aboutsummaryrefslogtreecommitdiffstats
path: root/hw/char/escc.c
blob: 8755d8d34f3f00a09f1edd62f9a8971754ce7fca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
/*
 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
 *
 * Copyright (c) 2003-2005 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/module.h"
#include "hw/char/escc.h"
#include "ui/console.h"
#include "trace.h"

/*
 * Chipset docs:
 * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
 * http://www.zilog.com/docs/serial/scc_escc_um.pdf
 *
 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
 * (Slave I/O), also produced as NCR89C105. See
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
 *
 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
 * mouse and keyboard ports don't implement all functions and they are
 * only asynchronous. There is no DMA.
 *
 * Z85C30 is also used on PowerMacs and m68k Macs.
 *
 * There are some small differences between Sparc version (sunzilog)
 * and PowerMac (pmac):
 *  Offset between control and data registers
 *  There is some kind of lockup bug, but we can ignore it
 *  CTS is inverted
 *  DMA on pmac using DBDMA chip
 *  pmac can do IRDA and faster rates, sunzilog can only do 38400
 *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
 *
 * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
 * but registers are grouped by type and not by channel:
 * channel is selected by bit 0 of the address (instead of bit 1)
 * and register is selected by bit 1 of the address (instead of bit 0).
 */

/*
 * Modifications:
 *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
 *                                  serial mouse queue.
 *                                  Implemented serial mouse protocol.
 *
 *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
 */

#define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')

#define SERIAL_CTRL 0
#define SERIAL_DATA 1

#define W_CMD     0
#define CMD_PTR_MASK   0x07
#define CMD_CMD_MASK   0x38
#define CMD_HI         0x08
#define CMD_CLR_TXINT  0x28
#define CMD_CLR_IUS    0x38
#define W_INTR    1
#define INTR_INTALL    0x01
#define INTR_TXINT     0x02
#define INTR_PAR_SPEC  0x04
#define INTR_RXMODEMSK 0x18
#define INTR_RXINT1ST  0x08
#define INTR_RXINTALL  0x10
#define INTR_WTRQ_TXRX 0x20
#define W_IVEC    2
#define W_RXCTRL  3
#define RXCTRL_RXEN    0x01
#define RXCTRL_HUNT    0x10
#define W_TXCTRL1 4
#define TXCTRL1_PAREN  0x01
#define TXCTRL1_PAREV  0x02
#define TXCTRL1_1STOP  0x04
#define TXCTRL1_1HSTOP 0x08
#define TXCTRL1_2STOP  0x0c
#define TXCTRL1_STPMSK 0x0c
#define TXCTRL1_CLK1X  0x00
#define TXCTRL1_CLK16X 0x40
#define TXCTRL1_CLK32X 0x80
#define TXCTRL1_CLK64X 0xc0
#define TXCTRL1_CLKMSK 0xc0
#define W_TXCTRL2 5
#define TXCTRL2_TXCRC  0x01
#define TXCTRL2_TXEN   0x08
#define TXCTRL2_BITMSK 0x60
#define TXCTRL2_5BITS  0x00
#define TXCTRL2_7BITS  0x20
#define TXCTRL2_6BITS  0x40
#define TXCTRL2_8BITS  0x60
#define W_SYNC1   6
#define W_SYNC2   7
#define W_TXBUF   8
#define W_MINTR   9
#define MINTR_VIS      0x01
#define MINTR_NV       0x02
#define MINTR_STATUSHI 0x10
#define MINTR_SOFTIACK 0x20
#define MINTR_RST_MASK 0xc0
#define MINTR_RST_B    0x40
#define MINTR_RST_A    0x80
#define MINTR_RST_ALL  0xc0
#define W_MISC1  10
#define MISC1_ENC_MASK 0x60
#define W_CLOCK  11
#define CLOCK_TRXC     0x08
#define W_BRGLO  12
#define W_BRGHI  13
#define W_MISC2  14
#define MISC2_BRG_EN   0x01
#define MISC2_BRG_SRC  0x02
#define MISC2_LCL_LOOP 0x10
#define MISC2_PLLCMD0  0x20
#define MISC2_PLLCMD1  0x40
#define MISC2_PLLCMD2  0x80
#define W_EXTINT 15
#define EXTINT_DCD     0x08
#define EXTINT_SYNCINT 0x10
#define EXTINT_CTSINT  0x20
#define EXTINT_TXUNDRN 0x40
#define EXTINT_BRKINT  0x80

#define R_STATUS  0
#define STATUS_RXAV    0x01
#define STATUS_ZERO    0x02
#define STATUS_TXEMPTY 0x04
#define STATUS_DCD     0x08
#define STATUS_SYNC    0x10
#define STATUS_CTS     0x20
#define STATUS_TXUNDRN 0x40
#define STATUS_BRK     0x80
#define R_SPEC    1
#define SPEC_ALLSENT   0x01
#define SPEC_BITS8     0x06
#define R_IVEC    2
#define IVEC_TXINTB    0x00
#define IVEC_LONOINT   0x06
#define IVEC_LORXINTA  0x0c
#define IVEC_LORXINTB  0x04
#define IVEC_LOTXINTA  0x08
#define IVEC_HINOINT   0x60
#define IVEC_HIRXINTA  0x30
#define IVEC_HIRXINTB  0x20
#define IVEC_HITXINTA  0x10
#define R_INTR    3
#define INTR_EXTINTB   0x01
#define INTR_TXINTB    0x02
#define INTR_RXINTB    0x04
#define INTR_EXTINTA   0x08
#define INTR_TXINTA    0x10
#define INTR_RXINTA    0x20
#define R_IPEN    4
#define R_TXCTRL1 5
#define R_TXCTRL2 6
#define R_BC      7
#define R_RXBUF   8
#define R_RXCTRL  9
#define R_MISC   10
#define MISC_2CLKMISS  0x40
#define R_MISC1  11
#define R_BRGLO  12
#define R_BRGHI  13
#define R_MISC1I 14
#define R_EXTINT 15

static void handle_kbd_command(ESCCChannelState *s, int val);
static int serial_can_receive(void *opaque);
static void serial_receive_byte(ESCCChannelState *s, int ch);

static int reg_shift(ESCCState *s)
{
    return s->bit_swap ? s->it_shift + 1 : s->it_shift;
}

static int chn_shift(ESCCState *s)
{
    return s->bit_swap ? s->it_shift : s->it_shift + 1;
}

static void clear_queue(void *opaque)
{
    ESCCChannelState *s = opaque;
    ESCCSERIOQueue *q = &s->queue;
    q->rptr = q->wptr = q->count = 0;
}

static void put_queue(void *opaque, int b)
{
    ESCCChannelState *s = opaque;
    ESCCSERIOQueue *q = &s->queue;

    trace_escc_put_queue(CHN_C(s), b);
    if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
        return;
    }
    q->data[q->wptr] = b;
    if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
        q->wptr = 0;
    }
    q->count++;
    serial_receive_byte(s, 0);
}

static uint32_t get_queue(void *opaque)
{
    ESCCChannelState *s = opaque;
    ESCCSERIOQueue *q = &s->queue;
    int val;

    if (q->count == 0) {
        return 0;
    } else {
        val = q->data[q->rptr];
        if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
            q->rptr = 0;
        }
        q->count--;
    }
    trace_escc_get_queue(CHN_C(s), val);
    if (q->count > 0) {
        serial_receive_byte(s, 0);
    }
    return val;
}

static int escc_update_irq_chn(ESCCChannelState *s)
{
    if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
        /* tx ints enabled, pending */
        ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
        ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
            s->rxint == 1) ||
        /* rx ints enabled, pending */
        ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
            (s->rregs[R_STATUS] & STATUS_BRK)))) {
        /* break int e&p */
        return 1;
    }
    return 0;
}

static void escc_update_irq(ESCCChannelState *s)
{
    int irq;

    irq = escc_update_irq_chn(s);
    irq |= escc_update_irq_chn(s->otherchn);

    trace_escc_update_irq(irq);
    qemu_set_irq(s->irq, irq);
}

static void escc_reset_chn(ESCCChannelState *s)
{
    s->reg = 0;
    s->rx = s->tx = 0;
    s->rxint = s->txint = 0;
    s->rxint_under_svc = s->txint_under_svc = 0;
    s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
    clear_queue(s);
}

static void escc_soft_reset_chn(ESCCChannelState *s)
{
    escc_reset_chn(s);

    s->wregs[W_CMD] = 0;
    s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX;
    s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN;
    /* 1 stop bit */
    s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP;
    s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS;
    s->wregs[W_MINTR] &= ~MINTR_SOFTIACK;
    s->wregs[W_MISC1] &= MISC1_ENC_MASK;
    /* PLL disabled */
    s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC |
                         MISC2_PLLCMD1 | MISC2_PLLCMD2;
    s->wregs[W_MISC2] |= MISC2_PLLCMD0;
    /* Enable most interrupts */
    s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
                         EXTINT_TXUNDRN | EXTINT_BRKINT;

    s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK;
    s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN;
    if (s->disabled) {
        s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS;
    }
    s->rregs[R_SPEC] &= SPEC_ALLSENT;
    s->rregs[R_SPEC] |= SPEC_BITS8;
    s->rregs[R_INTR] = 0;
    s->rregs[R_MISC] &= MISC_2CLKMISS;
}

static void escc_hard_reset_chn(ESCCChannelState *s)
{
    escc_soft_reset_chn(s);

    /*
     * Hard reset is almost identical to soft reset above, except that the
     * values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14
     * (W_MISC2) have extra bits forced to 0/1
     */
    s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV;
    s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A;
    s->wregs[W_MISC1] = 0;
    s->wregs[W_CLOCK] = CLOCK_TRXC;
    s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2;
    s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0;
}

static void escc_reset(DeviceState *d)
{
    ESCCState *s = ESCC(d);
    int i, j;

    for (i = 0; i < 2; i++) {
        ESCCChannelState *cs = &s->chn[i];

        /*
         * According to the ESCC datasheet "Miscellaneous Questions" section
         * on page 384, the values of the ESCC registers are not guaranteed on
         * power-on until an explicit hardware or software reset has been
         * issued. For now we zero the registers so that a device reset always
         * returns the emulated device to a fixed state.
         */
        for (j = 0; j < ESCC_SERIAL_REGS; j++) {
            cs->rregs[j] = 0;
            cs->wregs[j] = 0;
        }

        /*
         * ...but there is an exception. The "Transmit Interrupts and Transmit
         * Buffer Empty Bit" section on page 50 of the ESCC datasheet says of
         * the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset
         * (including a hardware reset by software), or a channel reset, this
         * bit is set to 1". The Sun PROM checks this bit early on startup and
         * gets stuck in an infinite loop if it is not set.
         */
        cs->rregs[R_STATUS] |= STATUS_TXEMPTY;

        escc_reset_chn(cs);
    }
}

static inline void set_rxint(ESCCChannelState *s)
{
    s->rxint = 1;
    /*
     * XXX: missing daisy chaining: escc_chn_b rx should have a lower priority
     * than chn_a rx/tx/special_condition service
     */
    s->rxint_under_svc = 1;
    if (s->chn == escc_chn_a) {
        s->rregs[R_INTR] |= INTR_RXINTA;
        if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
            s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
        } else {
            s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
        }
    } else {
        s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
        if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
            s->rregs[R_IVEC] = IVEC_HIRXINTB;
        } else {
            s->rregs[R_IVEC] = IVEC_LORXINTB;
        }
    }
    escc_update_irq(s);
}

static inline void set_txint(ESCCChannelState *s)
{
    s->txint = 1;
    if (!s->rxint_under_svc) {
        s->txint_under_svc = 1;
        if (s->chn == escc_chn_a) {
            if (s->wregs[W_INTR] & INTR_TXINT) {
                s->rregs[R_INTR] |= INTR_TXINTA;
            }
            if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
                s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
            } else {
                s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
            }
        } else {
            s->rregs[R_IVEC] = IVEC_TXINTB;
            if (s->wregs[W_INTR] & INTR_TXINT) {
                s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
            }
        }
        escc_update_irq(s);
    }
}

static inline void clr_rxint(ESCCChannelState *s)
{
    s->rxint = 0;
    s->rxint_under_svc = 0;
    if (s->chn == escc_chn_a) {
        if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
            s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
        } else {
            s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
        }
        s->rregs[R_INTR] &= ~INTR_RXINTA;
    } else {
        if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
            s->rregs[R_IVEC] = IVEC_HINOINT;
        } else {
            s->rregs[R_IVEC] = IVEC_LONOINT;
        }
        s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
    }
    if (s->txint) {
        set_txint(s);
    }
    escc_update_irq(s);
}

static inline void clr_txint(ESCCChannelState *s)
{
    s->txint = 0;
    s->txint_under_svc = 0;
    if (s->chn == escc_chn_a) {
        if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
            s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
        } else {
            s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
        }
        s->rregs[R_INTR] &= ~INTR_TXINTA;
    } else {
        s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
        if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
            s->rregs[R_IVEC] = IVEC_HINOINT;
        } else {
            s->rregs[R_IVEC] = IVEC_LONOINT;
        }
        s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
    }
    if (s->rxint) {
        set_rxint(s);
    }
    escc_update_irq(s);
}

static void escc_update_parameters(ESCCChannelState *s)
{
    int speed, parity, data_bits, stop_bits;
    QEMUSerialSetParams ssp;

    if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) {
        return;
    }

    if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
        if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) {
            parity = 'E';
        } else {
            parity = 'O';
        }
    } else {
        parity = 'N';
    }
    if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) {
        stop_bits = 2;
    } else {
        stop_bits = 1;
    }
    switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
    case TXCTRL2_5BITS:
        data_bits = 5;
        break;
    case TXCTRL2_7BITS:
        data_bits = 7;
        break;
    case TXCTRL2_6BITS:
        data_bits = 6;
        break;
    default:
    case TXCTRL2_8BITS:
        data_bits = 8;
        break;
    }
    speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
    switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
    case TXCTRL1_CLK1X:
        break;
    case TXCTRL1_CLK16X:
        speed /= 16;
        break;
    case TXCTRL1_CLK32X:
        speed /= 32;
        break;
    default:
    case TXCTRL1_CLK64X:
        speed /= 64;
        break;
    }
    ssp.speed = speed;
    ssp.parity = parity;
    ssp.data_bits = data_bits;
    ssp.stop_bits = stop_bits;
    trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}

static void escc_mem_write(void *opaque, hwaddr addr,
                           uint64_t val, unsigned size)
{
    ESCCState *serial = opaque;
    ESCCChannelState *s;
    uint32_t saddr;
    int newreg, channel;

    val &= 0xff;
    saddr = (addr >> reg_shift(serial)) & 1;
    channel = (addr >> chn_shift(serial)) & 1;
    s = &serial->chn[channel];
    switch (saddr) {
    case SERIAL_CTRL:
        trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
        newreg = 0;
        switch (s->reg) {
        case W_CMD:
            newreg = val & CMD_PTR_MASK;
            val &= CMD_CMD_MASK;
            switch (val) {
            case CMD_HI:
                newreg |= CMD_HI;
                break;
            case CMD_CLR_TXINT:
                clr_txint(s);
                break;
            case CMD_CLR_IUS:
                if (s->rxint_under_svc) {
                    s->rxint_under_svc = 0;
                    if (s->txint) {
                        set_txint(s);
                    }
                } else if (s->txint_under_svc) {
                    s->txint_under_svc = 0;
                }
                escc_update_irq(s);
                break;
            default:
                break;
            }
            break;
        case W_RXCTRL:
            s->wregs[s->reg] = val;
            if (val & RXCTRL_HUNT) {
                s->rregs[R_STATUS] |= STATUS_SYNC;
            }
            break;
        case W_INTR ... W_IVEC:
        case W_SYNC1 ... W_TXBUF:
        case W_MISC1 ... W_CLOCK:
        case W_MISC2 ... W_EXTINT:
            s->wregs[s->reg] = val;
            break;
        case W_TXCTRL1:
            s->wregs[s->reg] = val;
            /*
             * The ESCC datasheet states that SPEC_ALLSENT is always set in
             * sync mode, and set in async mode when all characters have
             * cleared the transmitter. Since writes to SERIAL_DATA use the
             * blocking qemu_chr_fe_write_all() function to write each
             * character, the guest can never see the state when async data
             * is in the process of being transmitted so we can set this bit
             * unconditionally regardless of the state of the W_TXCTRL1 mode
             * bits.
             */
            s->rregs[R_SPEC] |= SPEC_ALLSENT;
            escc_update_parameters(s);
            break;
        case W_TXCTRL2:
            s->wregs[s->reg] = val;
            escc_update_parameters(s);
            break;
        case W_BRGLO:
        case W_BRGHI:
            s->wregs[s->reg] = val;
            s->rregs[s->reg] = val;
            escc_update_parameters(s);
            break;
        case W_MINTR:
            switch (val & MINTR_RST_MASK) {
            case 0:
            default:
                break;
            case MINTR_RST_B:
                trace_escc_soft_reset_chn(CHN_C(&serial->chn[0]));
                escc_soft_reset_chn(&serial->chn[0]);
                return;
            case MINTR_RST_A:
                trace_escc_soft_reset_chn(CHN_C(&serial->chn[1]));
                escc_soft_reset_chn(&serial->chn[1]);
                return;
            case MINTR_RST_ALL:
                trace_escc_hard_reset();
                escc_hard_reset_chn(&serial->chn[0]);
                escc_hard_reset_chn(&serial->chn[1]);
                return;
            }
            break;
        default:
            break;
        }
        if (s->reg == 0) {
            s->reg = newreg;
        } else {
            s->reg = 0;
        }
        break;
    case SERIAL_DATA:
        trace_escc_mem_writeb_data(CHN_C(s), val);
        /*
         * Lower the irq when data is written to the Tx buffer and no other
         * interrupts are currently pending. The irq will be raised again once
         * the Tx buffer becomes empty below.
         */
        s->txint = 0;
        escc_update_irq(s);
        s->tx = val;
        if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */
            if (qemu_chr_fe_backend_connected(&s->chr)) {
                /*
                 * XXX this blocks entire thread. Rewrite to use
                 * qemu_chr_fe_write and background I/O callbacks
                 */
                qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
            } else if (s->type == escc_kbd && !s->disabled) {
                handle_kbd_command(s, val);
            }
        }
        s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */
        s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */
        set_txint(s);
        break;
    default:
        break;
    }
}

static uint64_t escc_mem_read(void *opaque, hwaddr addr,
                              unsigned size)
{
    ESCCState *serial = opaque;
    ESCCChannelState *s;
    uint32_t saddr;
    uint32_t ret;
    int channel;

    saddr = (addr >> reg_shift(serial)) & 1;
    channel = (addr >> chn_shift(serial)) & 1;
    s = &serial->chn[channel];
    switch (saddr) {
    case SERIAL_CTRL:
        trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
        ret = s->rregs[s->reg];
        s->reg = 0;
        return ret;
    case SERIAL_DATA:
        s->rregs[R_STATUS] &= ~STATUS_RXAV;
        clr_rxint(s);
        if (s->type == escc_kbd || s->type == escc_mouse) {
            ret = get_queue(s);
        } else {
            ret = s->rx;
        }
        trace_escc_mem_readb_data(CHN_C(s), ret);
        qemu_chr_fe_accept_input(&s->chr);
        return ret;
    default:
        break;
    }
    return 0;
}

static const MemoryRegionOps escc_mem_ops = {
    .read = escc_mem_read,
    .write = escc_mem_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 1,
    },
};

static int serial_can_receive(void *opaque)
{
    ESCCChannelState *s = opaque;
    int ret;

    if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */
        || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) {
        /* char already available */
        ret = 0;
    } else {
        ret = 1;
    }
    return ret;
}

static void serial_receive_byte(ESCCChannelState *s, int ch)
{
    trace_escc_serial_receive_byte(CHN_C(s), ch);
    s->rregs[R_STATUS] |= STATUS_RXAV;
    s->rx = ch;
    set_rxint(s);
}

static void serial_receive_break(ESCCChannelState *s)
{
    s->rregs[R_STATUS] |= STATUS_BRK;
    escc_update_irq(s);
}

static void serial_receive1(void *opaque, const uint8_t *buf, int size)
{
    ESCCChannelState *s = opaque;
    serial_receive_byte(s, buf[0]);
}

static void serial_event(void *opaque, QEMUChrEvent event)
{
    ESCCChannelState *s = opaque;
    if (event == CHR_EVENT_BREAK) {
        serial_receive_break(s);
    }
}

static const VMStateDescription vmstate_escc_chn = {
    .name = "escc_chn",
    .version_id = 2,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
        VMSTATE_UINT32(reg, ESCCChannelState),
        VMSTATE_UINT32(rxint, ESCCChannelState),
        VMSTATE_UINT32(txint, ESCCChannelState),
        VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
        VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
        VMSTATE_UINT8(rx, ESCCChannelState),
        VMSTATE_UINT8(tx, ESCCChannelState),
        VMSTATE_BUFFER(wregs, ESCCChannelState),
        VMSTATE_BUFFER(rregs, ESCCChannelState),
        VMSTATE_END_OF_LIST()
    }
};

static const VMStateDescription vmstate_escc = {
    .name = "escc",
    .version_id = 2,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
                             ESCCChannelState),
        VMSTATE_END_OF_LIST()
    }
};

static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
                                InputEvent *evt)
{
    ESCCChannelState *s = (ESCCChannelState *)dev;
    int qcode, keycode;
    InputKeyEvent *key;

    assert(evt->type == INPUT_EVENT_KIND_KEY);
    key = evt->u.key.data;
    qcode = qemu_input_key_value_to_qcode(key->key);
    trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
                               key->down);

    if (qcode == Q_KEY_CODE_CAPS_LOCK) {
        if (key->down) {
            s->caps_lock_mode ^= 1;
            if (s->caps_lock_mode == 2) {
                return; /* Drop second press */
            }
        } else {
            s->caps_lock_mode ^= 2;
            if (s->caps_lock_mode == 3) {
                return; /* Drop first release */
            }
        }
    }

    if (qcode == Q_KEY_CODE_NUM_LOCK) {
        if (key->down) {
            s->num_lock_mode ^= 1;
            if (s->num_lock_mode == 2) {
                return; /* Drop second press */
            }
        } else {
            s->num_lock_mode ^= 2;
            if (s->num_lock_mode == 3) {
                return; /* Drop first release */
            }
        }
    }

    if (qcode > qemu_input_map_qcode_to_sun_len) {
        return;
    }

    keycode = qemu_input_map_qcode_to_sun[qcode];
    if (!key->down) {
        keycode |= 0x80;
    }
    trace_escc_sunkbd_event_out(keycode);
    put_queue(s, keycode);
}

static QemuInputHandler sunkbd_handler = {
    .name  = "sun keyboard",
    .mask  = INPUT_EVENT_MASK_KEY,
    .event = sunkbd_handle_event,
};

static void handle_kbd_command(ESCCChannelState *s, int val)
{
    trace_escc_kbd_command(val);
    if (s->led_mode) { /* Ignore led byte */
        s->led_mode = 0;
        return;
    }
    switch (val) {
    case 1: /* Reset, return type code */
        clear_queue(s);
        put_queue(s, 0xff);
        put_queue(s, 4); /* Type 4 */
        put_queue(s, 0x7f);
        break;
    case 0xe: /* Set leds */
        s->led_mode = 1;
        break;
    case 7: /* Query layout */
    case 0xf:
        clear_queue(s);
        put_queue(s, 0xfe);
        put_queue(s, 0x21); /*  en-us layout */
        break;
    default:
        break;
    }
}

static void sunmouse_event(void *opaque,
                               int dx, int dy, int dz, int buttons_state)
{
    ESCCChannelState *s = opaque;
    int ch;

    trace_escc_sunmouse_event(dx, dy, buttons_state);
    ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */

    if (buttons_state & MOUSE_EVENT_LBUTTON) {
        ch ^= 0x4;
    }
    if (buttons_state & MOUSE_EVENT_MBUTTON) {
        ch ^= 0x2;
    }
    if (buttons_state & MOUSE_EVENT_RBUTTON) {
        ch ^= 0x1;
    }

    put_queue(s, ch);

    ch = dx;

    if (ch > 127) {
        ch = 127;
    } else if (ch < -127) {
        ch = -127;
    }

    put_queue(s, ch & 0xff);

    ch = -dy;

    if (ch > 127) {
        ch = 127;
    } else if (ch < -127) {
        ch = -127;
    }

    put_queue(s, ch & 0xff);

    /* MSC protocol specifies two extra motion bytes */

    put_queue(s, 0);
    put_queue(s, 0);
}

static void escc_init1(Object *obj)
{
    ESCCState *s = ESCC(obj);
    SysBusDevice *dev = SYS_BUS_DEVICE(obj);
    unsigned int i;

    for (i = 0; i < 2; i++) {
        sysbus_init_irq(dev, &s->chn[i].irq);
        s->chn[i].chn = 1 - i;
    }
    s->chn[0].otherchn = &s->chn[1];
    s->chn[1].otherchn = &s->chn[0];

    sysbus_init_mmio(dev, &s->mmio);
}

static void escc_realize(DeviceState *dev, Error **errp)
{
    ESCCState *s = ESCC(dev);
    unsigned int i;

    s->chn[0].disabled = s->disabled;
    s->chn[1].disabled = s->disabled;

    memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
                          ESCC_SIZE << s->it_shift);

    for (i = 0; i < 2; i++) {
        if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
            s->chn[i].clock = s->frequency / 2;
            qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
                                     serial_receive1, serial_event, NULL,
                                     &s->chn[i], NULL, true);
        }
    }

    if (s->chn[0].type == escc_mouse) {
        qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
                                     "QEMU Sun Mouse");
    }
    if (s->chn[1].type == escc_kbd) {
        s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
                                                   &sunkbd_handler);
    }
}

static Property escc_properties[] = {
    DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
    DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
    DEFINE_PROP_BOOL("bit_swap",    ESCCState, bit_swap,    false),
    DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
    DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
    DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
    DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
    DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
    DEFINE_PROP_END_OF_LIST(),
};

static void escc_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->reset = escc_reset;
    dc->realize = escc_realize;
    dc->vmsd = &vmstate_escc;
    device_class_set_props(dc, escc_properties);
    set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
}

static const TypeInfo escc_info = {
    .name          = TYPE_ESCC,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(ESCCState),
    .instance_init = escc_init1,
    .class_init    = escc_class_init,
};

static void escc_register_types(void)
{
    type_register_static(&escc_info);
}

type_init(escc_register_types)