1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
|
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
// MCInsts.
//
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
// 64-bit X86 instruction sets. The main decode sequence for an assembly
// instruction in this disassembler is:
//
// 1. Read the prefix bytes and determine the attributes of the instruction.
// These attributes, recorded in enum attributeBits
// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
// provides a mapping from bitmasks to contexts, which are represented by
// enum InstructionContext (ibid.).
//
// 2. Read the opcode, and determine what kind of opcode it is. The
// disassembler distinguishes four kinds of opcodes, which are enumerated in
// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
//
// 3. Depending on the opcode type, look in one of four ClassDecision structures
// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
// a ModRMDecision (ibid.).
//
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
// ModR/M byte is required and how to interpret it.
//
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
// meanings of its operands.
//
// 6. For each operand, its encoding is an entry from OperandEncoding
// (X86DisassemblerDecoderCommon.h) and its type is an entry from
// OperandType (ibid.). The encoding indicates how to read it from the
// instruction; the type indicates how to interpret the value once it has
// been read. For example, a register operand could be stored in the R/M
// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
// register, for instance). Given this information, the operands can be
// extracted and interpreted.
//
// 7. As the last step, the disassembler translates the instruction information
// and operands into a format understandable by the client - in this case, an
// MCInst for use by the MC infrastructure.
//
// The disassembler is broken broadly into two parts: the table emitter that
// emits the instruction decode tables discussed above during compilation, and
// the disassembler itself. The table emitter is documented in more detail in
// utils/TableGen/X86DisassemblerEmitter.h.
//
// X86Disassembler.cpp contains the code responsible for step 7, and for
// invoking the decoder to execute steps 1-6.
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
// table emitter and the disassembler.
// X86DisassemblerDecoder.h contains the public interface of the decoder,
// factored out into C for possible use by other projects.
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
// responsible for steps 1-6.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
#ifdef CAPSTONE_HAS_X86
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#pragma warning(disable:4996) // disable MSVC's warning on strncpy()
#pragma warning(disable:28719) // disable MSVC's warning on strncpy()
#endif
#include <capstone/platform.h>
#if defined(CAPSTONE_HAS_OSXKERNEL)
#include <Availability.h>
#endif
#include <string.h>
#include "../../cs_priv.h"
#include "X86BaseInfo.h"
#include "X86Disassembler.h"
#include "X86DisassemblerDecoderCommon.h"
#include "X86DisassemblerDecoder.h"
#include "../../MCInst.h"
#include "../../utils.h"
#include "X86Mapping.h"
#define GET_REGINFO_ENUM
#define GET_REGINFO_MC_DESC
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_ENUM
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenInstrInfo_reduce.inc"
#else
#include "X86GenInstrInfo.inc"
#endif
// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
enum {
X86_BX_SI = 500,
X86_BX_DI = 501,
X86_BP_SI = 502,
X86_BP_DI = 503,
X86_sib = 504,
X86_sib64 = 505
};
//
// Private code that translates from struct InternalInstructions to MCInsts.
//
/// translateRegister - Translates an internal register to the appropriate LLVM
/// register, and appends it as an operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param reg - The Reg to append.
static void translateRegister(MCInst *mcInst, Reg reg)
{
#define ENTRY(x) X86_##x,
static const uint16_t llvmRegnums[] = {
ALL_REGS
0
};
#undef ENTRY
uint16_t llvmRegnum = llvmRegnums[reg];
MCOperand_CreateReg0(mcInst, llvmRegnum);
}
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
0, // SEG_OVERRIDE_NONE
X86_CS,
X86_SS,
X86_DS,
X86_ES,
X86_FS,
X86_GS
};
/// translateSrcIndex - Appends a source index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateSrcIndex(MCInst *mcInst, InternalInstruction *insn)
{
unsigned baseRegNo;
if (insn->mode == MODE_64BIT)
baseRegNo = insn->hasAdSize ? X86_ESI : X86_RSI;
else if (insn->mode == MODE_32BIT)
baseRegNo = insn->hasAdSize ? X86_SI : X86_ESI;
else {
// assert(insn->mode == MODE_16BIT);
baseRegNo = insn->hasAdSize ? X86_ESI : X86_SI;
}
MCOperand_CreateReg0(mcInst, baseRegNo);
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
return false;
}
/// translateDstIndex - Appends a destination index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateDstIndex(MCInst *mcInst, InternalInstruction *insn)
{
unsigned baseRegNo;
if (insn->mode == MODE_64BIT)
baseRegNo = insn->hasAdSize ? X86_EDI : X86_RDI;
else if (insn->mode == MODE_32BIT)
baseRegNo = insn->hasAdSize ? X86_DI : X86_EDI;
else {
// assert(insn->mode == MODE_16BIT);
baseRegNo = insn->hasAdSize ? X86_EDI : X86_DI;
}
MCOperand_CreateReg0(mcInst, baseRegNo);
return false;
}
/// translateImmediate - Appends an immediate operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param immediate - The immediate value to append.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
static void translateImmediate(MCInst *mcInst, uint64_t immediate,
const OperandSpecifier *operand, InternalInstruction *insn)
{
OperandType type;
type = (OperandType)operand->type;
if (type == TYPE_REL) {
//isBranch = true;
//pcrel = insn->startLocation + insn->immediateOffset + insn->immediateSize;
switch (operand->encoding) {
default:
break;
case ENCODING_Iv:
switch (insn->displacementSize) {
default:
break;
case 1:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case 2:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case 4:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case 8:
break;
}
break;
case ENCODING_IB:
if (immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if (immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if (immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
}
} // By default sign-extend all X86 immediates based on their encoding.
else if (type == TYPE_IMM) {
switch (operand->encoding) {
default:
break;
case ENCODING_IB:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case ENCODING_IO:
break;
}
} else if (type == TYPE_IMM3) {
#ifndef CAPSTONE_X86_REDUCE
// Check for immediates that printSSECC can't handle.
if (immediate >= 8) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: break; // never reach
case X86_CMPPDrmi: NewOpc = X86_CMPPDrmi_alt; break;
case X86_CMPPDrri: NewOpc = X86_CMPPDrri_alt; break;
case X86_CMPPSrmi: NewOpc = X86_CMPPSrmi_alt; break;
case X86_CMPPSrri: NewOpc = X86_CMPPSrri_alt; break;
case X86_CMPSDrm: NewOpc = X86_CMPSDrm_alt; break;
case X86_CMPSDrr: NewOpc = X86_CMPSDrr_alt; break;
case X86_CMPSSrm: NewOpc = X86_CMPSSrm_alt; break;
case X86_CMPSSrr: NewOpc = X86_CMPSSrr_alt; break;
case X86_VPCOMBri: NewOpc = X86_VPCOMBri_alt; break;
case X86_VPCOMBmi: NewOpc = X86_VPCOMBmi_alt; break;
case X86_VPCOMWri: NewOpc = X86_VPCOMWri_alt; break;
case X86_VPCOMWmi: NewOpc = X86_VPCOMWmi_alt; break;
case X86_VPCOMDri: NewOpc = X86_VPCOMDri_alt; break;
case X86_VPCOMDmi: NewOpc = X86_VPCOMDmi_alt; break;
case X86_VPCOMQri: NewOpc = X86_VPCOMQri_alt; break;
case X86_VPCOMQmi: NewOpc = X86_VPCOMQmi_alt; break;
case X86_VPCOMUBri: NewOpc = X86_VPCOMUBri_alt; break;
case X86_VPCOMUBmi: NewOpc = X86_VPCOMUBmi_alt; break;
case X86_VPCOMUWri: NewOpc = X86_VPCOMUWri_alt; break;
case X86_VPCOMUWmi: NewOpc = X86_VPCOMUWmi_alt; break;
case X86_VPCOMUDri: NewOpc = X86_VPCOMUDri_alt; break;
case X86_VPCOMUDmi: NewOpc = X86_VPCOMUDmi_alt; break;
case X86_VPCOMUQri: NewOpc = X86_VPCOMUQri_alt; break;
case X86_VPCOMUQmi: NewOpc = X86_VPCOMUQmi_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
} else if (type == TYPE_IMM5) {
#ifndef CAPSTONE_X86_REDUCE
// Check for immediates that printAVXCC can't handle.
if (immediate >= 32) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: break; // unexpected opcode
case X86_VCMPPDrmi: NewOpc = X86_VCMPPDrmi_alt; break;
case X86_VCMPPDrri: NewOpc = X86_VCMPPDrri_alt; break;
case X86_VCMPPSrmi: NewOpc = X86_VCMPPSrmi_alt; break;
case X86_VCMPPSrri: NewOpc = X86_VCMPPSrri_alt; break;
case X86_VCMPSDrm: NewOpc = X86_VCMPSDrm_alt; break;
case X86_VCMPSDrr: NewOpc = X86_VCMPSDrr_alt; break;
case X86_VCMPSSrm: NewOpc = X86_VCMPSSrm_alt; break;
case X86_VCMPSSrr: NewOpc = X86_VCMPSSrr_alt; break;
case X86_VCMPPDYrmi: NewOpc = X86_VCMPPDYrmi_alt; break;
case X86_VCMPPDYrri: NewOpc = X86_VCMPPDYrri_alt; break;
case X86_VCMPPSYrmi: NewOpc = X86_VCMPPSYrmi_alt; break;
case X86_VCMPPSYrri: NewOpc = X86_VCMPPSYrri_alt; break;
case X86_VCMPPDZrmi: NewOpc = X86_VCMPPDZrmi_alt; break;
case X86_VCMPPDZrri: NewOpc = X86_VCMPPDZrri_alt; break;
case X86_VCMPPDZrrib: NewOpc = X86_VCMPPDZrrib_alt; break;
case X86_VCMPPSZrmi: NewOpc = X86_VCMPPSZrmi_alt; break;
case X86_VCMPPSZrri: NewOpc = X86_VCMPPSZrri_alt; break;
case X86_VCMPPSZrrib: NewOpc = X86_VCMPPSZrrib_alt; break;
case X86_VCMPPDZ128rmi: NewOpc = X86_VCMPPDZ128rmi_alt; break;
case X86_VCMPPDZ128rri: NewOpc = X86_VCMPPDZ128rri_alt; break;
case X86_VCMPPSZ128rmi: NewOpc = X86_VCMPPSZ128rmi_alt; break;
case X86_VCMPPSZ128rri: NewOpc = X86_VCMPPSZ128rri_alt; break;
case X86_VCMPPDZ256rmi: NewOpc = X86_VCMPPDZ256rmi_alt; break;
case X86_VCMPPDZ256rri: NewOpc = X86_VCMPPDZ256rri_alt; break;
case X86_VCMPPSZ256rmi: NewOpc = X86_VCMPPSZ256rmi_alt; break;
case X86_VCMPPSZ256rri: NewOpc = X86_VCMPPSZ256rri_alt; break;
case X86_VCMPSDZrm_Int: NewOpc = X86_VCMPSDZrmi_alt; break;
case X86_VCMPSDZrr_Int: NewOpc = X86_VCMPSDZrri_alt; break;
case X86_VCMPSDZrrb_Int: NewOpc = X86_VCMPSDZrrb_alt; break;
case X86_VCMPSSZrm_Int: NewOpc = X86_VCMPSSZrmi_alt; break;
case X86_VCMPSSZrr_Int: NewOpc = X86_VCMPSSZrri_alt; break;
case X86_VCMPSSZrrb_Int: NewOpc = X86_VCMPSSZrrb_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
} else if (type == TYPE_AVX512ICC) {
#ifndef CAPSTONE_X86_REDUCE
if (immediate >= 8 || ((immediate & 0x3) == 3)) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: // llvm_unreachable("unexpected opcode");
case X86_VPCMPBZ128rmi: NewOpc = X86_VPCMPBZ128rmi_alt; break;
case X86_VPCMPBZ128rmik: NewOpc = X86_VPCMPBZ128rmik_alt; break;
case X86_VPCMPBZ128rri: NewOpc = X86_VPCMPBZ128rri_alt; break;
case X86_VPCMPBZ128rrik: NewOpc = X86_VPCMPBZ128rrik_alt; break;
case X86_VPCMPBZ256rmi: NewOpc = X86_VPCMPBZ256rmi_alt; break;
case X86_VPCMPBZ256rmik: NewOpc = X86_VPCMPBZ256rmik_alt; break;
case X86_VPCMPBZ256rri: NewOpc = X86_VPCMPBZ256rri_alt; break;
case X86_VPCMPBZ256rrik: NewOpc = X86_VPCMPBZ256rrik_alt; break;
case X86_VPCMPBZrmi: NewOpc = X86_VPCMPBZrmi_alt; break;
case X86_VPCMPBZrmik: NewOpc = X86_VPCMPBZrmik_alt; break;
case X86_VPCMPBZrri: NewOpc = X86_VPCMPBZrri_alt; break;
case X86_VPCMPBZrrik: NewOpc = X86_VPCMPBZrrik_alt; break;
case X86_VPCMPDZ128rmi: NewOpc = X86_VPCMPDZ128rmi_alt; break;
case X86_VPCMPDZ128rmib: NewOpc = X86_VPCMPDZ128rmib_alt; break;
case X86_VPCMPDZ128rmibk: NewOpc = X86_VPCMPDZ128rmibk_alt; break;
case X86_VPCMPDZ128rmik: NewOpc = X86_VPCMPDZ128rmik_alt; break;
case X86_VPCMPDZ128rri: NewOpc = X86_VPCMPDZ128rri_alt; break;
case X86_VPCMPDZ128rrik: NewOpc = X86_VPCMPDZ128rrik_alt; break;
case X86_VPCMPDZ256rmi: NewOpc = X86_VPCMPDZ256rmi_alt; break;
case X86_VPCMPDZ256rmib: NewOpc = X86_VPCMPDZ256rmib_alt; break;
case X86_VPCMPDZ256rmibk: NewOpc = X86_VPCMPDZ256rmibk_alt; break;
case X86_VPCMPDZ256rmik: NewOpc = X86_VPCMPDZ256rmik_alt; break;
case X86_VPCMPDZ256rri: NewOpc = X86_VPCMPDZ256rri_alt; break;
case X86_VPCMPDZ256rrik: NewOpc = X86_VPCMPDZ256rrik_alt; break;
case X86_VPCMPDZrmi: NewOpc = X86_VPCMPDZrmi_alt; break;
case X86_VPCMPDZrmib: NewOpc = X86_VPCMPDZrmib_alt; break;
case X86_VPCMPDZrmibk: NewOpc = X86_VPCMPDZrmibk_alt; break;
case X86_VPCMPDZrmik: NewOpc = X86_VPCMPDZrmik_alt; break;
case X86_VPCMPDZrri: NewOpc = X86_VPCMPDZrri_alt; break;
case X86_VPCMPDZrrik: NewOpc = X86_VPCMPDZrrik_alt; break;
case X86_VPCMPQZ128rmi: NewOpc = X86_VPCMPQZ128rmi_alt; break;
case X86_VPCMPQZ128rmib: NewOpc = X86_VPCMPQZ128rmib_alt; break;
case X86_VPCMPQZ128rmibk: NewOpc = X86_VPCMPQZ128rmibk_alt; break;
case X86_VPCMPQZ128rmik: NewOpc = X86_VPCMPQZ128rmik_alt; break;
case X86_VPCMPQZ128rri: NewOpc = X86_VPCMPQZ128rri_alt; break;
case X86_VPCMPQZ128rrik: NewOpc = X86_VPCMPQZ128rrik_alt; break;
case X86_VPCMPQZ256rmi: NewOpc = X86_VPCMPQZ256rmi_alt; break;
case X86_VPCMPQZ256rmib: NewOpc = X86_VPCMPQZ256rmib_alt; break;
case X86_VPCMPQZ256rmibk: NewOpc = X86_VPCMPQZ256rmibk_alt; break;
case X86_VPCMPQZ256rmik: NewOpc = X86_VPCMPQZ256rmik_alt; break;
case X86_VPCMPQZ256rri: NewOpc = X86_VPCMPQZ256rri_alt; break;
case X86_VPCMPQZ256rrik: NewOpc = X86_VPCMPQZ256rrik_alt; break;
case X86_VPCMPQZrmi: NewOpc = X86_VPCMPQZrmi_alt; break;
case X86_VPCMPQZrmib: NewOpc = X86_VPCMPQZrmib_alt; break;
case X86_VPCMPQZrmibk: NewOpc = X86_VPCMPQZrmibk_alt; break;
case X86_VPCMPQZrmik: NewOpc = X86_VPCMPQZrmik_alt; break;
case X86_VPCMPQZrri: NewOpc = X86_VPCMPQZrri_alt; break;
case X86_VPCMPQZrrik: NewOpc = X86_VPCMPQZrrik_alt; break;
case X86_VPCMPUBZ128rmi: NewOpc = X86_VPCMPUBZ128rmi_alt; break;
case X86_VPCMPUBZ128rmik: NewOpc = X86_VPCMPUBZ128rmik_alt; break;
case X86_VPCMPUBZ128rri: NewOpc = X86_VPCMPUBZ128rri_alt; break;
case X86_VPCMPUBZ128rrik: NewOpc = X86_VPCMPUBZ128rrik_alt; break;
case X86_VPCMPUBZ256rmi: NewOpc = X86_VPCMPUBZ256rmi_alt; break;
case X86_VPCMPUBZ256rmik: NewOpc = X86_VPCMPUBZ256rmik_alt; break;
case X86_VPCMPUBZ256rri: NewOpc = X86_VPCMPUBZ256rri_alt; break;
case X86_VPCMPUBZ256rrik: NewOpc = X86_VPCMPUBZ256rrik_alt; break;
case X86_VPCMPUBZrmi: NewOpc = X86_VPCMPUBZrmi_alt; break;
case X86_VPCMPUBZrmik: NewOpc = X86_VPCMPUBZrmik_alt; break;
case X86_VPCMPUBZrri: NewOpc = X86_VPCMPUBZrri_alt; break;
case X86_VPCMPUBZrrik: NewOpc = X86_VPCMPUBZrrik_alt; break;
case X86_VPCMPUDZ128rmi: NewOpc = X86_VPCMPUDZ128rmi_alt; break;
case X86_VPCMPUDZ128rmib: NewOpc = X86_VPCMPUDZ128rmib_alt; break;
case X86_VPCMPUDZ128rmibk: NewOpc = X86_VPCMPUDZ128rmibk_alt; break;
case X86_VPCMPUDZ128rmik: NewOpc = X86_VPCMPUDZ128rmik_alt; break;
case X86_VPCMPUDZ128rri: NewOpc = X86_VPCMPUDZ128rri_alt; break;
case X86_VPCMPUDZ128rrik: NewOpc = X86_VPCMPUDZ128rrik_alt; break;
case X86_VPCMPUDZ256rmi: NewOpc = X86_VPCMPUDZ256rmi_alt; break;
case X86_VPCMPUDZ256rmib: NewOpc = X86_VPCMPUDZ256rmib_alt; break;
case X86_VPCMPUDZ256rmibk: NewOpc = X86_VPCMPUDZ256rmibk_alt; break;
case X86_VPCMPUDZ256rmik: NewOpc = X86_VPCMPUDZ256rmik_alt; break;
case X86_VPCMPUDZ256rri: NewOpc = X86_VPCMPUDZ256rri_alt; break;
case X86_VPCMPUDZ256rrik: NewOpc = X86_VPCMPUDZ256rrik_alt; break;
case X86_VPCMPUDZrmi: NewOpc = X86_VPCMPUDZrmi_alt; break;
case X86_VPCMPUDZrmib: NewOpc = X86_VPCMPUDZrmib_alt; break;
case X86_VPCMPUDZrmibk: NewOpc = X86_VPCMPUDZrmibk_alt; break;
case X86_VPCMPUDZrmik: NewOpc = X86_VPCMPUDZrmik_alt; break;
case X86_VPCMPUDZrri: NewOpc = X86_VPCMPUDZrri_alt; break;
case X86_VPCMPUDZrrik: NewOpc = X86_VPCMPUDZrrik_alt; break;
case X86_VPCMPUQZ128rmi: NewOpc = X86_VPCMPUQZ128rmi_alt; break;
case X86_VPCMPUQZ128rmib: NewOpc = X86_VPCMPUQZ128rmib_alt; break;
case X86_VPCMPUQZ128rmibk: NewOpc = X86_VPCMPUQZ128rmibk_alt; break;
case X86_VPCMPUQZ128rmik: NewOpc = X86_VPCMPUQZ128rmik_alt; break;
case X86_VPCMPUQZ128rri: NewOpc = X86_VPCMPUQZ128rri_alt; break;
case X86_VPCMPUQZ128rrik: NewOpc = X86_VPCMPUQZ128rrik_alt; break;
case X86_VPCMPUQZ256rmi: NewOpc = X86_VPCMPUQZ256rmi_alt; break;
case X86_VPCMPUQZ256rmib: NewOpc = X86_VPCMPUQZ256rmib_alt; break;
case X86_VPCMPUQZ256rmibk: NewOpc = X86_VPCMPUQZ256rmibk_alt; break;
case X86_VPCMPUQZ256rmik: NewOpc = X86_VPCMPUQZ256rmik_alt; break;
case X86_VPCMPUQZ256rri: NewOpc = X86_VPCMPUQZ256rri_alt; break;
case X86_VPCMPUQZ256rrik: NewOpc = X86_VPCMPUQZ256rrik_alt; break;
case X86_VPCMPUQZrmi: NewOpc = X86_VPCMPUQZrmi_alt; break;
case X86_VPCMPUQZrmib: NewOpc = X86_VPCMPUQZrmib_alt; break;
case X86_VPCMPUQZrmibk: NewOpc = X86_VPCMPUQZrmibk_alt; break;
case X86_VPCMPUQZrmik: NewOpc = X86_VPCMPUQZrmik_alt; break;
case X86_VPCMPUQZrri: NewOpc = X86_VPCMPUQZrri_alt; break;
case X86_VPCMPUQZrrik: NewOpc = X86_VPCMPUQZrrik_alt; break;
case X86_VPCMPUWZ128rmi: NewOpc = X86_VPCMPUWZ128rmi_alt; break;
case X86_VPCMPUWZ128rmik: NewOpc = X86_VPCMPUWZ128rmik_alt; break;
case X86_VPCMPUWZ128rri: NewOpc = X86_VPCMPUWZ128rri_alt; break;
case X86_VPCMPUWZ128rrik: NewOpc = X86_VPCMPUWZ128rrik_alt; break;
case X86_VPCMPUWZ256rmi: NewOpc = X86_VPCMPUWZ256rmi_alt; break;
case X86_VPCMPUWZ256rmik: NewOpc = X86_VPCMPUWZ256rmik_alt; break;
case X86_VPCMPUWZ256rri: NewOpc = X86_VPCMPUWZ256rri_alt; break;
case X86_VPCMPUWZ256rrik: NewOpc = X86_VPCMPUWZ256rrik_alt; break;
case X86_VPCMPUWZrmi: NewOpc = X86_VPCMPUWZrmi_alt; break;
case X86_VPCMPUWZrmik: NewOpc = X86_VPCMPUWZrmik_alt; break;
case X86_VPCMPUWZrri: NewOpc = X86_VPCMPUWZrri_alt; break;
case X86_VPCMPUWZrrik: NewOpc = X86_VPCMPUWZrrik_alt; break;
case X86_VPCMPWZ128rmi: NewOpc = X86_VPCMPWZ128rmi_alt; break;
case X86_VPCMPWZ128rmik: NewOpc = X86_VPCMPWZ128rmik_alt; break;
case X86_VPCMPWZ128rri: NewOpc = X86_VPCMPWZ128rri_alt; break;
case X86_VPCMPWZ128rrik: NewOpc = X86_VPCMPWZ128rrik_alt; break;
case X86_VPCMPWZ256rmi: NewOpc = X86_VPCMPWZ256rmi_alt; break;
case X86_VPCMPWZ256rmik: NewOpc = X86_VPCMPWZ256rmik_alt; break;
case X86_VPCMPWZ256rri: NewOpc = X86_VPCMPWZ256rri_alt; break;
case X86_VPCMPWZ256rrik: NewOpc = X86_VPCMPWZ256rrik_alt; break;
case X86_VPCMPWZrmi: NewOpc = X86_VPCMPWZrmi_alt; break;
case X86_VPCMPWZrmik: NewOpc = X86_VPCMPWZrmik_alt; break;
case X86_VPCMPWZrri: NewOpc = X86_VPCMPWZrri_alt; break;
case X86_VPCMPWZrrik: NewOpc = X86_VPCMPWZrrik_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
}
switch (type) {
case TYPE_XMM:
MCOperand_CreateReg0(mcInst, X86_XMM0 + ((uint32_t)immediate >> 4));
return;
case TYPE_YMM:
MCOperand_CreateReg0(mcInst, X86_YMM0 + ((uint32_t)immediate >> 4));
return;
case TYPE_ZMM:
MCOperand_CreateReg0(mcInst, X86_ZMM0 + ((uint32_t)immediate >> 4));
return;
default:
// operand is 64 bits wide. Do nothing.
break;
}
MCOperand_CreateImm0(mcInst, immediate);
if (type == TYPE_MOFFS) {
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
}
}
/// translateRMRegister - Translates a register stored in the R/M field of the
/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction to extract the R/M field
/// from.
/// @return - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst *mcInst, InternalInstruction *insn)
{
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
//debug("A R/M register operand may not have a SIB byte");
return true;
}
switch (insn->eaBase) {
case EA_BASE_NONE:
//debug("EA_BASE_NONE for ModR/M base");
return true;
#define ENTRY(x) case EA_BASE_##x:
ALL_EA_BASES
#undef ENTRY
//debug("A R/M register operand may not have a base; "
// "the operand must be a register.");
return true;
#define ENTRY(x) \
case EA_REG_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_REGS
#undef ENTRY
default:
//debug("Unexpected EA base register");
return true;
}
return false;
}
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
/// fields of an internal instruction (and possibly its SIB byte) to a memory
/// operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst *mcInst, InternalInstruction *insn)
{
// Addresses in an MCInst are represented as five operands:
// 1. basereg (register) The R/M base, or (if there is a SIB) the
// SIB base
// 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
// scale amount
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
// the index (which is multiplied by the
// scale amount)
// 4. displacement (immediate) 0, or the displacement if there is one
// 5. segmentreg (register) x86_registerNONE for now, but could be set
// if we have segment overrides
int scaleAmount, indexReg;
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
if (insn->sibBase != SIB_BASE_NONE) {
switch (insn->sibBase) {
#define ENTRY(x) \
case SIB_BASE_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_SIB_BASES
#undef ENTRY
default:
//debug("Unexpected sibBase");
return true;
}
} else {
MCOperand_CreateReg0(mcInst, 0);
}
if (insn->sibIndex != SIB_INDEX_NONE) {
switch (insn->sibIndex) {
default:
//debug("Unexpected sibIndex");
return true;
#define ENTRY(x) \
case SIB_INDEX_##x: \
indexReg = X86_##x; break;
EA_BASES_32BIT
EA_BASES_64BIT
REGS_XMM
REGS_YMM
REGS_ZMM
#undef ENTRY
}
} else {
// Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
// but no index is used and modrm alone should have been enough.
// -No base register in 32-bit mode. In 64-bit mode this is used to
// avoid rip-relative addressing.
// -Any base register used other than ESP/RSP/R12D/R12. Using these as a
// base always requires a SIB byte.
// -A scale other than 1 is used.
if (insn->sibScale != 1 ||
(insn->sibBase == SIB_BASE_NONE && insn->mode != MODE_64BIT) ||
(insn->sibBase != SIB_BASE_NONE &&
insn->sibBase != SIB_BASE_ESP && insn->sibBase != SIB_BASE_RSP &&
insn->sibBase != SIB_BASE_R12D && insn->sibBase != SIB_BASE_R12)) {
indexReg = insn->addressSize == 4? X86_EIZ : X86_RIZ;
} else
indexReg = 0;
}
scaleAmount = insn->sibScale;
} else {
switch (insn->eaBase) {
case EA_BASE_NONE:
if (insn->eaDisplacement == EA_DISP_NONE) {
//debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
return true;
}
if (insn->mode == MODE_64BIT) {
if (insn->prefix3 == 0x67) // address-size prefix overrides RIP relative addressing
MCOperand_CreateReg0(mcInst, X86_EIP);
else
// Section 2.2.1.6
MCOperand_CreateReg0(mcInst, insn->addressSize == 4 ? X86_EIP : X86_RIP);
} else {
MCOperand_CreateReg0(mcInst, 0);
}
indexReg = 0;
break;
case EA_BASE_BX_SI:
MCOperand_CreateReg0(mcInst, X86_BX);
indexReg = X86_SI;
break;
case EA_BASE_BX_DI:
MCOperand_CreateReg0(mcInst, X86_BX);
indexReg = X86_DI;
break;
case EA_BASE_BP_SI:
MCOperand_CreateReg0(mcInst, X86_BP);
indexReg = X86_SI;
break;
case EA_BASE_BP_DI:
MCOperand_CreateReg0(mcInst, X86_BP);
indexReg = X86_DI;
break;
default:
indexReg = 0;
switch (insn->eaBase) {
default:
//debug("Unexpected eaBase");
return true;
// Here, we will use the fill-ins defined above. However,
// BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
// sib and sib64 were handled in the top-level if, so they're only
// placeholders to keep the compiler happy.
#define ENTRY(x) \
case EA_BASE_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
ALL_REGS
#undef ENTRY
//debug("A R/M memory operand may not be a register; "
// "the base field must be a base.");
return true;
}
}
scaleAmount = 1;
}
MCOperand_CreateImm0(mcInst, scaleAmount);
MCOperand_CreateReg0(mcInst, indexReg);
MCOperand_CreateImm0(mcInst, insn->displacement);
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
return false;
}
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
/// byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRM(MCInst *mcInst, const OperandSpecifier *operand,
InternalInstruction *insn)
{
switch (operand->type) {
default:
//debug("Unexpected type for a R/M operand");
return true;
case TYPE_R8:
case TYPE_R16:
case TYPE_R32:
case TYPE_R64:
case TYPE_Rv:
case TYPE_MM64:
case TYPE_XMM:
case TYPE_YMM:
case TYPE_ZMM:
case TYPE_VK:
case TYPE_DEBUGREG:
case TYPE_CONTROLREG:
case TYPE_BNDR:
return translateRMRegister(mcInst, insn);
case TYPE_M:
case TYPE_MVSIBX:
case TYPE_MVSIBY:
case TYPE_MVSIBZ:
return translateRMMemory(mcInst, insn);
}
}
/// translateFPRegister - Translates a stack position on the FPU stack to its
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param stackPos - The stack position to translate.
static void translateFPRegister(MCInst *mcInst, uint8_t stackPos)
{
MCOperand_CreateReg0(mcInst, X86_ST0 + stackPos);
}
/// translateMaskRegister - Translates a 3-bit mask register number to
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param maskRegNum - Number of mask register from 0 to 7.
/// @return - false on success; true otherwise.
static bool translateMaskRegister(MCInst *mcInst, uint8_t maskRegNum)
{
if (maskRegNum >= 8) {
// debug("Invalid mask register number");
return true;
}
MCOperand_CreateReg0(mcInst, X86_K0 + maskRegNum);
return false;
}
/// translateOperand - Translates an operand stored in an internal instruction
/// to LLVM's format and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateOperand(MCInst *mcInst, const OperandSpecifier *operand, InternalInstruction *insn)
{
switch (operand->encoding) {
case ENCODING_REG:
translateRegister(mcInst, insn->reg);
return false;
case ENCODING_WRITEMASK:
return translateMaskRegister(mcInst, insn->writemask);
CASE_ENCODING_RM:
CASE_ENCODING_VSIB:
return translateRM(mcInst, operand, insn);
case ENCODING_IB:
case ENCODING_IW:
case ENCODING_ID:
case ENCODING_IO:
case ENCODING_Iv:
case ENCODING_Ia:
translateImmediate(mcInst, insn->immediates[insn->numImmediatesTranslated++], operand, insn);
return false;
case ENCODING_IRC:
MCOperand_CreateImm0(mcInst, insn->RC);
return false;
case ENCODING_SI:
return translateSrcIndex(mcInst, insn);
case ENCODING_DI:
return translateDstIndex(mcInst, insn);
case ENCODING_RB:
case ENCODING_RW:
case ENCODING_RD:
case ENCODING_RO:
case ENCODING_Rv:
translateRegister(mcInst, insn->opcodeRegister);
return false;
case ENCODING_FP:
translateFPRegister(mcInst, insn->modRM & 7);
return false;
case ENCODING_VVVV:
translateRegister(mcInst, insn->vvvv);
return false;
case ENCODING_DUP:
return translateOperand(mcInst, &insn->operands[operand->type - TYPE_DUP0], insn);
default:
//debug("Unhandled operand encoding during translation");
return true;
}
}
static bool translateInstruction(MCInst *mcInst, InternalInstruction *insn)
{
int index;
if (!insn->spec) {
//debug("Instruction has no specification");
return true;
}
MCInst_clear(mcInst);
MCInst_setOpcode(mcInst, insn->instructionID);
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
// prefix bytes should be disassembled as xrelease and xacquire then set the
// opcode to those instead of the rep and repne opcodes.
#ifndef CAPSTONE_X86_REDUCE
if (insn->xAcquireRelease) {
if (MCInst_getOpcode(mcInst) == X86_REP_PREFIX)
MCInst_setOpcode(mcInst, X86_XRELEASE_PREFIX);
else if (MCInst_getOpcode(mcInst) == X86_REPNE_PREFIX)
MCInst_setOpcode(mcInst, X86_XACQUIRE_PREFIX);
}
#endif
insn->numImmediatesTranslated = 0;
for (index = 0; index < X86_MAX_OPERANDS; ++index) {
if (insn->operands[index].encoding != ENCODING_NONE) {
if (translateOperand(mcInst, &insn->operands[index], insn)) {
return true;
}
}
}
return false;
}
static int reader(const struct reader_info *info, uint8_t *byte, uint64_t address)
{
if (address - info->offset >= info->size)
// out of buffer range
return -1;
*byte = info->code[address - info->offset];
return 0;
}
// copy x86 detail information from internal structure to public structure
static void update_pub_insn(cs_insn *pub, InternalInstruction *inter)
{
if (inter->vectorExtensionType != 0) {
memcpy(pub->detail->x86.opcode, inter->vectorExtensionPrefix, sizeof(pub->detail->x86.opcode));
} else {
if (inter->twoByteEscape) {
if (inter->threeByteEscape) {
pub->detail->x86.opcode[0] = inter->twoByteEscape;
pub->detail->x86.opcode[1] = inter->threeByteEscape;
pub->detail->x86.opcode[2] = inter->opcode;
} else {
pub->detail->x86.opcode[0] = inter->twoByteEscape;
pub->detail->x86.opcode[1] = inter->opcode;
}
} else {
pub->detail->x86.opcode[0] = inter->opcode;
}
}
pub->detail->x86.rex = inter->rexPrefix;
pub->detail->x86.addr_size = inter->addressSize;
pub->detail->x86.modrm = inter->orgModRM;
pub->detail->x86.encoding.modrm_offset = inter->modRMOffset;
pub->detail->x86.sib = inter->sib;
pub->detail->x86.sib_index = x86_map_sib_index(inter->sibIndex);
pub->detail->x86.sib_scale = inter->sibScale;
pub->detail->x86.sib_base = x86_map_sib_base(inter->sibBase);
pub->detail->x86.disp = inter->displacement;
if (inter->consumedDisplacement) {
pub->detail->x86.encoding.disp_offset = inter->displacementOffset;
pub->detail->x86.encoding.disp_size = inter->displacementSize;
}
pub->detail->x86.encoding.imm_offset = inter->immediateOffset;
if (pub->detail->x86.encoding.imm_size == 0 && inter->immediateOffset != 0)
pub->detail->x86.encoding.imm_size = inter->immediateSize;
}
void X86_init(MCRegisterInfo *MRI)
{
// InitMCRegisterInfo(), X86GenRegisterInfo.inc
// RI->InitMCRegisterInfo(X86RegDesc, 277,
// RA, PC,
// X86MCRegisterClasses, 86,
// X86RegUnitRoots, 162, X86RegDiffLists, X86LaneMaskLists, X86RegStrings,
// X86RegClassStrings,
// X86SubRegIdxLists, 9,
// X86SubRegIdxRanges, X86RegEncodingTable);
/*
InitMCRegisterInfo(X86RegDesc, 234,
RA, PC,
X86MCRegisterClasses, 79,
X86RegUnitRoots, 119, X86RegDiffLists, X86RegStrings,
X86SubRegIdxLists, 7,
X86SubRegIdxRanges, X86RegEncodingTable);
*/
MCRegisterInfo_InitMCRegisterInfo(MRI, X86RegDesc, 277,
0, 0,
X86MCRegisterClasses, 86,
0, 0, X86RegDiffLists, 0,
X86SubRegIdxLists, 9,
0);
}
// Public interface for the disassembler
bool X86_getInstruction(csh ud, const uint8_t *code, size_t code_len,
MCInst *instr, uint16_t *size, uint64_t address, void *_info)
{
cs_struct *handle = (cs_struct *)(uintptr_t)ud;
InternalInstruction insn = { 0 };
struct reader_info info;
int ret;
bool result;
info.code = code;
info.size = code_len;
info.offset = address;
if (instr->flat_insn->detail) {
// instr->flat_insn->detail initialization: 3 alternatives
// 1. The whole structure, this is how it's done in other arch disassemblers
// Probably overkill since cs_detail is huge because of the 36 operands of ARM
//memset(instr->flat_insn->detail, 0, sizeof(cs_detail));
// 2. Only the part relevant to x86
memset(instr->flat_insn->detail, 0, offsetof(cs_detail, x86) + sizeof(cs_x86));
// 3. The relevant part except for x86.operands
// sizeof(cs_x86) is 0x1c0, sizeof(x86.operands) is 0x180
// marginally faster, should be okay since x86.op_count is set to 0
//memset(instr->flat_insn->detail, 0, offsetof(cs_detail, x86)+offsetof(cs_x86, operands));
}
if (handle->mode & CS_MODE_16)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_16BIT);
else if (handle->mode & CS_MODE_32)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_32BIT);
else
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_64BIT);
if (ret) {
// *size = (uint16_t)(insn.readerCursor - address);
return false;
} else {
*size = (uint16_t)insn.length;
result = (!translateInstruction(instr, &insn)) ? true : false;
if (result) {
unsigned Flags = X86_IP_NO_PREFIX;
instr->imm_size = insn.immSize;
// copy all prefixes
instr->x86_prefix[0] = insn.prefix0;
instr->x86_prefix[1] = insn.prefix1;
instr->x86_prefix[2] = insn.prefix2;
instr->x86_prefix[3] = insn.prefix3;
instr->xAcquireRelease = insn.xAcquireRelease;
if (handle->detail) {
update_pub_insn(instr->flat_insn, &insn);
}
if (insn.hasAdSize)
Flags |= X86_IP_HAS_AD_SIZE;
if (!insn.mandatoryPrefix) {
if (insn.hasOpSize)
Flags |= X86_IP_HAS_OP_SIZE;
if (insn.repeatPrefix == 0xf2)
Flags |= X86_IP_HAS_REPEAT_NE;
else if (insn.repeatPrefix == 0xf3 &&
// It should not be 'pause' f3 90
insn.opcode != 0x90)
Flags |= X86_IP_HAS_REPEAT;
if (insn.hasLockPrefix)
Flags |= X86_IP_HAS_LOCK;
}
instr->flags = Flags;
}
return result;
}
}
#endif
|