ret, pa, prot); + + if (ret == TRANSLATE_SUCCESS) { + /* Second stage lookup */ + im_address = pa; + + ret = get_physical_address(env, &pa, &prot2, im_address, NULL, + access_type, mmu_idx, false, true, + false); + + qemu_log_mask(CPU_LOG_MMU, + "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " + TARGET_FMT_plx " prot %d\n", + __func__, im_address, ret, pa, prot2); + + prot &= prot2; + + if (ret == TRANSLATE_SUCCESS) { + ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, + size, access_type, mode); + + qemu_log_mask(CPU_LOG_MMU, + "%s PMP address=" TARGET_FMT_plx " ret %d prot" + " %d tlb_size " TARGET_FMT_lu "\n", + __func__, pa, ret, prot_pmp, tlb_size); + + prot &= prot_pmp; + } + + if (ret != TRANSLATE_SUCCESS) { + /* + * Guest physical address translation failed, this is a HS + * level exception + */ + first_stage_error = false; + env->guest_phys_fault_addr = (im_address | + (address & + (TARGET_PAGE_SIZE - 1))) >> 2; + } + } + } else { + /* Single stage lookup */ + ret = get_physical_address(env, &pa, &prot, address, NULL, + access_type, mmu_idx, true, false, false); + + qemu_log_mask(CPU_LOG_MMU, + "%s address=%" VADDR_PRIx " ret %d physical " + TARGET_FMT_plx " prot %d\n", + __func__, address, ret, pa, prot); + + if (ret == TRANSLATE_SUCCESS) { + ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, + size, access_type, mode); + + qemu_log_mask(CPU_LOG_MMU, + "%s PMP address=" TARGET_FMT_plx " ret %d prot" + " %d tlb_size " TARGET_FMT_lu "\n", + __func__, pa, ret, prot_pmp, tlb_size); + + prot &= prot_pmp; + } + } + + if (ret == TRANSLATE_PMP_FAIL) { + pmp_violation = true; + } + + if (ret == TRANSLATE_SUCCESS) { + tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), + prot, mmu_idx, tlb_size); + return true; + } else if (probe) { + return false; + } else { + raise_mmu_exception(env, address, access_type, pmp_violation, + first_stage_error, + riscv_cpu_virt_enabled(env) || + riscv_cpu_two_stage_lookup(mmu_idx)); + riscv_raise_exception(env, cs->exception_index, retaddr); + } + + return true; +} +#endif /* !CONFIG_USER_ONLY */ + +/* + * Handle Traps + * + * Adapted from Spike's processor_t::take_trap. + * + */ +void riscv_cpu_do_interrupt(CPUState *cs) +{ +#if !defined(CONFIG_USER_ONLY) + + RISCVCPU *cpu = RISCV_CPU(cs); + CPURISCVState *env = &cpu->env; + uint64_t s; + + /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide + * so we mask off the MSB and separate into trap type and cause. + */ + bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); + target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; + target_ulong deleg = async ? env->mideleg : env->medeleg; + bool write_tval = false; + target_ulong tval = 0; + target_ulong htval = 0; + target_ulong mtval2 = 0; + + if (cause == RISCV_EXCP_SEMIHOST) { + if (env->priv >= PRV_S) { + env->gpr[xA0] = do_common_semihosting(cs); + env->pc += 4; + return; + } + cause = RISCV_EXCP_BREAKPOINT; + } + + if (!async) { + /* set tval to badaddr for traps with address information */ + switch (cause) { + case RISCV_EXCP_INST_GUEST_PAGE_FAULT: + case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: + case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: + case RISCV_EXCP_INST_ADDR_MIS: + case RISCV_EXCP_INST_ACCESS_FAULT: + case RISCV_EXCP_LOAD_ADDR_MIS: + case RISCV_EXCP_STORE_AMO_ADDR_MIS: + case RISCV_EXCP_LOAD_ACCESS_FAULT: + case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: + case RISCV_EXCP_INST_PAGE_FAULT: + case RISCV_EXCP_LOAD_PAGE_FAULT: + case RISCV_EXCP_STORE_PAGE_FAULT: + write_tval = true; + tval = env->badaddr; + break; + default: + break; + } + /* ecall is dispatched as one cause so translate based on mode */ + if (cause == RISCV_EXCP_U_ECALL) { + assert(env->priv <= 3); + + if (env->priv == PRV_M) { + cause = RISCV_EXCP_M_ECALL; + } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { + cause = RISCV_EXCP_VS_ECALL; + } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { + cause = RISCV_EXCP_S_ECALL; + } else if (env->priv == PRV_U) { + cause = RISCV_EXCP_U_ECALL; + } + } + } + + trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, + riscv_cpu_get_trap_name(cause, async)); + + qemu_log_mask(CPU_LOG_INT, + "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " + "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", + __func__, env->mhartid, async, cause, env->pc, tval, + riscv_cpu_get_trap_name(cause, async)); + + if (env->priv <= PRV_S && + cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { + /* handle the trap in S-mode */ + if (riscv_has_ext(env, RVH)) { + target_ulong hdeleg = async ? env->hideleg : env->hedeleg; + + if (env->two_stage_lookup && write_tval) { + /* + * If we are writing a guest virtual address to stval, set + * this to 1. If we are trapping to VS we will set this to 0 + * later. + */ + env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1); + } else { + /* For other HS-mode traps, we set this to 0. */ + env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); + } + + if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) { + /* Trap to VS mode */ + /* + * See if we need to adjust cause. Yes if its VS mode interrupt + * no if hypervisor has delegated one of hs mode's interrupt + */ + if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || + cause == IRQ_VS_EXT) { + cause = cause - 1; + } + env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); + } else if (riscv_cpu_virt_enabled(env)) { + /* Trap into HS mode, from virt */ + riscv_cpu_swap_hypervisor_regs(env); + env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, + env->priv); + env->hstatus = set_field(env->hstatus, HSTATUS_SPV, + riscv_cpu_virt_enabled(env)); + + htval = env->guest_phys_fault_addr; + + riscv_cpu_set_virt_enabled(env, 0); + } else { + /* Trap into HS mode */ + env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); + htval = env->guest_phys_fault_addr; + } + } + + s = env->mstatus; + s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); + s = set_field(s, MSTATUS_SPP, env->priv); + s = set_field(s, MSTATUS_SIE, 0); + env->mstatus = s; + env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); + env->sepc = env->pc; + env->stval = tval; + env->htval = htval; + env->pc = (env->stvec >> 2 << 2) + + ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); + riscv_cpu_set_mode(env, PRV_S); + } else { + /* handle the trap in M-mode */ + if (riscv_has_ext(env, RVH)) { + if (riscv_cpu_virt_enabled(env)) { + riscv_cpu_swap_hypervisor_regs(env); + } + env->mstatus = set_field(env->mstatus, MSTATUS_MPV, + riscv_cpu_virt_enabled(env)); + if (riscv_cpu_virt_enabled(env) && tval) { + env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); + } + + mtval2 = env->guest_phys_fault_addr; + + /* Trapping to M mode, virt is disabled */ + riscv_cpu_set_virt_enabled(env, 0); + } + + s = env->mstatus; + s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); + s = set_field(s, MSTATUS_MPP, env->priv); + s = set_field(s, MSTATUS_MIE, 0); + env->mstatus = s; + env->mcause = cause | ~(((target_ulong)-1) >> async); + env->mepc = env->pc; + env->mtval = tval; + env->mtval2 = mtval2; + env->pc = (env->mtvec >> 2 << 2) + + ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); + riscv_cpu_set_mode(env, PRV_M); + } + + /* NOTE: it is not necessary to yield load reservations here. It is only + * necessary for an SC from "another hart" to cause a load reservation + * to be yielded. Refer to the memory consistency model section of the + * RISC-V ISA Specification. + */ + + env->two_stage_lookup = false; +#endif + cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ +} |