aboutsummaryrefslogtreecommitdiffstats
path: root/roms/SLOF/clients/net-snk/app/biosemu/mem.c
blob: 1a620755413a7758e06de2c52db17aab453df820 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/******************************************************************************
 * Copyright (c) 2004, 2008 IBM Corporation
 * All rights reserved.
 * This program and the accompanying materials
 * are made available under the terms of the BSD License
 * which accompanies this distribution, and is available at
 * http://www.opensource.org/licenses/bsd-license.php
 *
 * Contributors:
 *     IBM Corporation - initial implementation
 *****************************************************************************/

#include <stdio.h>
#include <stdint.h>
#include <cpu.h>
#include "debug.h"
#include "device.h"
#include "x86emu/x86emu.h"
#include "biosemu.h"
#include <time.h>
#include "mem.h"

// define a check for access to certain (virtual) memory regions (interrupt handlers, BIOS Data Area, ...)
#ifdef DEBUG
static uint8_t in_check = 0;	// to avoid recursion...
uint16_t ebda_segment;
uint32_t ebda_size;

//TODO: these macros have grown so large, that they should be changed to an inline function,
//just for the sake of readability...

//declare prototypes of the functions to follow, for use in DEBUG_CHECK_VMEM_ACCESS
uint8_t my_rdb(uint32_t);
uint16_t my_rdw(uint32_t);
uint32_t my_rdl(uint32_t);

#define DEBUG_CHECK_VMEM_READ(_addr, _rval) \
   if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
         in_check = 1; \
         /* determine ebda_segment and size \
          * since we are using my_rdx calls, make sure, this is after setting in_check! */ \
         /* offset 03 in BDA is EBDA segment */ \
         ebda_segment = my_rdw(0x40e); \
         /* first value in ebda is size in KB */ \
         ebda_size = my_rdb(ebda_segment << 4) * 1024; \
			/* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
			if (_addr < 0x400) { \
				DEBUG_PRINTF_CS_IP("%s: read from Interrupt Vector %x --> %x\n", \
						__FUNCTION__, _addr / 4, _rval); \
			} \
			/* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
			else if ((_addr >= 0x400) && (addr < 0x500)) { \
				DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Area: addr: %x --> %x\n", \
						__FUNCTION__, _addr, _rval); \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
			/* access to first 64k of memory... */ \
			else if (_addr < 0x10000) { \
				DEBUG_PRINTF_CS_IP("%s: read from segment 0000h: addr: %x --> %x\n", \
						__FUNCTION__, _addr, _rval); \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
			/* read from PMM_CONV_SEGMENT */ \
			else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
				DEBUG_PRINTF_CS_IP("%s: read from PMM Segment %04xh: addr: %x --> %x\n", \
						__FUNCTION__, PMM_CONV_SEGMENT, _addr, _rval); \
				/* HALT_SYS(); */ \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
			/* read from PNP_DATA_SEGMENT */ \
			else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
				DEBUG_PRINTF_CS_IP("%s: read from PnP Data Segment %04xh: addr: %x --> %x\n", \
						__FUNCTION__, PNP_DATA_SEGMENT, _addr, _rval); \
				/* HALT_SYS(); */ \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
			/* read from EBDA Segment */ \
			else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
				DEBUG_PRINTF_CS_IP("%s: read from Extended BIOS Data Area %04xh, size: %04x: addr: %x --> %x\n", \
						__FUNCTION__, ebda_segment, ebda_size, _addr, _rval); \
			} \
			/* read from BIOS_DATA_SEGMENT */ \
			else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
				DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Segment %04xh: addr: %x --> %x\n", \
						__FUNCTION__, BIOS_DATA_SEGMENT, _addr, _rval); \
				/* for PMM debugging */ \
				/*if (_addr == BIOS_DATA_SEGMENT << 4) { \
					X86EMU_trace_on(); \
					M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F; \
				}*/ \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
         in_check = 0; \
   }
#define DEBUG_CHECK_VMEM_WRITE(_addr, _val) \
   if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
         in_check = 1; \
         /* determine ebda_segment and size \
          * since we are using my_rdx calls, make sure, this is after setting in_check! */ \
         /* offset 03 in BDA is EBDA segment */ \
         ebda_segment = my_rdw(0x40e); \
         /* first value in ebda is size in KB */ \
         ebda_size = my_rdb(ebda_segment << 4) * 1024; \
			/* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
			if (_addr < 0x400) { \
				DEBUG_PRINTF_CS_IP("%s: write to Interrupt Vector %x <-- %x\n", \
						__FUNCTION__, _addr / 4, _val); \
			} \
			/* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
			else if ((_addr >= 0x400) && (addr < 0x500)) { \
				DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Area: addr: %x <-- %x\n", \
						__FUNCTION__, _addr, _val); \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
			/* access to first 64k of memory...*/ \
			else if (_addr < 0x10000) { \
				DEBUG_PRINTF_CS_IP("%s: write to segment 0000h: addr: %x <-- %x\n", \
						__FUNCTION__, _addr, _val); \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
			/* write to PMM_CONV_SEGMENT... */ \
			else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
				DEBUG_PRINTF_CS_IP("%s: write to PMM Segment %04xh: addr: %x <-- %x\n", \
						__FUNCTION__, PMM_CONV_SEGMENT, _addr, _val); \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
			/* write to PNP_DATA_SEGMENT... */ \
			else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
				DEBUG_PRINTF_CS_IP("%s: write to PnP Data Segment %04xh: addr: %x <-- %x\n", \
						__FUNCTION__, PNP_DATA_SEGMENT, _addr, _val); \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
			/* write to EBDA Segment... */ \
			else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
				DEBUG_PRINTF_CS_IP("%s: write to Extended BIOS Data Area %04xh, size: %04x: addr: %x <-- %x\n", \
						__FUNCTION__, ebda_segment, ebda_size, _addr, _val); \
			} \
			/* write to BIOS_DATA_SEGMENT... */ \
			else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
				DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Segment %04xh: addr: %x <-- %x\n", \
						__FUNCTION__, BIOS_DATA_SEGMENT, _addr, _val); \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
			/* write to current CS segment... */ \
			else if ((_addr < ((M.x86.R_CS << 4) | 0xffff)) && (_addr > (M.x86.R_CS << 4))) { \
				DEBUG_PRINTF_CS_IP("%s: write to CS segment %04xh: addr: %x <-- %x\n", \
						__FUNCTION__, M.x86.R_CS, _addr, _val); \
				/* dump registers */ \
				/* x86emu_dump_xregs(); */ \
			} \
         in_check = 0; \
   }
#else
#define DEBUG_CHECK_VMEM_READ(_addr, _rval)
#define DEBUG_CHECK_VMEM_WRITE(_addr, _val)
#endif

//defined in net-snk/kernel/timer.c
extern uint64_t get_time(void);

void update_time(uint32_t);

// read byte from memory
uint8_t
my_rdb(uint32_t addr)
{
	uint64_t translated_addr = addr;
	uint8_t translated = dev_translate_address(&translated_addr);
	uint8_t rval;
	if (translated != 0) {
		//translation successful, access VGA Memory (BAR or Legacy...)
		DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
				 __FUNCTION__, addr);
		//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
		set_ci();
		rval = *((uint8_t *) translated_addr);
		clr_ci();
		DEBUG_PRINTF_MEM("%s(%08x) VGA --> %02x\n", __FUNCTION__, addr,
				 rval);
		return rval;
	} else if (addr > M.mem_size) {
		DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
			     __FUNCTION__, addr);
		//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
		HALT_SYS();
	} else {
		/* read from virtual memory */
		rval = *((uint8_t *) (M.mem_base + addr));
		DEBUG_CHECK_VMEM_READ(addr, rval);
		return rval;
	}
	return -1;
}

//read word from memory
uint16_t
my_rdw(uint32_t addr)
{
	uint64_t translated_addr = addr;
	uint8_t translated = dev_translate_address(&translated_addr);
	uint16_t rval;
	if (translated != 0) {
		//translation successful, access VGA Memory (BAR or Legacy...)
		DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
				 __FUNCTION__, addr);
		//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
		// check for legacy memory, because of the remapping to BARs, the reads must
		// be byte reads...
		if ((addr >= 0xa0000) && (addr < 0xc0000)) {
			//read bytes a using my_rdb, because of the remapping to BARs
			//words may not be contiguous in memory, so we need to translate
			//every address...
			rval = ((uint8_t) my_rdb(addr)) |
			    (((uint8_t) my_rdb(addr + 1)) << 8);
		} else {
			if ((translated_addr & (uint64_t) 0x1) == 0) {
				// 16 bit aligned access...
				set_ci();
				rval = in16le((void *) translated_addr);
				clr_ci();
			} else {
				// unaligned access, read single bytes
				set_ci();
				rval = (*((uint8_t *) translated_addr)) |
				    (*((uint8_t *) translated_addr + 1) << 8);
				clr_ci();
			}
		}
		DEBUG_PRINTF_MEM("%s(%08x) VGA --> %04x\n", __FUNCTION__, addr,
				 rval);
		return rval;
	} else if (addr > M.mem_size) {
		DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
			     __FUNCTION__, addr);
		//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
		HALT_SYS();
	} else {
		/* read from virtual memory */
		rval = in16le((void *) (M.mem_base + addr));
		DEBUG_CHECK_VMEM_READ(addr, rval);
		return rval;
	}
	return -1;
}

//read long from memory
uint32_t
my_rdl(uint32_t addr)
{
	uint64_t translated_addr = addr;
	uint8_t translated = dev_translate_address(&translated_addr);
	uint32_t rval;
	if (translated != 0) {
		//translation successful, access VGA Memory (BAR or Legacy...)
		DEBUG_PRINTF_MEM("%s(%x): access to VGA Memory\n",
				 __FUNCTION__, addr);
		//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
		// check for legacy memory, because of the remapping to BARs, the reads must
		// be byte reads...
		if ((addr >= 0xa0000) && (addr < 0xc0000)) {
			//read bytes a using my_rdb, because of the remapping to BARs
			//dwords may not be contiguous in memory, so we need to translate
			//every address...
			rval = ((uint8_t) my_rdb(addr)) |
			    (((uint8_t) my_rdb(addr + 1)) << 8) |
			    (((uint8_t) my_rdb(addr + 2)) << 16) |
			    (((uint8_t) my_rdb(addr + 3)) << 24);
		} else {
			if ((translated_addr & (uint64_t) 0x3) == 0) {
				// 32 bit aligned access...
				set_ci();
				rval = in32le((void *) translated_addr);
				clr_ci();
			} else {
				// unaligned access, read single bytes
				set_ci();
				rval = (*((uint8_t *) translated_addr)) |
				    (*((uint8_t *) translated_addr + 1) << 8) |
				    (*((uint8_t *) translated_addr + 2) << 16) |
				    (*((uint8_t *) translated_addr + 3) << 24);
				clr_ci();
			}
		}
		DEBUG_PRINTF_MEM("%s(%08x) VGA --> %08x\n", __FUNCTION__, addr,
				 rval);
		//HALT_SYS();
		return rval;
	} else if (addr > M.mem_size) {
		DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
			     __FUNCTION__, addr);
		//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
		HALT_SYS();
	} else {
		/* read from virtual memory */
		rval = in32le((void *) (M.mem_base + addr));
		switch (addr) {
		case 0x46c:
			//BDA Time Data, update it, before reading
			update_time(rval);
			rval = in32le((void *) (M.mem_base + addr));
			break;
		}
		DEBUG_CHECK_VMEM_READ(addr, rval);
		return rval;
	}
	return -1;
}

//write byte to memory
void
my_wrb(uint32_t addr, uint8_t val)
{
	uint64_t translated_addr = addr;
	uint8_t translated = dev_translate_address(&translated_addr);
	if (translated != 0) {
		//translation successful, access VGA Memory (BAR or Legacy...)
		DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
				 __FUNCTION__, addr, val);
		//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
		set_ci();
		*((uint8_t *) translated_addr) = val;
		clr_ci();
	} else if (addr > M.mem_size) {
		DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
			     __FUNCTION__, addr);
		//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
		HALT_SYS();
	} else {
		/* write to virtual memory */
		DEBUG_CHECK_VMEM_WRITE(addr, val);
		*((uint8_t *) (M.mem_base + addr)) = val;
	}
}

void
my_wrw(uint32_t addr, uint16_t val)
{
	uint64_t translated_addr = addr;
	uint8_t translated = dev_translate_address(&translated_addr);
	if (translated != 0) {
		//translation successful, access VGA Memory (BAR or Legacy...)
		DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
				 __FUNCTION__, addr, val);
		//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr);
		// check for legacy memory, because of the remapping to BARs, the reads must
		// be byte reads...
		if ((addr >= 0xa0000) && (addr < 0xc0000)) {
			//read bytes a using my_rdb, because of the remapping to BARs
			//words may not be contiguous in memory, so we need to translate
			//every address...
			my_wrb(addr, (uint8_t) (val & 0x00FF));
			my_wrb(addr + 1, (uint8_t) ((val & 0xFF00) >> 8));
		} else {
			if ((translated_addr & (uint64_t) 0x1) == 0) {
				// 16 bit aligned access...
				set_ci();
				out16le((void *) translated_addr, val);
				clr_ci();
			} else {
				// unaligned access, write single bytes
				set_ci();
				*((uint8_t *) translated_addr) =
				    (uint8_t) (val & 0x00FF);
				*((uint8_t *) translated_addr + 1) =
				    (uint8_t) ((val & 0xFF00) >> 8);
				clr_ci();
			}
		}
	} else if (addr > M.mem_size) {
		DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
			     __FUNCTION__, addr);
		//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
		HALT_SYS();
	} else {
		/* write to virtual memory */
		DEBUG_CHECK_VMEM_WRITE(addr, val);
		out16le((void *) (M.mem_base + addr), val);
	}
}
void
my_wrl(uint32_t addr, uint32_t val)
{
	uint64_t translated_addr = addr;
	uint8_t translated = dev_translate_address(&translated_addr);
	if (translated != 0) {
		//translation successful, access VGA Memory (BAR or Legacy...)
		DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
				 __FUNCTION__, addr, val);
		//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n",  __FUNCTION__, addr, translated_addr);
		// check for legacy memory, because of the remapping to BARs, the reads must
		// be byte reads...
		if ((addr >= 0xa0000) && (addr < 0xc0000)) {
			//read bytes a using my_rdb, because of the remapping to BARs
			//words may not be contiguous in memory, so we need to translate
			//every address...
			my_wrb(addr, (uint8_t) (val & 0x000000FF));
			my_wrb(addr + 1, (uint8_t) ((val & 0x0000FF00) >> 8));
			my_wrb(addr + 2, (uint8_t) ((val & 0x00FF0000) >> 16));
			my_wrb(addr + 3, (uint8_t) ((val & 0xFF000000) >> 24));
		} else {
			if ((translated_addr & (uint64_t) 0x3) == 0) {
				// 32 bit aligned access...
				set_ci();
				out32le((void *) translated_addr, val);
				clr_ci();
			} else {
				// unaligned access, write single bytes
				set_ci();
				*((uint8_t *) translated_addr) =
				    (uint8_t) (val & 0x000000FF);
				*((uint8_t *) translated_addr + 1) =
				    (uint8_t) ((val & 0x0000FF00) >> 8);
				*((uint8_t *) translated_addr + 2) =
				    (uint8_t) ((val & 0x00FF0000) >> 16);
				*((uint8_t *) translated_addr + 3) =
				    (uint8_t) ((val & 0xFF000000) >> 24);
				clr_ci();
			}
		}
	} else if (addr > M.mem_size) {
		DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
			     __FUNCTION__, addr);
		//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
		HALT_SYS();
	} else {
		/* write to virtual memory */
		DEBUG_CHECK_VMEM_WRITE(addr, val);
		out32le((void *) (M.mem_base + addr), val);
	}
}

//update time in BIOS Data Area
//DWord at offset 0x6c is the timer ticks since midnight, timer is running at 18Hz
//byte at 0x70 is timer overflow (set if midnight passed since last call to interrupt 1a function 00
//cur_val is the current value, of offset 6c...
void
update_time(uint32_t cur_val)
{
	//for convenience, we let the start of timebase be at midnight, we currently dont support
	//real daytime anyway...
	uint64_t ticks_per_day = tb_freq * 60 * 24;
	// at 18Hz a period is ~55ms, converted to ticks (tb_freq is ticks/second)
	uint32_t period_ticks = (55 * tb_freq) / 1000;
	uint64_t curr_time = get_time();
	uint64_t ticks_since_midnight = curr_time % ticks_per_day;
	uint32_t periods_since_midnight = ticks_since_midnight / period_ticks;
	// if periods since midnight is smaller than last value, set overflow
	// at BDA Offset 0x70
	if (periods_since_midnight < cur_val) {
		my_wrb(0x470, 1);
	}
	// store periods since midnight at BDA offset 0x6c
	my_wrl(0x46c, periods_since_midnight);
}