aboutsummaryrefslogtreecommitdiffstats
path: root/roms/edk2/MdeModulePkg/Bus/Pci/PciHostBridgeDxe/PciHostBridge.c
blob: 4ab9415c96003e56c107011829a082f379db9975 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
/** @file

  Provides the basic interfaces to abstract a PCI Host Bridge Resource Allocation.

Copyright (c) 1999 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "PciHostBridge.h"
#include "PciRootBridge.h"
#include "PciHostResource.h"

EFI_CPU_IO2_PROTOCOL        *mCpuIo;

GLOBAL_REMOVE_IF_UNREFERENCED CHAR16 *mAcpiAddressSpaceTypeStr[] = {
  L"Mem", L"I/O", L"Bus"
};
GLOBAL_REMOVE_IF_UNREFERENCED CHAR16 *mPciResourceTypeStr[] = {
  L"I/O", L"Mem", L"PMem", L"Mem64", L"PMem64", L"Bus"
};

EDKII_IOMMU_PROTOCOL        *mIoMmu;
EFI_EVENT                   mIoMmuEvent;
VOID                        *mIoMmuRegistration;

/**
  This routine gets translation offset from a root bridge instance by resource type.

  @param RootBridge The Root Bridge Instance for the resources.
  @param ResourceType The Resource Type of the translation offset.

  @retval The Translation Offset of the specified resource.
**/
UINT64
GetTranslationByResourceType (
  IN  PCI_ROOT_BRIDGE_INSTANCE     *RootBridge,
  IN  PCI_RESOURCE_TYPE            ResourceType
  )
{
  switch (ResourceType) {
    case TypeIo:
      return RootBridge->Io.Translation;
    case TypeMem32:
      return RootBridge->Mem.Translation;
    case TypePMem32:
      return RootBridge->PMem.Translation;
    case TypeMem64:
      return RootBridge->MemAbove4G.Translation;
    case TypePMem64:
      return RootBridge->PMemAbove4G.Translation;
    case TypeBus:
      return RootBridge->Bus.Translation;
    default:
      ASSERT (FALSE);
      return 0;
  }
}

/**
  Ensure the compatibility of an IO space descriptor with the IO aperture.

  The IO space descriptor can come from the GCD IO space map, or it can
  represent a gap between two neighboring IO space descriptors. In the latter
  case, the GcdIoType field is expected to be EfiGcdIoTypeNonExistent.

  If the IO space descriptor already has type EfiGcdIoTypeIo, then no action is
  taken -- it is by definition compatible with the aperture.

  Otherwise, the intersection of the IO space descriptor is calculated with the
  aperture. If the intersection is the empty set (no overlap), no action is
  taken; the IO space descriptor is compatible with the aperture.

  Otherwise, the type of the descriptor is investigated again. If the type is
  EfiGcdIoTypeNonExistent (representing a gap, or a genuine descriptor with
  such a type), then an attempt is made to add the intersection as IO space to
  the GCD IO space map. This ensures continuity for the aperture, and the
  descriptor is deemed compatible with the aperture.

  Otherwise, the IO space descriptor is incompatible with the IO aperture.

  @param[in] Base        Base address of the aperture.
  @param[in] Length      Length of the aperture.
  @param[in] Descriptor  The descriptor to ensure compatibility with the
                         aperture for.

  @retval EFI_SUCCESS            The descriptor is compatible. The GCD IO space
                                 map may have been updated, for continuity
                                 within the aperture.
  @retval EFI_INVALID_PARAMETER  The descriptor is incompatible.
  @return                        Error codes from gDS->AddIoSpace().
**/
EFI_STATUS
IntersectIoDescriptor (
  IN  UINT64                            Base,
  IN  UINT64                            Length,
  IN  CONST EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor
  )
{
  UINT64                                IntersectionBase;
  UINT64                                IntersectionEnd;
  EFI_STATUS                            Status;

  if (Descriptor->GcdIoType == EfiGcdIoTypeIo) {
    return EFI_SUCCESS;
  }

  IntersectionBase = MAX (Base, Descriptor->BaseAddress);
  IntersectionEnd = MIN (Base + Length,
                      Descriptor->BaseAddress + Descriptor->Length);
  if (IntersectionBase >= IntersectionEnd) {
    //
    // The descriptor and the aperture don't overlap.
    //
    return EFI_SUCCESS;
  }

  if (Descriptor->GcdIoType == EfiGcdIoTypeNonExistent) {
    Status = gDS->AddIoSpace (EfiGcdIoTypeIo, IntersectionBase,
                    IntersectionEnd - IntersectionBase);

    DEBUG ((EFI_ERROR (Status) ? EFI_D_ERROR : EFI_D_VERBOSE,
      "%a: %a: add [%Lx, %Lx): %r\n", gEfiCallerBaseName, __FUNCTION__,
      IntersectionBase, IntersectionEnd, Status));
    return Status;
  }

  DEBUG ((EFI_D_ERROR, "%a: %a: desc [%Lx, %Lx) type %u conflicts with "
    "aperture [%Lx, %Lx)\n", gEfiCallerBaseName, __FUNCTION__,
    Descriptor->BaseAddress, Descriptor->BaseAddress + Descriptor->Length,
    (UINT32)Descriptor->GcdIoType, Base, Base + Length));
  return EFI_INVALID_PARAMETER;
}

/**
  Add IO space to GCD.
  The routine checks the GCD database and only adds those which are
  not added in the specified range to GCD.

  @param Base   Base address of the IO space.
  @param Length Length of the IO space.

  @retval EFI_SUCCES The IO space was added successfully.
**/
EFI_STATUS
AddIoSpace (
  IN  UINT64                        Base,
  IN  UINT64                        Length
  )
{
  EFI_STATUS                        Status;
  UINTN                             Index;
  UINTN                             NumberOfDescriptors;
  EFI_GCD_IO_SPACE_DESCRIPTOR       *IoSpaceMap;

  Status = gDS->GetIoSpaceMap (&NumberOfDescriptors, &IoSpaceMap);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "%a: %a: GetIoSpaceMap(): %r\n",
      gEfiCallerBaseName, __FUNCTION__, Status));
    return Status;
  }

  for (Index = 0; Index < NumberOfDescriptors; Index++) {
    Status = IntersectIoDescriptor (Base, Length, &IoSpaceMap[Index]);
    if (EFI_ERROR (Status)) {
      goto FreeIoSpaceMap;
    }
  }

  DEBUG_CODE (
    //
    // Make sure there are adjacent descriptors covering [Base, Base + Length).
    // It is possible that they have not been merged; merging can be prevented
    // by allocation.
    //
    UINT64                      CheckBase;
    EFI_STATUS                  CheckStatus;
    EFI_GCD_IO_SPACE_DESCRIPTOR Descriptor;

    for (CheckBase = Base;
         CheckBase < Base + Length;
         CheckBase = Descriptor.BaseAddress + Descriptor.Length) {
      CheckStatus = gDS->GetIoSpaceDescriptor (CheckBase, &Descriptor);
      ASSERT_EFI_ERROR (CheckStatus);
      ASSERT (Descriptor.GcdIoType == EfiGcdIoTypeIo);
    }
    );

FreeIoSpaceMap:
  FreePool (IoSpaceMap);

  return Status;
}

/**
  Ensure the compatibility of a memory space descriptor with the MMIO aperture.

  The memory space descriptor can come from the GCD memory space map, or it can
  represent a gap between two neighboring memory space descriptors. In the
  latter case, the GcdMemoryType field is expected to be
  EfiGcdMemoryTypeNonExistent.

  If the memory space descriptor already has type
  EfiGcdMemoryTypeMemoryMappedIo, and its capabilities are a superset of the
  required capabilities, then no action is taken -- it is by definition
  compatible with the aperture.

  Otherwise, the intersection of the memory space descriptor is calculated with
  the aperture. If the intersection is the empty set (no overlap), no action is
  taken; the memory space descriptor is compatible with the aperture.

  Otherwise, the type of the descriptor is investigated again. If the type is
  EfiGcdMemoryTypeNonExistent (representing a gap, or a genuine descriptor with
  such a type), then an attempt is made to add the intersection as MMIO space
  to the GCD memory space map, with the specified capabilities. This ensures
  continuity for the aperture, and the descriptor is deemed compatible with the
  aperture.

  Otherwise, the memory space descriptor is incompatible with the MMIO
  aperture.

  @param[in] Base         Base address of the aperture.
  @param[in] Length       Length of the aperture.
  @param[in] Capabilities Capabilities required by the aperture.
  @param[in] Descriptor   The descriptor to ensure compatibility with the
                          aperture for.

  @retval EFI_SUCCESS            The descriptor is compatible. The GCD memory
                                 space map may have been updated, for
                                 continuity within the aperture.
  @retval EFI_INVALID_PARAMETER  The descriptor is incompatible.
  @return                        Error codes from gDS->AddMemorySpace().
**/
EFI_STATUS
IntersectMemoryDescriptor (
  IN  UINT64                                Base,
  IN  UINT64                                Length,
  IN  UINT64                                Capabilities,
  IN  CONST EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor
  )
{
  UINT64                                    IntersectionBase;
  UINT64                                    IntersectionEnd;
  EFI_STATUS                                Status;

  if (Descriptor->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo &&
      (Descriptor->Capabilities & Capabilities) == Capabilities) {
    return EFI_SUCCESS;
  }

  IntersectionBase = MAX (Base, Descriptor->BaseAddress);
  IntersectionEnd = MIN (Base + Length,
                      Descriptor->BaseAddress + Descriptor->Length);
  if (IntersectionBase >= IntersectionEnd) {
    //
    // The descriptor and the aperture don't overlap.
    //
    return EFI_SUCCESS;
  }

  if (Descriptor->GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
    Status = gDS->AddMemorySpace (EfiGcdMemoryTypeMemoryMappedIo,
                    IntersectionBase, IntersectionEnd - IntersectionBase,
                    Capabilities);

    DEBUG ((EFI_ERROR (Status) ? EFI_D_ERROR : EFI_D_VERBOSE,
      "%a: %a: add [%Lx, %Lx): %r\n", gEfiCallerBaseName, __FUNCTION__,
      IntersectionBase, IntersectionEnd, Status));
    return Status;
  }

  DEBUG ((EFI_D_ERROR, "%a: %a: desc [%Lx, %Lx) type %u cap %Lx conflicts "
    "with aperture [%Lx, %Lx) cap %Lx\n", gEfiCallerBaseName, __FUNCTION__,
    Descriptor->BaseAddress, Descriptor->BaseAddress + Descriptor->Length,
    (UINT32)Descriptor->GcdMemoryType, Descriptor->Capabilities,
    Base, Base + Length, Capabilities));
  return EFI_INVALID_PARAMETER;
}

/**
  Add MMIO space to GCD.
  The routine checks the GCD database and only adds those which are
  not added in the specified range to GCD.

  @param Base         Base address of the MMIO space.
  @param Length       Length of the MMIO space.
  @param Capabilities Capabilities of the MMIO space.

  @retval EFI_SUCCES The MMIO space was added successfully.
**/
EFI_STATUS
AddMemoryMappedIoSpace (
  IN  UINT64                            Base,
  IN  UINT64                            Length,
  IN  UINT64                            Capabilities
  )
{
  EFI_STATUS                            Status;
  UINTN                                 Index;
  UINTN                                 NumberOfDescriptors;
  EFI_GCD_MEMORY_SPACE_DESCRIPTOR       *MemorySpaceMap;

  Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "%a: %a: GetMemorySpaceMap(): %r\n",
      gEfiCallerBaseName, __FUNCTION__, Status));
    return Status;
  }

  for (Index = 0; Index < NumberOfDescriptors; Index++) {
    Status = IntersectMemoryDescriptor (Base, Length, Capabilities,
               &MemorySpaceMap[Index]);
    if (EFI_ERROR (Status)) {
      goto FreeMemorySpaceMap;
    }
  }

  DEBUG_CODE (
    //
    // Make sure there are adjacent descriptors covering [Base, Base + Length).
    // It is possible that they have not been merged; merging can be prevented
    // by allocation and different capabilities.
    //
    UINT64                          CheckBase;
    EFI_STATUS                      CheckStatus;
    EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;

    for (CheckBase = Base;
         CheckBase < Base + Length;
         CheckBase = Descriptor.BaseAddress + Descriptor.Length) {
      CheckStatus = gDS->GetMemorySpaceDescriptor (CheckBase, &Descriptor);
      ASSERT_EFI_ERROR (CheckStatus);
      ASSERT (Descriptor.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo);
      ASSERT ((Descriptor.Capabilities & Capabilities) == Capabilities);
    }
    );

FreeMemorySpaceMap:
  FreePool (MemorySpaceMap);

  return Status;
}

/**
  Event notification that is fired when IOMMU protocol is installed.

  @param  Event                 The Event that is being processed.
  @param  Context               Event Context.

**/
VOID
EFIAPI
IoMmuProtocolCallback (
  IN  EFI_EVENT       Event,
  IN  VOID            *Context
  )
{
  EFI_STATUS   Status;

  Status = gBS->LocateProtocol (&gEdkiiIoMmuProtocolGuid, NULL, (VOID **)&mIoMmu);
  if (!EFI_ERROR(Status)) {
    gBS->CloseEvent (mIoMmuEvent);
  }
}

/**

  Entry point of this driver.

  @param ImageHandle  Image handle of this driver.
  @param SystemTable  Pointer to standard EFI system table.

  @retval EFI_SUCCESS       Succeed.
  @retval EFI_DEVICE_ERROR  Fail to install PCI_ROOT_BRIDGE_IO protocol.

**/
EFI_STATUS
EFIAPI
InitializePciHostBridge (
  IN EFI_HANDLE         ImageHandle,
  IN EFI_SYSTEM_TABLE   *SystemTable
  )
{
  EFI_STATUS                  Status;
  PCI_HOST_BRIDGE_INSTANCE    *HostBridge;
  PCI_ROOT_BRIDGE_INSTANCE    *RootBridge;
  PCI_ROOT_BRIDGE             *RootBridges;
  UINTN                       RootBridgeCount;
  UINTN                       Index;
  PCI_ROOT_BRIDGE_APERTURE    *MemApertures[4];
  UINTN                       MemApertureIndex;
  BOOLEAN                     ResourceAssigned;
  LIST_ENTRY                  *Link;
  UINT64                      HostAddress;

  RootBridges = PciHostBridgeGetRootBridges (&RootBridgeCount);
  if ((RootBridges == NULL) || (RootBridgeCount == 0)) {
    return EFI_UNSUPPORTED;
  }

  Status = gBS->LocateProtocol (&gEfiCpuIo2ProtocolGuid, NULL, (VOID **) &mCpuIo);
  ASSERT_EFI_ERROR (Status);

  //
  // Most systems in the world including complex servers have only one Host Bridge.
  //
  HostBridge = AllocateZeroPool (sizeof (PCI_HOST_BRIDGE_INSTANCE));
  ASSERT (HostBridge != NULL);

  HostBridge->Signature        = PCI_HOST_BRIDGE_SIGNATURE;
  HostBridge->CanRestarted     = TRUE;
  InitializeListHead (&HostBridge->RootBridges);
  ResourceAssigned             = FALSE;

  //
  // Create Root Bridge Device Handle in this Host Bridge
  //
  for (Index = 0; Index < RootBridgeCount; Index++) {
    //
    // Create Root Bridge Handle Instance
    //
    RootBridge = CreateRootBridge (&RootBridges[Index]);
    ASSERT (RootBridge != NULL);
    if (RootBridge == NULL) {
      continue;
    }

    //
    // Make sure all root bridges share the same ResourceAssigned value.
    //
    if (Index == 0) {
      ResourceAssigned = RootBridges[Index].ResourceAssigned;
    } else {
      ASSERT (ResourceAssigned == RootBridges[Index].ResourceAssigned);
    }

    if (RootBridges[Index].Io.Base <= RootBridges[Index].Io.Limit) {
      //
      // Base and Limit in PCI_ROOT_BRIDGE_APERTURE are device address.
      // For GCD resource manipulation, we need to use host address.
      //
      HostAddress = TO_HOST_ADDRESS (RootBridges[Index].Io.Base,
        RootBridges[Index].Io.Translation);

      Status = AddIoSpace (
                 HostAddress,
                 RootBridges[Index].Io.Limit - RootBridges[Index].Io.Base + 1
                 );
      ASSERT_EFI_ERROR (Status);
      if (ResourceAssigned) {
        Status = gDS->AllocateIoSpace (
                        EfiGcdAllocateAddress,
                        EfiGcdIoTypeIo,
                        0,
                        RootBridges[Index].Io.Limit - RootBridges[Index].Io.Base + 1,
                        &HostAddress,
                        gImageHandle,
                        NULL
                        );
        ASSERT_EFI_ERROR (Status);
      }
    }

    //
    // Add all the Mem/PMem aperture to GCD
    // Mem/PMem shouldn't overlap with each other
    // Root bridge which needs to combine MEM and PMEM should only report
    // the MEM aperture in Mem
    //
    MemApertures[0] = &RootBridges[Index].Mem;
    MemApertures[1] = &RootBridges[Index].MemAbove4G;
    MemApertures[2] = &RootBridges[Index].PMem;
    MemApertures[3] = &RootBridges[Index].PMemAbove4G;

    for (MemApertureIndex = 0; MemApertureIndex < ARRAY_SIZE (MemApertures); MemApertureIndex++) {
      if (MemApertures[MemApertureIndex]->Base <= MemApertures[MemApertureIndex]->Limit) {
        //
        // Base and Limit in PCI_ROOT_BRIDGE_APERTURE are device address.
        // For GCD resource manipulation, we need to use host address.
        //
        HostAddress = TO_HOST_ADDRESS (MemApertures[MemApertureIndex]->Base,
          MemApertures[MemApertureIndex]->Translation);
        Status = AddMemoryMappedIoSpace (
                   HostAddress,
                   MemApertures[MemApertureIndex]->Limit - MemApertures[MemApertureIndex]->Base + 1,
                   EFI_MEMORY_UC
                   );
        ASSERT_EFI_ERROR (Status);
        Status = gDS->SetMemorySpaceAttributes (
                        HostAddress,
                        MemApertures[MemApertureIndex]->Limit - MemApertures[MemApertureIndex]->Base + 1,
                        EFI_MEMORY_UC
                        );
        if (EFI_ERROR (Status)) {
          DEBUG ((DEBUG_WARN, "PciHostBridge driver failed to set EFI_MEMORY_UC to MMIO aperture - %r.\n", Status));
        }
        if (ResourceAssigned) {
          Status = gDS->AllocateMemorySpace (
                          EfiGcdAllocateAddress,
                          EfiGcdMemoryTypeMemoryMappedIo,
                          0,
                          MemApertures[MemApertureIndex]->Limit - MemApertures[MemApertureIndex]->Base + 1,
                          &HostAddress,
                          gImageHandle,
                          NULL
                          );
          ASSERT_EFI_ERROR (Status);
        }
      }
    }
    //
    // Insert Root Bridge Handle Instance
    //
    InsertTailList (&HostBridge->RootBridges, &RootBridge->Link);
  }

  //
  // When resources were assigned, it's not needed to expose
  // PciHostBridgeResourceAllocation protocol.
  //
  if (!ResourceAssigned) {
    HostBridge->ResAlloc.NotifyPhase = NotifyPhase;
    HostBridge->ResAlloc.GetNextRootBridge = GetNextRootBridge;
    HostBridge->ResAlloc.GetAllocAttributes = GetAttributes;
    HostBridge->ResAlloc.StartBusEnumeration = StartBusEnumeration;
    HostBridge->ResAlloc.SetBusNumbers = SetBusNumbers;
    HostBridge->ResAlloc.SubmitResources = SubmitResources;
    HostBridge->ResAlloc.GetProposedResources = GetProposedResources;
    HostBridge->ResAlloc.PreprocessController = PreprocessController;

    Status = gBS->InstallMultipleProtocolInterfaces (
                    &HostBridge->Handle,
                    &gEfiPciHostBridgeResourceAllocationProtocolGuid, &HostBridge->ResAlloc,
                    NULL
                    );
    ASSERT_EFI_ERROR (Status);
  }

  for (Link = GetFirstNode (&HostBridge->RootBridges)
       ; !IsNull (&HostBridge->RootBridges, Link)
       ; Link = GetNextNode (&HostBridge->RootBridges, Link)
       ) {
    RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
    RootBridge->RootBridgeIo.ParentHandle = HostBridge->Handle;

    Status = gBS->InstallMultipleProtocolInterfaces (
                    &RootBridge->Handle,
                    &gEfiDevicePathProtocolGuid, RootBridge->DevicePath,
                    &gEfiPciRootBridgeIoProtocolGuid, &RootBridge->RootBridgeIo,
                    NULL
                    );
    ASSERT_EFI_ERROR (Status);
  }
  PciHostBridgeFreeRootBridges (RootBridges, RootBridgeCount);

  if (!EFI_ERROR (Status)) {
    mIoMmuEvent = EfiCreateProtocolNotifyEvent (
                    &gEdkiiIoMmuProtocolGuid,
                    TPL_CALLBACK,
                    IoMmuProtocolCallback,
                    NULL,
                    &mIoMmuRegistration
                    );
  }

  return Status;
}

/**
  This routine constructs the resource descriptors for all root bridges and call PciHostBridgeResourceConflict().

  @param HostBridge The Host Bridge Instance where the resource adjustment happens.
**/
VOID
ResourceConflict (
  IN  PCI_HOST_BRIDGE_INSTANCE *HostBridge
  )
{
  EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Resources;
  EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
  EFI_ACPI_END_TAG_DESCRIPTOR       *End;
  PCI_ROOT_BRIDGE_INSTANCE          *RootBridge;
  LIST_ENTRY                        *Link;
  UINTN                             RootBridgeCount;
  PCI_RESOURCE_TYPE                 Index;
  PCI_RES_NODE                      *ResAllocNode;

  RootBridgeCount = 0;
  for (Link = GetFirstNode (&HostBridge->RootBridges)
       ; !IsNull (&HostBridge->RootBridges, Link)
       ; Link = GetNextNode (&HostBridge->RootBridges, Link)
       ) {
    RootBridgeCount++;
  }

  Resources = AllocatePool (
                RootBridgeCount * (TypeMax * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR)) +
                sizeof (EFI_ACPI_END_TAG_DESCRIPTOR)
                );
  ASSERT (Resources != NULL);

  for (Link = GetFirstNode (&HostBridge->RootBridges), Descriptor = Resources
       ; !IsNull (&HostBridge->RootBridges, Link)
       ; Link = GetNextNode (&HostBridge->RootBridges, Link)
       ) {
    RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
    for (Index = TypeIo; Index < TypeMax; Index++) {
      ResAllocNode = &RootBridge->ResAllocNode[Index];

      Descriptor->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
      Descriptor->Len = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
      Descriptor->AddrRangeMin = ResAllocNode->Base;
      Descriptor->AddrRangeMax = ResAllocNode->Alignment;
      Descriptor->AddrLen      = ResAllocNode->Length;
      Descriptor->SpecificFlag = 0;
      switch (ResAllocNode->Type) {

      case TypeIo:
        Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_IO;
        break;

      case TypePMem32:
        Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
      case TypeMem32:
        Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
        Descriptor->AddrSpaceGranularity = 32;
        break;

      case TypePMem64:
        Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
      case TypeMem64:
        Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
        Descriptor->AddrSpaceGranularity = 64;
        break;

      case TypeBus:
        Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_BUS;
        break;

      default:
        break;
      }

      Descriptor++;
    }
    //
    // Terminate the root bridge resources.
    //
    End = (EFI_ACPI_END_TAG_DESCRIPTOR *) Descriptor;
    End->Desc = ACPI_END_TAG_DESCRIPTOR;
    End->Checksum = 0x0;

    Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) (End + 1);
  }
  //
  // Terminate the host bridge resources.
  //
  End = (EFI_ACPI_END_TAG_DESCRIPTOR *) Descriptor;
  End->Desc = ACPI_END_TAG_DESCRIPTOR;
  End->Checksum = 0x0;

  DEBUG ((DEBUG_ERROR, "Call PciHostBridgeResourceConflict().\n"));
  PciHostBridgeResourceConflict (HostBridge->Handle, Resources);
  FreePool (Resources);
}

/**
  Allocate Length of MMIO or IO resource with alignment BitsOfAlignment
  from GCD range [BaseAddress, Limit).

  @param Mmio            TRUE for MMIO and FALSE for IO.
  @param Length          Length of the resource to allocate.
  @param BitsOfAlignment Alignment of the resource to allocate.
  @param BaseAddress     The starting address the allocation is from.
  @param Limit           The ending address the allocation is to.

  @retval  The base address of the allocated resource or MAX_UINT64 if allocation
           fails.
**/
UINT64
AllocateResource (
  BOOLEAN Mmio,
  UINT64  Length,
  UINTN   BitsOfAlignment,
  UINT64  BaseAddress,
  UINT64  Limit
  )
{
  EFI_STATUS Status;

  if (BaseAddress < Limit) {
    //
    // Have to make sure Aligment is handled since we are doing direct address allocation
    // Strictly speaking, alignment requirement should be applied to device
    // address instead of host address which is used in GCD manipulation below,
    // but as we restrict the alignment of Translation to be larger than any BAR
    // alignment in the root bridge, we can simplify the situation and consider
    // the same alignment requirement is also applied to host address.
    //
    BaseAddress = ALIGN_VALUE (BaseAddress, LShiftU64 (1, BitsOfAlignment));

    while (BaseAddress + Length <= Limit + 1) {
      if (Mmio) {
        Status = gDS->AllocateMemorySpace (
                        EfiGcdAllocateAddress,
                        EfiGcdMemoryTypeMemoryMappedIo,
                        BitsOfAlignment,
                        Length,
                        &BaseAddress,
                        gImageHandle,
                        NULL
                        );
      } else {
        Status = gDS->AllocateIoSpace (
                        EfiGcdAllocateAddress,
                        EfiGcdIoTypeIo,
                        BitsOfAlignment,
                        Length,
                        &BaseAddress,
                        gImageHandle,
                        NULL
                        );
      }

      if (!EFI_ERROR (Status)) {
        return BaseAddress;
      }
      BaseAddress += LShiftU64 (1, BitsOfAlignment);
    }
  }
  return MAX_UINT64;
}

/**

  Enter a certain phase of the PCI enumeration process.

  @param This   The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.
  @param Phase  The phase during enumeration.

  @retval EFI_SUCCESS            Succeed.
  @retval EFI_INVALID_PARAMETER  Wrong phase parameter passed in.
  @retval EFI_NOT_READY          Resources have not been submitted yet.

**/
EFI_STATUS
EFIAPI
NotifyPhase (
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE    Phase
  )
{
  PCI_HOST_BRIDGE_INSTANCE              *HostBridge;
  PCI_ROOT_BRIDGE_INSTANCE              *RootBridge;
  LIST_ENTRY                            *Link;
  EFI_PHYSICAL_ADDRESS                  BaseAddress;
  UINTN                                 BitsOfAlignment;
  UINT64                                Alignment;
  EFI_STATUS                            Status;
  EFI_STATUS                            ReturnStatus;
  PCI_RESOURCE_TYPE                     Index;
  PCI_RESOURCE_TYPE                     Index1;
  PCI_RESOURCE_TYPE                     Index2;
  BOOLEAN                               ResNodeHandled[TypeMax];
  UINT64                                MaxAlignment;
  UINT64                                Translation;

  HostBridge = PCI_HOST_BRIDGE_FROM_THIS (This);

  switch (Phase) {
  case EfiPciHostBridgeBeginEnumeration:
    if (!HostBridge->CanRestarted) {
      return EFI_NOT_READY;
    }
    //
    // Reset Root Bridge
    //
    for (Link = GetFirstNode (&HostBridge->RootBridges)
          ; !IsNull (&HostBridge->RootBridges, Link)
          ; Link = GetNextNode (&HostBridge->RootBridges, Link)
          ) {
      RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
      for (Index = TypeIo; Index < TypeMax; Index++) {
        RootBridge->ResAllocNode[Index].Type   = Index;
        RootBridge->ResAllocNode[Index].Base   = 0;
        RootBridge->ResAllocNode[Index].Length = 0;
        RootBridge->ResAllocNode[Index].Status = ResNone;

        RootBridge->ResourceSubmitted = FALSE;
      }
    }

    HostBridge->CanRestarted = TRUE;
    break;

  case EfiPciHostBridgeBeginBusAllocation:
    //
    // No specific action is required here, can perform any chipset specific programing
    //
    HostBridge->CanRestarted = FALSE;
    break;

  case EfiPciHostBridgeEndBusAllocation:
    //
    // No specific action is required here, can perform any chipset specific programing
    //
    break;

  case EfiPciHostBridgeBeginResourceAllocation:
    //
    // No specific action is required here, can perform any chipset specific programing
    //
    break;

  case EfiPciHostBridgeAllocateResources:
    ReturnStatus = EFI_SUCCESS;

    //
    // Make sure the resource for all root bridges has been submitted.
    //
    for (Link = GetFirstNode (&HostBridge->RootBridges)
         ; !IsNull (&HostBridge->RootBridges, Link)
         ; Link = GetNextNode (&HostBridge->RootBridges, Link)
         ) {
      RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
      if (!RootBridge->ResourceSubmitted) {
        return EFI_NOT_READY;
      }
    }

    DEBUG ((EFI_D_INFO, "PciHostBridge: NotifyPhase (AllocateResources)\n"));
    for (Link = GetFirstNode (&HostBridge->RootBridges)
         ; !IsNull (&HostBridge->RootBridges, Link)
         ; Link = GetNextNode (&HostBridge->RootBridges, Link)
         ) {
      for (Index = TypeIo; Index < TypeBus; Index++) {
        ResNodeHandled[Index] = FALSE;
      }

      RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
      DEBUG ((EFI_D_INFO, " RootBridge: %s\n", RootBridge->DevicePathStr));

      for (Index1 = TypeIo; Index1 < TypeBus; Index1++) {
        if (RootBridge->ResAllocNode[Index1].Status == ResNone) {
          ResNodeHandled[Index1] = TRUE;
        } else {
          //
          // Allocate the resource node with max alignment at first
          //
          MaxAlignment = 0;
          Index = TypeMax;
          for (Index2 = TypeIo; Index2 < TypeBus; Index2++) {
            if (ResNodeHandled[Index2]) {
              continue;
            }
            if (MaxAlignment <= RootBridge->ResAllocNode[Index2].Alignment) {
              MaxAlignment = RootBridge->ResAllocNode[Index2].Alignment;
              Index = Index2;
            }
          }

          ASSERT (Index < TypeMax);
          ResNodeHandled[Index] = TRUE;
          Alignment = RootBridge->ResAllocNode[Index].Alignment;
          BitsOfAlignment = LowBitSet64 (Alignment + 1);
          BaseAddress = MAX_UINT64;

          //
          // RESTRICTION: To simplify the situation, we require the alignment of
          // Translation must be larger than any BAR alignment in the same root
          // bridge, so that resource allocation alignment can be applied to
          // both device address and host address.
          //
          Translation = GetTranslationByResourceType (RootBridge, Index);
          if ((Translation & Alignment) != 0) {
            DEBUG ((DEBUG_ERROR, "[%a:%d] Translation %lx is not aligned to %lx!\n",
              __FUNCTION__, __LINE__, Translation, Alignment
              ));
            ASSERT ((Translation & Alignment) == 0);
            //
            // This may be caused by too large alignment or too small
            // Translation; pick the 1st possibility and return out of resource,
            // which can also go thru the same process for out of resource
            // outside the loop.
            //
            ReturnStatus = EFI_OUT_OF_RESOURCES;
            continue;
          }

          switch (Index) {
          case TypeIo:
            //
            // Base and Limit in PCI_ROOT_BRIDGE_APERTURE are device address.
            // For AllocateResource is manipulating GCD resource, we need to use
            // host address here.
            //
            BaseAddress = AllocateResource (
                            FALSE,
                            RootBridge->ResAllocNode[Index].Length,
                            MIN (15, BitsOfAlignment),
                            TO_HOST_ADDRESS (ALIGN_VALUE (RootBridge->Io.Base, Alignment + 1),
                              RootBridge->Io.Translation),
                            TO_HOST_ADDRESS (RootBridge->Io.Limit,
                              RootBridge->Io.Translation)
                            );
            break;

          case TypeMem64:
            BaseAddress = AllocateResource (
                            TRUE,
                            RootBridge->ResAllocNode[Index].Length,
                            MIN (63, BitsOfAlignment),
                            TO_HOST_ADDRESS (ALIGN_VALUE (RootBridge->MemAbove4G.Base, Alignment + 1),
                              RootBridge->MemAbove4G.Translation),
                            TO_HOST_ADDRESS (RootBridge->MemAbove4G.Limit,
                              RootBridge->MemAbove4G.Translation)
                            );
            if (BaseAddress != MAX_UINT64) {
              break;
            }
            //
            // If memory above 4GB is not available, try memory below 4GB
            //

          case TypeMem32:
            BaseAddress = AllocateResource (
                            TRUE,
                            RootBridge->ResAllocNode[Index].Length,
                            MIN (31, BitsOfAlignment),
                            TO_HOST_ADDRESS (ALIGN_VALUE (RootBridge->Mem.Base, Alignment + 1),
                              RootBridge->Mem.Translation),
                            TO_HOST_ADDRESS (RootBridge->Mem.Limit,
                              RootBridge->Mem.Translation)
                            );
            break;

          case TypePMem64:
            BaseAddress = AllocateResource (
                            TRUE,
                            RootBridge->ResAllocNode[Index].Length,
                            MIN (63, BitsOfAlignment),
                            TO_HOST_ADDRESS (ALIGN_VALUE (RootBridge->PMemAbove4G.Base, Alignment + 1),
                              RootBridge->PMemAbove4G.Translation),
                            TO_HOST_ADDRESS (RootBridge->PMemAbove4G.Limit,
                              RootBridge->PMemAbove4G.Translation)
                            );
            if (BaseAddress != MAX_UINT64) {
              break;
            }
            //
            // If memory above 4GB is not available, try memory below 4GB
            //
          case TypePMem32:
            BaseAddress = AllocateResource (
                            TRUE,
                            RootBridge->ResAllocNode[Index].Length,
                            MIN (31, BitsOfAlignment),
                            TO_HOST_ADDRESS (ALIGN_VALUE (RootBridge->PMem.Base, Alignment + 1),
                              RootBridge->PMem.Translation),
                            TO_HOST_ADDRESS (RootBridge->PMem.Limit,
                              RootBridge->PMem.Translation)
                            );
            break;

          default:
            ASSERT (FALSE);
            break;
          }

          DEBUG ((DEBUG_INFO, "  %s: Base/Length/Alignment = %lx/%lx/%lx - ",
                  mPciResourceTypeStr[Index], BaseAddress, RootBridge->ResAllocNode[Index].Length, Alignment));
          if (BaseAddress != MAX_UINT64) {
            RootBridge->ResAllocNode[Index].Base = BaseAddress;
            RootBridge->ResAllocNode[Index].Status = ResAllocated;
            DEBUG ((DEBUG_INFO, "Success\n"));
          } else {
            ReturnStatus = EFI_OUT_OF_RESOURCES;
            DEBUG ((DEBUG_ERROR, "Out Of Resource!\n"));
          }
        }
      }
    }

    if (ReturnStatus == EFI_OUT_OF_RESOURCES) {
      ResourceConflict (HostBridge);
    }

    //
    // Set resource to zero for nodes where allocation fails
    //
    for (Link = GetFirstNode (&HostBridge->RootBridges)
          ; !IsNull (&HostBridge->RootBridges, Link)
          ; Link = GetNextNode (&HostBridge->RootBridges, Link)
          ) {
      RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
      for (Index = TypeIo; Index < TypeBus; Index++) {
        if (RootBridge->ResAllocNode[Index].Status != ResAllocated) {
          RootBridge->ResAllocNode[Index].Length = 0;
        }
      }
    }
    return ReturnStatus;

  case EfiPciHostBridgeSetResources:
    //
    // HostBridgeInstance->CanRestarted = FALSE;
    //
    break;

  case EfiPciHostBridgeFreeResources:
    //
    // HostBridgeInstance->CanRestarted = FALSE;
    //
    ReturnStatus = EFI_SUCCESS;
    for (Link = GetFirstNode (&HostBridge->RootBridges)
         ; !IsNull (&HostBridge->RootBridges, Link)
         ; Link = GetNextNode (&HostBridge->RootBridges, Link)
         ) {
      RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
      for (Index = TypeIo; Index < TypeBus; Index++) {
        if (RootBridge->ResAllocNode[Index].Status == ResAllocated) {
          switch (Index) {
          case TypeIo:
            Status = gDS->FreeIoSpace (RootBridge->ResAllocNode[Index].Base, RootBridge->ResAllocNode[Index].Length);
            if (EFI_ERROR (Status)) {
              ReturnStatus = Status;
            }
            break;

          case TypeMem32:
          case TypePMem32:
          case TypeMem64:
          case TypePMem64:
            Status = gDS->FreeMemorySpace (RootBridge->ResAllocNode[Index].Base, RootBridge->ResAllocNode[Index].Length);
            if (EFI_ERROR (Status)) {
              ReturnStatus = Status;
            }
            break;

          default:
            ASSERT (FALSE);
            break;
          }

          RootBridge->ResAllocNode[Index].Type = Index;
          RootBridge->ResAllocNode[Index].Base = 0;
          RootBridge->ResAllocNode[Index].Length = 0;
          RootBridge->ResAllocNode[Index].Status = ResNone;
        }
      }

      RootBridge->ResourceSubmitted = FALSE;
    }

    HostBridge->CanRestarted = TRUE;
    return ReturnStatus;

  case EfiPciHostBridgeEndResourceAllocation:
    //
    // The resource allocation phase is completed.  No specific action is required
    // here. This notification can be used to perform any chipset specific programming.
    //
    break;

  case EfiPciHostBridgeEndEnumeration:
    //
    // The Host Bridge Enumeration is completed. No specific action is required here.
    // This notification can be used to perform any chipset specific programming.
    //
    break;

  default:
    return EFI_INVALID_PARAMETER;
  }

  return EFI_SUCCESS;
}

/**

  Return the device handle of the next PCI root bridge that is associated with
  this Host Bridge.

  @param This              The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ PROTOCOL instance.
  @param RootBridgeHandle  Returns the device handle of the next PCI Root Bridge.
                           On input, it holds the RootBridgeHandle returned by the most
                           recent call to GetNextRootBridge().The handle for the first
                           PCI Root Bridge is returned if RootBridgeHandle is NULL on input.

  @retval EFI_SUCCESS            Succeed.
  @retval EFI_NOT_FOUND          Next PCI root bridge not found.
  @retval EFI_INVALID_PARAMETER  Wrong parameter passed in.

**/
EFI_STATUS
EFIAPI
GetNextRootBridge (
  IN     EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
  IN OUT EFI_HANDLE                                       *RootBridgeHandle
  )
{
  BOOLEAN                   ReturnNext;
  LIST_ENTRY                *Link;
  PCI_HOST_BRIDGE_INSTANCE  *HostBridge;
  PCI_ROOT_BRIDGE_INSTANCE  *RootBridge;

  if (RootBridgeHandle == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  HostBridge = PCI_HOST_BRIDGE_FROM_THIS (This);
  ReturnNext = (BOOLEAN) (*RootBridgeHandle == NULL);

  for (Link = GetFirstNode (&HostBridge->RootBridges)
      ; !IsNull (&HostBridge->RootBridges, Link)
      ; Link = GetNextNode (&HostBridge->RootBridges, Link)
      ) {
    RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
    if (ReturnNext) {
      *RootBridgeHandle = RootBridge->Handle;
      return EFI_SUCCESS;
    }

    ReturnNext = (BOOLEAN) (*RootBridgeHandle == RootBridge->Handle);
  }

  if (ReturnNext) {
    ASSERT (IsNull (&HostBridge->RootBridges, Link));
    return EFI_NOT_FOUND;
  } else {
    return EFI_INVALID_PARAMETER;
  }
}

/**

  Returns the attributes of a PCI Root Bridge.

  @param This              The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ PROTOCOL instance.
  @param RootBridgeHandle  The device handle of the PCI Root Bridge
                           that the caller is interested in.
  @param Attributes        The pointer to attributes of the PCI Root Bridge.

  @retval EFI_SUCCESS            Succeed.
  @retval EFI_INVALID_PARAMETER  Attributes parameter passed in is NULL or
                                 RootBridgeHandle is not an EFI_HANDLE
                                 that was returned on a previous call to
                                 GetNextRootBridge().

**/
EFI_STATUS
EFIAPI
GetAttributes (
  IN  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
  IN  EFI_HANDLE                                       RootBridgeHandle,
  OUT UINT64                                           *Attributes
  )
{
  LIST_ENTRY                *Link;
  PCI_HOST_BRIDGE_INSTANCE  *HostBridge;
  PCI_ROOT_BRIDGE_INSTANCE  *RootBridge;

  if (Attributes == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  HostBridge = PCI_HOST_BRIDGE_FROM_THIS (This);
  for (Link = GetFirstNode (&HostBridge->RootBridges)
      ; !IsNull (&HostBridge->RootBridges, Link)
      ; Link = GetNextNode (&HostBridge->RootBridges, Link)
      ) {
    RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
    if (RootBridgeHandle == RootBridge->Handle) {
      *Attributes = RootBridge->AllocationAttributes;
      return EFI_SUCCESS;
    }
  }

  return EFI_INVALID_PARAMETER;
}

/**

  This is the request from the PCI enumerator to set up
  the specified PCI Root Bridge for bus enumeration process.

  @param This              The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ PROTOCOL instance.
  @param RootBridgeHandle  The PCI Root Bridge to be set up.
  @param Configuration     Pointer to the pointer to the PCI bus resource descriptor.

  @retval EFI_SUCCESS            Succeed.
  @retval EFI_OUT_OF_RESOURCES   Not enough pool to be allocated.
  @retval EFI_INVALID_PARAMETER  RootBridgeHandle is not a valid handle.

**/
EFI_STATUS
EFIAPI
StartBusEnumeration (
  IN  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
  IN  EFI_HANDLE                                       RootBridgeHandle,
  OUT VOID                                             **Configuration
  )
{
  LIST_ENTRY                *Link;
  PCI_HOST_BRIDGE_INSTANCE  *HostBridge;
  PCI_ROOT_BRIDGE_INSTANCE  *RootBridge;
  EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
  EFI_ACPI_END_TAG_DESCRIPTOR       *End;

  if (Configuration == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  HostBridge = PCI_HOST_BRIDGE_FROM_THIS (This);
  for (Link = GetFirstNode (&HostBridge->RootBridges)
       ; !IsNull (&HostBridge->RootBridges, Link)
       ; Link = GetNextNode (&HostBridge->RootBridges, Link)
       ) {
    RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
    if (RootBridgeHandle == RootBridge->Handle) {
      *Configuration = AllocatePool (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR));
      if (*Configuration == NULL) {
        return EFI_OUT_OF_RESOURCES;
      }

      Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) *Configuration;
      Descriptor->Desc                  = ACPI_ADDRESS_SPACE_DESCRIPTOR;
      Descriptor->Len                   = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
      Descriptor->ResType               = ACPI_ADDRESS_SPACE_TYPE_BUS;
      Descriptor->GenFlag               = 0;
      Descriptor->SpecificFlag          = 0;
      Descriptor->AddrSpaceGranularity  = 0;
      Descriptor->AddrRangeMin          = RootBridge->Bus.Base;
      Descriptor->AddrRangeMax          = 0;
      Descriptor->AddrTranslationOffset = 0;
      Descriptor->AddrLen               = RootBridge->Bus.Limit - RootBridge->Bus.Base + 1;

      End = (EFI_ACPI_END_TAG_DESCRIPTOR *) (Descriptor + 1);
      End->Desc = ACPI_END_TAG_DESCRIPTOR;
      End->Checksum = 0x0;

      return EFI_SUCCESS;
    }
  }

  return EFI_INVALID_PARAMETER;
}

/**

  This function programs the PCI Root Bridge hardware so that
  it decodes the specified PCI bus range.

  @param This              The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ PROTOCOL instance.
  @param RootBridgeHandle  The PCI Root Bridge whose bus range is to be programmed.
  @param Configuration     The pointer to the PCI bus resource descriptor.

  @retval EFI_SUCCESS            Succeed.
  @retval EFI_INVALID_PARAMETER  Wrong parameters passed in.

**/
EFI_STATUS
EFIAPI
SetBusNumbers (
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
  IN EFI_HANDLE                                       RootBridgeHandle,
  IN VOID                                             *Configuration
  )
{
  LIST_ENTRY                *Link;
  PCI_HOST_BRIDGE_INSTANCE  *HostBridge;
  PCI_ROOT_BRIDGE_INSTANCE  *RootBridge;
  EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
  EFI_ACPI_END_TAG_DESCRIPTOR       *End;

  if (Configuration == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Configuration;
  End = (EFI_ACPI_END_TAG_DESCRIPTOR *) (Descriptor + 1);

  //
  // Check the Configuration is valid
  //
  if ((Descriptor->Desc != ACPI_ADDRESS_SPACE_DESCRIPTOR) ||
      (Descriptor->ResType != ACPI_ADDRESS_SPACE_TYPE_BUS) ||
      (End->Desc != ACPI_END_TAG_DESCRIPTOR)
     ) {
    return EFI_INVALID_PARAMETER;
  }

  HostBridge = PCI_HOST_BRIDGE_FROM_THIS (This);
  for (Link = GetFirstNode (&HostBridge->RootBridges)
       ; !IsNull (&HostBridge->RootBridges, Link)
       ; Link = GetNextNode (&HostBridge->RootBridges, Link)
       ) {
    RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
    if (RootBridgeHandle == RootBridge->Handle) {

      if (Descriptor->AddrLen == 0) {
        return EFI_INVALID_PARAMETER;
      }

      if ((Descriptor->AddrRangeMin < RootBridge->Bus.Base) ||
          (Descriptor->AddrRangeMin + Descriptor->AddrLen - 1 > RootBridge->Bus.Limit)
         ) {
        return EFI_INVALID_PARAMETER;
      }
      //
      // Update the Bus Range
      //
      RootBridge->ResAllocNode[TypeBus].Base    = Descriptor->AddrRangeMin;
      RootBridge->ResAllocNode[TypeBus].Length  = Descriptor->AddrLen;
      RootBridge->ResAllocNode[TypeBus].Status  = ResAllocated;
      return EFI_SUCCESS;
    }
  }

  return EFI_INVALID_PARAMETER;
}

/**

  Submits the I/O and memory resource requirements for the specified PCI Root Bridge.

  @param This              The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ PROTOCOL instance.
  @param RootBridgeHandle  The PCI Root Bridge whose I/O and memory resource requirements.
                           are being submitted.
  @param Configuration     The pointer to the PCI I/O and PCI memory resource descriptor.

  @retval EFI_SUCCESS            Succeed.
  @retval EFI_INVALID_PARAMETER  Wrong parameters passed in.
**/
EFI_STATUS
EFIAPI
SubmitResources (
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
  IN EFI_HANDLE                                       RootBridgeHandle,
  IN VOID                                             *Configuration
  )
{
  LIST_ENTRY                        *Link;
  PCI_HOST_BRIDGE_INSTANCE          *HostBridge;
  PCI_ROOT_BRIDGE_INSTANCE          *RootBridge;
  EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
  PCI_RESOURCE_TYPE                 Type;

  //
  // Check the input parameter: Configuration
  //
  if (Configuration == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  HostBridge = PCI_HOST_BRIDGE_FROM_THIS (This);
  for (Link = GetFirstNode (&HostBridge->RootBridges)
       ; !IsNull (&HostBridge->RootBridges, Link)
       ; Link = GetNextNode (&HostBridge->RootBridges, Link)
       ) {
    RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
    if (RootBridgeHandle == RootBridge->Handle) {
      DEBUG ((EFI_D_INFO, "PciHostBridge: SubmitResources for %s\n", RootBridge->DevicePathStr));
      //
      // Check the resource descriptors.
      // If the Configuration includes one or more invalid resource descriptors, all the resource
      // descriptors are ignored and the function returns EFI_INVALID_PARAMETER.
      //
      for (Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Configuration; Descriptor->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR; Descriptor++) {
        if (Descriptor->ResType > ACPI_ADDRESS_SPACE_TYPE_BUS) {
          return EFI_INVALID_PARAMETER;
        }

        DEBUG ((EFI_D_INFO, " %s: Granularity/SpecificFlag = %ld / %02x%s\n",
                mAcpiAddressSpaceTypeStr[Descriptor->ResType], Descriptor->AddrSpaceGranularity, Descriptor->SpecificFlag,
                (Descriptor->SpecificFlag & EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE) != 0 ? L" (Prefetchable)" : L""
                ));
        DEBUG ((EFI_D_INFO, "      Length/Alignment = 0x%lx / 0x%lx\n", Descriptor->AddrLen, Descriptor->AddrRangeMax));
        switch (Descriptor->ResType) {
        case ACPI_ADDRESS_SPACE_TYPE_MEM:
          if (Descriptor->AddrSpaceGranularity != 32 && Descriptor->AddrSpaceGranularity != 64) {
            return EFI_INVALID_PARAMETER;
          }
          if (Descriptor->AddrSpaceGranularity == 32 && Descriptor->AddrLen >= SIZE_4GB) {
            return EFI_INVALID_PARAMETER;
          }
          //
          // If the PCI root bridge does not support separate windows for nonprefetchable and
          // prefetchable memory, then the PCI bus driver needs to include requests for
          // prefetchable memory in the nonprefetchable memory pool.
          //
          if (((RootBridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM) != 0) &&
              ((Descriptor->SpecificFlag & EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE) != 0)
             ) {
            return EFI_INVALID_PARAMETER;
          }
        case ACPI_ADDRESS_SPACE_TYPE_IO:
          //
          // Check aligment, it should be of the form 2^n-1
          //
          if (GetPowerOfTwo64 (Descriptor->AddrRangeMax + 1) != (Descriptor->AddrRangeMax + 1)) {
            return EFI_INVALID_PARAMETER;
          }
          break;
        default:
          ASSERT (FALSE);
          break;
        }
      }
      if (Descriptor->Desc != ACPI_END_TAG_DESCRIPTOR) {
        return EFI_INVALID_PARAMETER;
      }

      for (Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Configuration; Descriptor->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR; Descriptor++) {
        if (Descriptor->ResType == ACPI_ADDRESS_SPACE_TYPE_MEM) {
          if (Descriptor->AddrSpaceGranularity == 32) {
            if ((Descriptor->SpecificFlag & EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE) != 0) {
              Type = TypePMem32;
            } else {
              Type = TypeMem32;
            }
          } else {
            ASSERT (Descriptor->AddrSpaceGranularity == 64);
            if ((Descriptor->SpecificFlag & EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE) != 0) {
              Type = TypePMem64;
            } else {
              Type = TypeMem64;
            }
          }
        } else {
          ASSERT (Descriptor->ResType == ACPI_ADDRESS_SPACE_TYPE_IO);
          Type = TypeIo;
        }
        RootBridge->ResAllocNode[Type].Length    = Descriptor->AddrLen;
        RootBridge->ResAllocNode[Type].Alignment = Descriptor->AddrRangeMax;
        RootBridge->ResAllocNode[Type].Status    = ResSubmitted;
      }
      RootBridge->ResourceSubmitted = TRUE;
      return EFI_SUCCESS;
    }
  }

  return EFI_INVALID_PARAMETER;
}

/**

  This function returns the proposed resource settings for the specified
  PCI Root Bridge.

  @param This              The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ PROTOCOL instance.
  @param RootBridgeHandle  The PCI Root Bridge handle.
  @param Configuration     The pointer to the pointer to the PCI I/O
                           and memory resource descriptor.

  @retval EFI_SUCCESS            Succeed.
  @retval EFI_OUT_OF_RESOURCES   Not enough pool to be allocated.
  @retval EFI_INVALID_PARAMETER  RootBridgeHandle is not a valid handle.

**/
EFI_STATUS
EFIAPI
GetProposedResources (
  IN  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
  IN  EFI_HANDLE                                       RootBridgeHandle,
  OUT VOID                                             **Configuration
  )
{
  LIST_ENTRY                        *Link;
  PCI_HOST_BRIDGE_INSTANCE          *HostBridge;
  PCI_ROOT_BRIDGE_INSTANCE          *RootBridge;
  UINTN                             Index;
  UINTN                             Number;
  VOID                              *Buffer;
  EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
  EFI_ACPI_END_TAG_DESCRIPTOR       *End;
  UINT64                            ResStatus;

  HostBridge = PCI_HOST_BRIDGE_FROM_THIS (This);
  for (Link = GetFirstNode (&HostBridge->RootBridges)
      ; !IsNull (&HostBridge->RootBridges, Link)
      ; Link = GetNextNode (&HostBridge->RootBridges, Link)
      ) {
    RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
    if (RootBridgeHandle == RootBridge->Handle) {
      for (Index = 0, Number = 0; Index < TypeBus; Index++) {
        if (RootBridge->ResAllocNode[Index].Status != ResNone) {
          Number++;
        }
      }

      Buffer = AllocateZeroPool (Number * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR));
      if (Buffer == NULL) {
        return EFI_OUT_OF_RESOURCES;
      }

      Descriptor = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Buffer;
      for (Index = 0; Index < TypeBus; Index++) {
        ResStatus = RootBridge->ResAllocNode[Index].Status;
        if (ResStatus != ResNone) {
          Descriptor->Desc                  = ACPI_ADDRESS_SPACE_DESCRIPTOR;
          Descriptor->Len                   = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;;
          Descriptor->GenFlag               = 0;
          //
          // AddrRangeMin in Resource Descriptor here should be device address
          // instead of host address, or else PCI bus driver cannot set correct
          // address into PCI BAR registers.
          // Base in ResAllocNode is a host address, so conversion is needed.
          //
          Descriptor->AddrRangeMin          = TO_DEVICE_ADDRESS (RootBridge->ResAllocNode[Index].Base,
            GetTranslationByResourceType (RootBridge, Index));
          Descriptor->AddrRangeMax          = 0;
          Descriptor->AddrTranslationOffset = (ResStatus == ResAllocated) ? EFI_RESOURCE_SATISFIED : PCI_RESOURCE_LESS;
          Descriptor->AddrLen               = RootBridge->ResAllocNode[Index].Length;

          switch (Index) {

          case TypeIo:
            Descriptor->ResType              = ACPI_ADDRESS_SPACE_TYPE_IO;
            break;

          case TypePMem32:
            Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
          case TypeMem32:
            Descriptor->ResType              = ACPI_ADDRESS_SPACE_TYPE_MEM;
            Descriptor->AddrSpaceGranularity = 32;
            break;

          case TypePMem64:
            Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
          case TypeMem64:
            Descriptor->ResType              = ACPI_ADDRESS_SPACE_TYPE_MEM;
            Descriptor->AddrSpaceGranularity = 64;
            break;
          }

          Descriptor++;
        }
      }
      End = (EFI_ACPI_END_TAG_DESCRIPTOR *) Descriptor;
      End->Desc      = ACPI_END_TAG_DESCRIPTOR;
      End->Checksum  = 0;

      *Configuration = Buffer;

      return EFI_SUCCESS;
    }
  }

  return EFI_INVALID_PARAMETER;
}

/**

  This function is called for all the PCI controllers that the PCI
  bus driver finds. Can be used to Preprogram the controller.

  @param This              The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ PROTOCOL instance.
  @param RootBridgeHandle  The PCI Root Bridge handle.
  @param PciAddress        Address of the controller on the PCI bus.
  @param Phase             The Phase during resource allocation.

  @retval EFI_SUCCESS            Succeed.
  @retval EFI_INVALID_PARAMETER  RootBridgeHandle is not a valid handle.

**/
EFI_STATUS
EFIAPI
PreprocessController (
  IN  EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL          *This,
  IN  EFI_HANDLE                                                RootBridgeHandle,
  IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS               PciAddress,
  IN  EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE              Phase
  )
{
  LIST_ENTRY                *Link;
  PCI_HOST_BRIDGE_INSTANCE  *HostBridge;
  PCI_ROOT_BRIDGE_INSTANCE  *RootBridge;

  if ((UINT32) Phase > EfiPciBeforeResourceCollection) {
    return EFI_INVALID_PARAMETER;
  }

  HostBridge = PCI_HOST_BRIDGE_FROM_THIS (This);
  for (Link = GetFirstNode (&HostBridge->RootBridges)
       ; !IsNull (&HostBridge->RootBridges, Link)
       ; Link = GetNextNode (&HostBridge->RootBridges, Link)
       ) {
    RootBridge = ROOT_BRIDGE_FROM_LINK (Link);
    if (RootBridgeHandle == RootBridge->Handle) {
      return EFI_SUCCESS;
    }
  }

  return EFI_INVALID_PARAMETER;
}