aboutsummaryrefslogtreecommitdiffstats
path: root/meson/mesonbuild/modules/unstable_cuda.py
blob: d542fdd54ff6bcddf79921e1976556449b8f082b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright 2017 The Meson development team

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import typing as T
import re

from ..mesonlib import version_compare
from ..compilers import CudaCompiler, Compiler

from . import NewExtensionModule

from ..interpreterbase import (
    flatten, permittedKwargs, noKwargs,
    InvalidArguments, FeatureNew
)

class CudaModule(NewExtensionModule):

    @FeatureNew('CUDA module', '0.50.0')
    def __init__(self, *args, **kwargs):
        super().__init__()
        self.methods.update({
            "min_driver_version": self.min_driver_version,
            "nvcc_arch_flags":    self.nvcc_arch_flags,
            "nvcc_arch_readable": self.nvcc_arch_readable,
        })

    @noKwargs
    def min_driver_version(self, state: 'ModuleState',
                                 args: T.Tuple[str],
                                 kwargs: T.Dict[str, T.Any]) -> str:
        argerror = InvalidArguments('min_driver_version must have exactly one positional argument: ' +
                                    'a CUDA Toolkit version string. Beware that, since CUDA 11.0, ' +
                                    'the CUDA Toolkit\'s components (including NVCC) are versioned ' +
                                    'independently from each other (and the CUDA Toolkit as a whole).')

        if len(args) != 1 or not isinstance(args[0], str):
            raise argerror

        cuda_version = args[0]
        driver_version_table = [
            {'cuda_version': '>=11.5.0',   'windows': '496.04', 'linux': '495.29.05'},
            {'cuda_version': '>=11.4.1',   'windows': '471.41', 'linux': '470.57.02'},
            {'cuda_version': '>=11.4.0',   'windows': '471.11', 'linux': '470.42.01'},
            {'cuda_version': '>=11.3.0',   'windows': '465.89', 'linux': '465.19.01'},
            {'cuda_version': '>=11.2.2',   'windows': '461.33', 'linux': '460.32.03'},
            {'cuda_version': '>=11.2.1',   'windows': '461.09', 'linux': '460.32.03'},
            {'cuda_version': '>=11.2.0',   'windows': '460.82', 'linux': '460.27.03'},
            {'cuda_version': '>=11.1.1',   'windows': '456.81', 'linux': '455.32'},
            {'cuda_version': '>=11.1.0',   'windows': '456.38', 'linux': '455.23'},
            {'cuda_version': '>=11.0.3',   'windows': '451.82', 'linux': '450.51.06'},
            {'cuda_version': '>=11.0.2',   'windows': '451.48', 'linux': '450.51.05'},
            {'cuda_version': '>=11.0.1',   'windows': '451.22', 'linux': '450.36.06'},
            {'cuda_version': '>=10.2.89',  'windows': '441.22', 'linux': '440.33'},
            {'cuda_version': '>=10.1.105', 'windows': '418.96', 'linux': '418.39'},
            {'cuda_version': '>=10.0.130', 'windows': '411.31', 'linux': '410.48'},
            {'cuda_version': '>=9.2.148',  'windows': '398.26', 'linux': '396.37'},
            {'cuda_version': '>=9.2.88',   'windows': '397.44', 'linux': '396.26'},
            {'cuda_version': '>=9.1.85',   'windows': '391.29', 'linux': '390.46'},
            {'cuda_version': '>=9.0.76',   'windows': '385.54', 'linux': '384.81'},
            {'cuda_version': '>=8.0.61',   'windows': '376.51', 'linux': '375.26'},
            {'cuda_version': '>=8.0.44',   'windows': '369.30', 'linux': '367.48'},
            {'cuda_version': '>=7.5.16',   'windows': '353.66', 'linux': '352.31'},
            {'cuda_version': '>=7.0.28',   'windows': '347.62', 'linux': '346.46'},
        ]

        driver_version = 'unknown'
        for d in driver_version_table:
            if version_compare(cuda_version, d['cuda_version']):
                driver_version = d.get(state.host_machine.system, d['linux'])
                break

        return driver_version

    @permittedKwargs(['detected'])
    def nvcc_arch_flags(self, state: 'ModuleState',
                              args: T.Tuple[T.Union[Compiler, CudaCompiler, str]],
                              kwargs: T.Dict[str, T.Any]) -> T.List[str]:
        nvcc_arch_args = self._validate_nvcc_arch_args(args, kwargs)
        ret = self._nvcc_arch_flags(*nvcc_arch_args)[0]
        return ret

    @permittedKwargs(['detected'])
    def nvcc_arch_readable(self, state: 'ModuleState',
                                 args: T.Tuple[T.Union[Compiler, CudaCompiler, str]],
                                 kwargs: T.Dict[str, T.Any]) -> T.List[str]:
        nvcc_arch_args = self._validate_nvcc_arch_args(args, kwargs)
        ret = self._nvcc_arch_flags(*nvcc_arch_args)[1]
        return ret

    @staticmethod
    def _break_arch_string(s):
        s = re.sub('[ \t\r\n,;]+', ';', s)
        s = s.strip(';').split(';')
        return s

    @staticmethod
    def _detected_cc_from_compiler(c):
        if isinstance(c, CudaCompiler):
            return c.detected_cc
        return ''

    @staticmethod
    def _version_from_compiler(c):
        if isinstance(c, CudaCompiler):
            return c.version
        if isinstance(c, str):
            return c
        return 'unknown'

    def _validate_nvcc_arch_args(self, args, kwargs):
        argerror = InvalidArguments('The first argument must be an NVCC compiler object, or its version string!')

        if len(args) < 1:
            raise argerror
        else:
            compiler = args[0]
            cuda_version = self._version_from_compiler(compiler)
            if cuda_version == 'unknown':
                raise argerror

        arch_list = [] if len(args) <= 1 else flatten(args[1:])
        arch_list = [self._break_arch_string(a) for a in arch_list]
        arch_list = flatten(arch_list)
        if len(arch_list) > 1 and not set(arch_list).isdisjoint({'All', 'Common', 'Auto'}):
            raise InvalidArguments('''The special architectures 'All', 'Common' and 'Auto' must appear alone, as a positional argument!''')
        arch_list = arch_list[0] if len(arch_list) == 1 else arch_list

        detected = kwargs.get('detected', self._detected_cc_from_compiler(compiler))
        detected = flatten([detected])
        detected = [self._break_arch_string(a) for a in detected]
        detected = flatten(detected)
        if not set(detected).isdisjoint({'All', 'Common', 'Auto'}):
            raise InvalidArguments('''The special architectures 'All', 'Common' and 'Auto' must appear alone, as a positional argument!''')

        return cuda_version, arch_list, detected

    def _filter_cuda_arch_list(self, cuda_arch_list, lo=None, hi=None, saturate=None):
        """
        Filter CUDA arch list (no codenames) for >= low and < hi architecture
        bounds, and deduplicate.
        If saturate is provided, architectures >= hi are replaced with saturate.
        """

        filtered_cuda_arch_list = []
        for arch in cuda_arch_list:
            if arch:
                if lo and version_compare(arch, '<' + lo):
                    continue
                if hi and version_compare(arch, '>=' + hi):
                    if not saturate:
                        continue
                    arch = saturate
                if arch not in filtered_cuda_arch_list:
                    filtered_cuda_arch_list.append(arch)
        return filtered_cuda_arch_list

    def _nvcc_arch_flags(self, cuda_version, cuda_arch_list='Auto', detected=''):
        """
        Using the CUDA Toolkit version and the target architectures, compute
        the NVCC architecture flags.
        """

        # Replicates much of the logic of
        #     https://github.com/Kitware/CMake/blob/master/Modules/FindCUDA/select_compute_arch.cmake
        # except that a bug with cuda_arch_list="All" is worked around by
        # tracking both lower and upper limits on GPU architectures.

        cuda_known_gpu_architectures   = ['Fermi', 'Kepler', 'Maxwell']  # noqa: E221
        cuda_common_gpu_architectures  = ['3.0', '3.5', '5.0']           # noqa: E221
        cuda_hi_limit_gpu_architecture = None                            # noqa: E221
        cuda_lo_limit_gpu_architecture = '2.0'                           # noqa: E221
        cuda_all_gpu_architectures     = ['3.0', '3.2', '3.5', '5.0']    # noqa: E221

        if version_compare(cuda_version, '<7.0'):
            cuda_hi_limit_gpu_architecture = '5.2'

        if version_compare(cuda_version, '>=7.0'):
            cuda_known_gpu_architectures  += ['Kepler+Tegra', 'Kepler+Tesla', 'Maxwell+Tegra']  # noqa: E221
            cuda_common_gpu_architectures += ['5.2']                                            # noqa: E221

            if version_compare(cuda_version, '<8.0'):
                cuda_common_gpu_architectures += ['5.2+PTX']  # noqa: E221
                cuda_hi_limit_gpu_architecture = '6.0'        # noqa: E221

        if version_compare(cuda_version, '>=8.0'):
            cuda_known_gpu_architectures  += ['Pascal', 'Pascal+Tegra']  # noqa: E221
            cuda_common_gpu_architectures += ['6.0', '6.1']              # noqa: E221
            cuda_all_gpu_architectures    += ['6.0', '6.1', '6.2']       # noqa: E221

            if version_compare(cuda_version, '<9.0'):
                cuda_common_gpu_architectures += ['6.1+PTX']  # noqa: E221
                cuda_hi_limit_gpu_architecture = '7.0'        # noqa: E221

        if version_compare(cuda_version, '>=9.0'):
            cuda_known_gpu_architectures  += ['Volta', 'Xavier'] # noqa: E221
            cuda_common_gpu_architectures += ['7.0']             # noqa: E221
            cuda_all_gpu_architectures    += ['7.0', '7.2']      # noqa: E221
            # https://docs.nvidia.com/cuda/archive/9.0/cuda-toolkit-release-notes/index.html#unsupported-features
            cuda_lo_limit_gpu_architecture = '3.0'               # noqa: E221

            if version_compare(cuda_version, '<10.0'):
                cuda_common_gpu_architectures += ['7.2+PTX']  # noqa: E221
                cuda_hi_limit_gpu_architecture = '8.0'        # noqa: E221

        if version_compare(cuda_version, '>=10.0'):
            cuda_known_gpu_architectures  += ['Turing'] # noqa: E221
            cuda_common_gpu_architectures += ['7.5']    # noqa: E221
            cuda_all_gpu_architectures    += ['7.5']    # noqa: E221

            if version_compare(cuda_version, '<11.0'):
                cuda_common_gpu_architectures += ['7.5+PTX']  # noqa: E221
                cuda_hi_limit_gpu_architecture = '8.0'        # noqa: E221

        if version_compare(cuda_version, '>=11.0'):
            cuda_known_gpu_architectures  += ['Ampere'] # noqa: E221
            cuda_common_gpu_architectures += ['8.0']    # noqa: E221
            cuda_all_gpu_architectures    += ['8.0']    # noqa: E221
            # https://docs.nvidia.com/cuda/archive/11.0/cuda-toolkit-release-notes/index.html#deprecated-features
            cuda_lo_limit_gpu_architecture = '3.5'      # noqa: E221

            if version_compare(cuda_version, '<11.1'):
                cuda_common_gpu_architectures += ['8.0+PTX']  # noqa: E221
                cuda_hi_limit_gpu_architecture = '8.6'        # noqa: E221

        if version_compare(cuda_version, '>=11.1'):
            cuda_common_gpu_architectures += ['8.6', '8.6+PTX']  # noqa: E221
            cuda_all_gpu_architectures    += ['8.6']             # noqa: E221

            if version_compare(cuda_version, '<12.0'):
                cuda_hi_limit_gpu_architecture = '9.0'        # noqa: E221

        if not cuda_arch_list:
            cuda_arch_list = 'Auto'

        if   cuda_arch_list == 'All':     # noqa: E271
            cuda_arch_list = cuda_known_gpu_architectures
        elif cuda_arch_list == 'Common':  # noqa: E271
            cuda_arch_list = cuda_common_gpu_architectures
        elif cuda_arch_list == 'Auto':    # noqa: E271
            if detected:
                if isinstance(detected, list):
                    cuda_arch_list = detected
                else:
                    cuda_arch_list = self._break_arch_string(detected)
                cuda_arch_list = self._filter_cuda_arch_list(cuda_arch_list,
                                                             cuda_lo_limit_gpu_architecture,
                                                             cuda_hi_limit_gpu_architecture,
                                                             cuda_common_gpu_architectures[-1])
            else:
                cuda_arch_list = cuda_common_gpu_architectures
        elif isinstance(cuda_arch_list, str):
            cuda_arch_list = self._break_arch_string(cuda_arch_list)

        cuda_arch_list = sorted([x for x in set(cuda_arch_list) if x])

        cuda_arch_bin = []
        cuda_arch_ptx = []
        for arch_name in cuda_arch_list:
            arch_bin = []
            arch_ptx = []
            add_ptx = arch_name.endswith('+PTX')
            if add_ptx:
                arch_name = arch_name[:-len('+PTX')]

            if re.fullmatch('[0-9]+\\.[0-9](\\([0-9]+\\.[0-9]\\))?', arch_name):
                arch_bin, arch_ptx = [arch_name], [arch_name]
            else:
                arch_bin, arch_ptx = {
                    'Fermi':         (['2.0', '2.1(2.0)'], []),
                    'Kepler+Tegra':  (['3.2'],             []),
                    'Kepler+Tesla':  (['3.7'],             []),
                    'Kepler':        (['3.0', '3.5'],      ['3.5']),
                    'Maxwell+Tegra': (['5.3'],             []),
                    'Maxwell':       (['5.0', '5.2'],      ['5.2']),
                    'Pascal':        (['6.0', '6.1'],      ['6.1']),
                    'Pascal+Tegra':  (['6.2'],             []),
                    'Volta':         (['7.0'],             ['7.0']),
                    'Xavier':        (['7.2'],             []),
                    'Turing':        (['7.5'],             ['7.5']),
                    'Ampere':        (['8.0'],             ['8.0']),
                }.get(arch_name, (None, None))

            if arch_bin is None:
                raise InvalidArguments('Unknown CUDA Architecture Name {}!'
                                       .format(arch_name))

            cuda_arch_bin += arch_bin

            if add_ptx:
                if not arch_ptx:
                    arch_ptx = arch_bin
                cuda_arch_ptx += arch_ptx

        cuda_arch_bin = sorted(list(set(cuda_arch_bin)))
        cuda_arch_ptx = sorted(list(set(cuda_arch_ptx)))

        nvcc_flags = []
        nvcc_archs_readable = []

        for arch in cuda_arch_bin:
            arch, codev = re.fullmatch(
                '([0-9]+\\.[0-9])(?:\\(([0-9]+\\.[0-9])\\))?', arch).groups()

            if version_compare(arch, '<' + cuda_lo_limit_gpu_architecture):
                continue
            if version_compare(arch, '>=' + cuda_hi_limit_gpu_architecture):
                continue

            if codev:
                arch = arch.replace('.', '')
                codev = codev.replace('.', '')
                nvcc_flags += ['-gencode', 'arch=compute_' + codev + ',code=sm_' + arch]
                nvcc_archs_readable += ['sm_' + arch]
            else:
                arch = arch.replace('.', '')
                nvcc_flags += ['-gencode', 'arch=compute_' + arch + ',code=sm_' + arch]
                nvcc_archs_readable += ['sm_' + arch]

        for arch in cuda_arch_ptx:
            arch, codev = re.fullmatch(
                '([0-9]+\\.[0-9])(?:\\(([0-9]+\\.[0-9])\\))?', arch).groups()

            if codev:
                arch = codev

            if version_compare(arch, '<' + cuda_lo_limit_gpu_architecture):
                continue
            if version_compare(arch, '>=' + cuda_hi_limit_gpu_architecture):
                continue

            arch = arch.replace('.', '')
            nvcc_flags += ['-gencode', 'arch=compute_' + arch + ',code=compute_' + arch]
            nvcc_archs_readable += ['compute_' + arch]

        return nvcc_flags, nvcc_archs_readable

def initialize(*args, **kwargs):
    return CudaModule(*args, **kwargs)