1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* Code to manage and manipulate CPUs
*
* Copyright 2013-2019 IBM Corp.
*/
#include <skiboot.h>
#include <cpu.h>
#include <device.h>
#include <mem_region.h>
#include <opal.h>
#include <stack.h>
#include <trace.h>
#include <affinity.h>
#include <chip.h>
#include <timebase.h>
#include <interrupts.h>
#include <ccan/str/str.h>
#include <ccan/container_of/container_of.h>
#include <xscom.h>
/* The cpu_threads array is static and indexed by PIR in
* order to speed up lookup from asm entry points
*/
struct cpu_stack {
union {
uint8_t stack[STACK_SIZE];
struct cpu_thread cpu;
};
} __align(STACK_SIZE);
static struct cpu_stack * const cpu_stacks = (struct cpu_stack *)CPU_STACKS_BASE;
unsigned int cpu_thread_count;
unsigned int cpu_max_pir;
struct cpu_thread *boot_cpu;
static struct lock reinit_lock = LOCK_UNLOCKED;
static bool hile_supported;
static bool radix_supported;
static unsigned long hid0_hile;
static unsigned long hid0_attn;
static bool sreset_enabled;
static bool ipi_enabled;
static bool pm_enabled;
static bool current_hile_mode = HAVE_LITTLE_ENDIAN;
static bool current_radix_mode = true;
static bool tm_suspend_enabled;
unsigned long cpu_secondary_start __force_data = 0;
struct cpu_job {
struct list_node link;
void (*func)(void *data);
void *data;
const char *name;
bool complete;
bool no_return;
};
/* attribute const as cpu_stacks is constant. */
unsigned long __attrconst cpu_stack_bottom(unsigned int pir)
{
return ((unsigned long)&cpu_stacks[pir]) +
sizeof(struct cpu_thread) + STACK_SAFETY_GAP;
}
unsigned long __attrconst cpu_stack_top(unsigned int pir)
{
/* This is the top of the normal stack. */
return ((unsigned long)&cpu_stacks[pir]) +
NORMAL_STACK_SIZE - STACK_TOP_GAP;
}
unsigned long __attrconst cpu_emergency_stack_top(unsigned int pir)
{
/* This is the top of the emergency stack, above the normal stack. */
return ((unsigned long)&cpu_stacks[pir]) +
NORMAL_STACK_SIZE + EMERGENCY_STACK_SIZE - STACK_TOP_GAP;
}
void __nomcount cpu_relax(void)
{
/* Relax a bit to give sibling threads some breathing space */
smt_lowest();
asm volatile("nop; nop; nop; nop;\n"
"nop; nop; nop; nop;\n"
"nop; nop; nop; nop;\n"
"nop; nop; nop; nop;\n");
smt_medium();
barrier();
}
static void cpu_wake(struct cpu_thread *cpu)
{
/* Is it idle ? If not, no need to wake */
sync();
if (!cpu->in_idle)
return;
if (proc_gen == proc_gen_p8) {
/* Poke IPI */
icp_kick_cpu(cpu);
} else if (proc_gen == proc_gen_p9 || proc_gen == proc_gen_p10) {
p9_dbell_send(cpu->pir);
}
}
/*
* If chip_id is >= 0, schedule the job on that node.
* Otherwise schedule the job anywhere.
*/
static struct cpu_thread *cpu_find_job_target(int32_t chip_id)
{
struct cpu_thread *cpu, *best, *me = this_cpu();
uint32_t best_count;
/* We try to find a target to run a job. We need to avoid
* a CPU that has a "no return" job on its queue as it might
* never be able to process anything.
*
* Additionally we don't check the list but the job count
* on the target CPUs, since that is decremented *after*
* a job has been completed.
*/
/* First we scan all available primary threads
*/
for_each_available_cpu(cpu) {
if (chip_id >= 0 && cpu->chip_id != chip_id)
continue;
if (cpu == me || !cpu_is_thread0(cpu) || cpu->job_has_no_return)
continue;
if (cpu->job_count)
continue;
lock(&cpu->job_lock);
if (!cpu->job_count)
return cpu;
unlock(&cpu->job_lock);
}
/* Now try again with secondary threads included and keep
* track of the one with the less jobs queued up. This is
* done in a racy way, but it's just an optimization in case
* we are overcommitted on jobs. Could could also just pick
* a random one...
*/
best = NULL;
best_count = -1u;
for_each_available_cpu(cpu) {
if (chip_id >= 0 && cpu->chip_id != chip_id)
continue;
if (cpu == me || cpu->job_has_no_return)
continue;
if (!best || cpu->job_count < best_count) {
best = cpu;
best_count = cpu->job_count;
}
if (cpu->job_count)
continue;
lock(&cpu->job_lock);
if (!cpu->job_count)
return cpu;
unlock(&cpu->job_lock);
}
/* We haven't found anybody, do we have a bestie ? */
if (best) {
lock(&best->job_lock);
return best;
}
/* Go away */
return NULL;
}
/* job_lock is held, returns with it released */
static void queue_job_on_cpu(struct cpu_thread *cpu, struct cpu_job *job)
{
/* That's bad, the job will never run */
if (cpu->job_has_no_return) {
prlog(PR_WARNING, "WARNING ! Job %s scheduled on CPU 0x%x"
" which has a no-return job on its queue !\n",
job->name, cpu->pir);
backtrace();
}
list_add_tail(&cpu->job_queue, &job->link);
if (job->no_return)
cpu->job_has_no_return = true;
else
cpu->job_count++;
if (pm_enabled)
cpu_wake(cpu);
unlock(&cpu->job_lock);
}
struct cpu_job *__cpu_queue_job(struct cpu_thread *cpu,
const char *name,
void (*func)(void *data), void *data,
bool no_return)
{
struct cpu_job *job;
#ifdef DEBUG_SERIALIZE_CPU_JOBS
if (cpu == NULL)
cpu = this_cpu();
#endif
if (cpu && !cpu_is_available(cpu)) {
prerror("CPU: Tried to queue job on unavailable CPU 0x%04x\n",
cpu->pir);
return NULL;
}
job = zalloc(sizeof(struct cpu_job));
if (!job)
return NULL;
job->func = func;
job->data = data;
job->name = name;
job->complete = false;
job->no_return = no_return;
/* Pick a candidate. Returns with target queue locked */
if (cpu == NULL)
cpu = cpu_find_job_target(-1);
else if (cpu != this_cpu())
lock(&cpu->job_lock);
else
cpu = NULL;
/* Can't be scheduled, run it now */
if (cpu == NULL) {
if (!this_cpu()->job_has_no_return)
this_cpu()->job_has_no_return = no_return;
func(data);
job->complete = true;
return job;
}
queue_job_on_cpu(cpu, job);
return job;
}
struct cpu_job *cpu_queue_job_on_node(uint32_t chip_id,
const char *name,
void (*func)(void *data), void *data)
{
struct cpu_thread *cpu;
struct cpu_job *job;
job = zalloc(sizeof(struct cpu_job));
if (!job)
return NULL;
job->func = func;
job->data = data;
job->name = name;
job->complete = false;
job->no_return = false;
/* Pick a candidate. Returns with target queue locked */
cpu = cpu_find_job_target(chip_id);
/* Can't be scheduled... */
if (cpu == NULL) {
cpu = this_cpu();
if (cpu->chip_id == chip_id) {
/* Run it now if we're the right node. */
func(data);
job->complete = true;
return job;
}
/* Otherwise fail. */
free(job);
return NULL;
}
queue_job_on_cpu(cpu, job);
return job;
}
bool cpu_poll_job(struct cpu_job *job)
{
lwsync();
return job->complete;
}
void cpu_wait_job(struct cpu_job *job, bool free_it)
{
unsigned long time_waited = 0;
if (!job)
return;
while (!job->complete) {
/* This will call OPAL pollers for us */
time_wait_ms(10);
time_waited += 10;
lwsync();
if ((time_waited % 30000) == 0) {
prlog(PR_INFO, "cpu_wait_job(%s) for %lums\n",
job->name, time_waited);
backtrace();
}
}
lwsync();
if (time_waited > 1000)
prlog(PR_DEBUG, "cpu_wait_job(%s) for %lums\n",
job->name, time_waited);
if (free_it)
free(job);
}
bool cpu_check_jobs(struct cpu_thread *cpu)
{
return !list_empty_nocheck(&cpu->job_queue);
}
void cpu_process_jobs(void)
{
struct cpu_thread *cpu = this_cpu();
struct cpu_job *job = NULL;
void (*func)(void *);
void *data;
sync();
if (!cpu_check_jobs(cpu))
return;
lock(&cpu->job_lock);
while (true) {
bool no_return;
job = list_pop(&cpu->job_queue, struct cpu_job, link);
if (!job)
break;
func = job->func;
data = job->data;
no_return = job->no_return;
unlock(&cpu->job_lock);
prlog(PR_TRACE, "running job %s on %x\n", job->name, cpu->pir);
if (no_return)
free(job);
func(data);
if (!list_empty(&cpu->locks_held)) {
if (no_return)
prlog(PR_ERR, "OPAL no-return job returned with"
"locks held!\n");
else
prlog(PR_ERR, "OPAL job %s returning with locks held\n",
job->name);
drop_my_locks(true);
}
lock(&cpu->job_lock);
if (!no_return) {
cpu->job_count--;
lwsync();
job->complete = true;
}
}
unlock(&cpu->job_lock);
}
enum cpu_wake_cause {
cpu_wake_on_job,
cpu_wake_on_dec,
};
static unsigned int cpu_idle_p8(enum cpu_wake_cause wake_on)
{
uint64_t lpcr = mfspr(SPR_LPCR) & ~SPR_LPCR_P8_PECE;
struct cpu_thread *cpu = this_cpu();
unsigned int vec = 0;
if (!pm_enabled) {
prlog_once(PR_DEBUG, "cpu_idle_p8 called pm disabled\n");
return vec;
}
/* Clean up ICP, be ready for IPIs */
icp_prep_for_pm();
/* Synchronize with wakers */
if (wake_on == cpu_wake_on_job) {
/* Mark ourselves in idle so other CPUs know to send an IPI */
cpu->in_idle = true;
sync();
/* Check for jobs again */
if (cpu_check_jobs(cpu) || !pm_enabled)
goto skip_sleep;
/* Setup wakup cause in LPCR: EE (for IPI) */
lpcr |= SPR_LPCR_P8_PECE2;
mtspr(SPR_LPCR, lpcr);
} else {
/* Mark outselves sleeping so cpu_set_pm_enable knows to
* send an IPI
*/
cpu->in_sleep = true;
sync();
/* Check if PM got disabled */
if (!pm_enabled)
goto skip_sleep;
/* EE and DEC */
lpcr |= SPR_LPCR_P8_PECE2 | SPR_LPCR_P8_PECE3;
mtspr(SPR_LPCR, lpcr);
}
isync();
/* Enter nap */
vec = enter_p8_pm_state(false);
skip_sleep:
/* Restore */
sync();
cpu->in_idle = false;
cpu->in_sleep = false;
reset_cpu_icp();
return vec;
}
static unsigned int cpu_idle_p9(enum cpu_wake_cause wake_on)
{
uint64_t lpcr = mfspr(SPR_LPCR) & ~SPR_LPCR_P9_PECE;
uint64_t psscr;
struct cpu_thread *cpu = this_cpu();
unsigned int vec = 0;
if (!pm_enabled) {
prlog(PR_DEBUG, "cpu_idle_p9 called on cpu 0x%04x with pm disabled\n", cpu->pir);
return vec;
}
/* Synchronize with wakers */
if (wake_on == cpu_wake_on_job) {
/* Mark ourselves in idle so other CPUs know to send an IPI */
cpu->in_idle = true;
sync();
/* Check for jobs again */
if (cpu_check_jobs(cpu) || !pm_enabled)
goto skip_sleep;
/* HV DBELL for IPI */
lpcr |= SPR_LPCR_P9_PECEL1;
} else {
/* Mark outselves sleeping so cpu_set_pm_enable knows to
* send an IPI
*/
cpu->in_sleep = true;
sync();
/* Check if PM got disabled */
if (!pm_enabled)
goto skip_sleep;
/* HV DBELL and DEC */
lpcr |= SPR_LPCR_P9_PECEL1 | SPR_LPCR_P9_PECEL3;
}
mtspr(SPR_LPCR, lpcr);
isync();
if (sreset_enabled) {
/* stop with EC=1 (sreset) and ESL=1 (enable thread switch). */
/* PSSCR SD=0 ESL=1 EC=1 PSSL=0 TR=3 MTL=0 RL=1 */
psscr = PPC_BIT(42) | PPC_BIT(43) |
PPC_BITMASK(54, 55) | PPC_BIT(63);
vec = enter_p9_pm_state(psscr);
} else {
/* stop with EC=0 (resumes) which does not require sreset. */
/* PSSCR SD=0 ESL=0 EC=0 PSSL=0 TR=3 MTL=0 RL=1 */
psscr = PPC_BITMASK(54, 55) | PPC_BIT(63);
enter_p9_pm_lite_state(psscr);
}
/* Clear doorbell */
p9_dbell_receive();
skip_sleep:
/* Restore */
sync();
cpu->in_idle = false;
cpu->in_sleep = false;
return vec;
}
static void cpu_idle_pm(enum cpu_wake_cause wake_on)
{
unsigned int vec;
switch(proc_gen) {
case proc_gen_p8:
vec = cpu_idle_p8(wake_on);
break;
case proc_gen_p9:
vec = cpu_idle_p9(wake_on);
break;
case proc_gen_p10:
vec = cpu_idle_p9(wake_on);
break;
default:
vec = 0;
prlog_once(PR_DEBUG, "cpu_idle_pm called with bad processor type\n");
break;
}
if (vec == 0x100) {
unsigned long srr1 = mfspr(SPR_SRR1);
switch (srr1 & SPR_SRR1_PM_WAKE_MASK) {
case SPR_SRR1_PM_WAKE_SRESET:
exception_entry_pm_sreset();
break;
default:
break;
}
mtmsrd(MSR_RI, 1);
} else if (vec == 0x200) {
exception_entry_pm_mce();
enable_machine_check();
mtmsrd(MSR_RI, 1);
}
}
void cpu_idle_job(void)
{
if (pm_enabled) {
cpu_idle_pm(cpu_wake_on_job);
} else {
struct cpu_thread *cpu = this_cpu();
smt_lowest();
/* Check for jobs again */
while (!cpu_check_jobs(cpu)) {
if (pm_enabled)
break;
cpu_relax();
barrier();
}
smt_medium();
}
}
void cpu_idle_delay(unsigned long delay)
{
unsigned long now = mftb();
unsigned long end = now + delay;
unsigned long min_pm = usecs_to_tb(10);
if (pm_enabled && delay > min_pm) {
pm:
for (;;) {
if (delay >= 0x7fffffff)
delay = 0x7fffffff;
mtspr(SPR_DEC, delay);
cpu_idle_pm(cpu_wake_on_dec);
now = mftb();
if (tb_compare(now, end) == TB_AAFTERB)
break;
delay = end - now;
if (!(pm_enabled && delay > min_pm))
goto no_pm;
}
} else {
no_pm:
smt_lowest();
for (;;) {
now = mftb();
if (tb_compare(now, end) == TB_AAFTERB)
break;
delay = end - now;
if (pm_enabled && delay > min_pm) {
smt_medium();
goto pm;
}
}
smt_medium();
}
}
static void cpu_pm_disable(void)
{
struct cpu_thread *cpu;
unsigned int timeout;
pm_enabled = false;
sync();
if (proc_gen == proc_gen_p8) {
for_each_available_cpu(cpu) {
while (cpu->in_sleep || cpu->in_idle) {
icp_kick_cpu(cpu);
cpu_relax();
}
}
} else if (proc_gen == proc_gen_p9 || proc_gen == proc_gen_p10) {
for_each_available_cpu(cpu) {
if (cpu->in_sleep || cpu->in_idle)
p9_dbell_send(cpu->pir);
}
/* This code is racy with cpus entering idle, late ones miss the dbell */
smt_lowest();
for_each_available_cpu(cpu) {
timeout = 0x08000000;
while ((cpu->in_sleep || cpu->in_idle) && --timeout)
barrier();
if (!timeout) {
prlog(PR_DEBUG, "cpu_pm_disable TIMEOUT on cpu 0x%04x to exit idle\n",
cpu->pir);
p9_dbell_send(cpu->pir);
}
}
smt_medium();
}
}
void cpu_set_sreset_enable(bool enabled)
{
if (sreset_enabled == enabled)
return;
if (proc_gen == proc_gen_p8) {
/* Public P8 Mambo has broken NAP */
if (chip_quirk(QUIRK_MAMBO_CALLOUTS))
return;
sreset_enabled = enabled;
sync();
if (!enabled) {
cpu_pm_disable();
} else {
if (ipi_enabled)
pm_enabled = true;
}
} else if (proc_gen == proc_gen_p9 || proc_gen == proc_gen_p10) {
sreset_enabled = enabled;
sync();
/*
* Kick everybody out of PM so they can adjust the PM
* mode they are using (EC=0/1).
*/
cpu_pm_disable();
if (ipi_enabled)
pm_enabled = true;
}
}
void cpu_set_ipi_enable(bool enabled)
{
if (ipi_enabled == enabled)
return;
if (proc_gen == proc_gen_p8) {
ipi_enabled = enabled;
sync();
if (!enabled) {
cpu_pm_disable();
} else {
if (sreset_enabled)
pm_enabled = true;
}
} else if (proc_gen == proc_gen_p9 || proc_gen == proc_gen_p10) {
ipi_enabled = enabled;
sync();
if (!enabled)
cpu_pm_disable();
else
pm_enabled = true;
}
}
void cpu_process_local_jobs(void)
{
struct cpu_thread *cpu = first_available_cpu();
while (cpu) {
if (cpu != this_cpu())
return;
cpu = next_available_cpu(cpu);
}
if (!cpu)
cpu = first_available_cpu();
/* No CPU to run on, just run synchro */
if (cpu == this_cpu()) {
prlog_once(PR_DEBUG, "Processing jobs synchronously\n");
cpu_process_jobs();
opal_run_pollers();
}
}
struct dt_node *get_cpu_node(u32 pir)
{
struct cpu_thread *t = find_cpu_by_pir(pir);
return t ? t->node : NULL;
}
/* This only covers primary, active cpus */
struct cpu_thread *find_cpu_by_chip_id(u32 chip_id)
{
struct cpu_thread *t;
for_each_available_cpu(t) {
if (t->is_secondary)
continue;
if (t->chip_id == chip_id)
return t;
}
return NULL;
}
struct cpu_thread *find_cpu_by_node(struct dt_node *cpu)
{
struct cpu_thread *t;
for_each_available_cpu(t) {
if (t->node == cpu)
return t;
}
return NULL;
}
struct cpu_thread *find_cpu_by_pir(u32 pir)
{
if (pir > cpu_max_pir)
return NULL;
return &cpu_stacks[pir].cpu;
}
struct cpu_thread __nomcount *find_cpu_by_pir_nomcount(u32 pir)
{
if (pir > cpu_max_pir)
return NULL;
return &cpu_stacks[pir].cpu;
}
struct cpu_thread *find_cpu_by_server(u32 server_no)
{
struct cpu_thread *t;
for_each_cpu(t) {
if (t->server_no == server_no)
return t;
}
return NULL;
}
struct cpu_thread *next_cpu(struct cpu_thread *cpu)
{
struct cpu_stack *s;
unsigned int index = 0;
if (cpu != NULL) {
s = container_of(cpu, struct cpu_stack, cpu);
index = s - cpu_stacks + 1;
}
for (; index <= cpu_max_pir; index++) {
cpu = &cpu_stacks[index].cpu;
if (cpu->state != cpu_state_no_cpu)
return cpu;
}
return NULL;
}
struct cpu_thread *first_cpu(void)
{
return next_cpu(NULL);
}
struct cpu_thread *next_available_cpu(struct cpu_thread *cpu)
{
do {
cpu = next_cpu(cpu);
} while(cpu && !cpu_is_available(cpu));
return cpu;
}
struct cpu_thread *first_available_cpu(void)
{
return next_available_cpu(NULL);
}
struct cpu_thread *next_present_cpu(struct cpu_thread *cpu)
{
do {
cpu = next_cpu(cpu);
} while(cpu && !cpu_is_present(cpu));
return cpu;
}
struct cpu_thread *first_present_cpu(void)
{
return next_present_cpu(NULL);
}
struct cpu_thread *next_ungarded_cpu(struct cpu_thread *cpu)
{
do {
cpu = next_cpu(cpu);
} while(cpu && cpu->state == cpu_state_unavailable);
return cpu;
}
struct cpu_thread *first_ungarded_cpu(void)
{
return next_ungarded_cpu(NULL);
}
struct cpu_thread *next_ungarded_primary(struct cpu_thread *cpu)
{
do {
cpu = next_ungarded_cpu(cpu);
} while (cpu && !(cpu == cpu->primary || cpu == cpu->ec_primary));
return cpu;
}
struct cpu_thread *first_ungarded_primary(void)
{
return next_ungarded_primary(NULL);
}
u8 get_available_nr_cores_in_chip(u32 chip_id)
{
struct cpu_thread *core;
u8 nr_cores = 0;
for_each_available_core_in_chip(core, chip_id)
nr_cores++;
return nr_cores;
}
struct cpu_thread *next_available_core_in_chip(struct cpu_thread *core,
u32 chip_id)
{
do {
core = next_cpu(core);
} while(core && (!cpu_is_available(core) ||
core->chip_id != chip_id ||
core->is_secondary));
return core;
}
struct cpu_thread *first_available_core_in_chip(u32 chip_id)
{
return next_available_core_in_chip(NULL, chip_id);
}
uint32_t cpu_get_core_index(struct cpu_thread *cpu)
{
return pir_to_fused_core_id(cpu->pir);
}
void cpu_remove_node(const struct cpu_thread *t)
{
struct dt_node *i;
/* Find this cpu node */
dt_for_each_node(dt_root, i) {
const struct dt_property *p;
if (!dt_has_node_property(i, "device_type", "cpu"))
continue;
p = dt_find_property(i, "ibm,pir");
if (!p)
continue;
if (dt_property_get_cell(p, 0) == t->pir) {
dt_free(i);
return;
}
}
prerror("CPU: Could not find cpu node %i to remove!\n", t->pir);
abort();
}
void cpu_disable_all_threads(struct cpu_thread *cpu)
{
unsigned int i;
struct dt_property *p;
for (i = 0; i <= cpu_max_pir; i++) {
struct cpu_thread *t = &cpu_stacks[i].cpu;
if (t->primary == cpu->primary)
t->state = cpu_state_disabled;
}
/* Mark this core as bad so that Linux kernel don't use this CPU. */
prlog(PR_DEBUG, "CPU: Mark CPU bad (PIR 0x%04x)...\n", cpu->pir);
p = __dt_find_property(cpu->node, "status");
if (p)
dt_del_property(cpu->node, p);
dt_add_property_string(cpu->node, "status", "bad");
/* XXX Do something to actually stop the core */
}
static void init_cpu_thread(struct cpu_thread *t,
enum cpu_thread_state state,
unsigned int pir)
{
/* offset within cpu_thread to prevent stack_guard clobber */
const size_t guard_skip = container_off_var(t, stack_guard) +
sizeof(t->stack_guard);
memset(((void *)t) + guard_skip, 0, sizeof(struct cpu_thread) - guard_skip);
init_lock(&t->dctl_lock);
init_lock(&t->job_lock);
list_head_init(&t->job_queue);
list_head_init(&t->locks_held);
t->stack_guard = STACK_CHECK_GUARD_BASE ^ pir;
t->state = state;
t->pir = pir;
#ifdef STACK_CHECK_ENABLED
t->stack_bot_mark = LONG_MAX;
#endif
t->is_fused_core = is_fused_core(mfspr(SPR_PVR));
assert(pir == container_of(t, struct cpu_stack, cpu) - cpu_stacks);
}
static void enable_attn(void)
{
unsigned long hid0;
hid0 = mfspr(SPR_HID0);
hid0 |= hid0_attn;
set_hid0(hid0);
}
static void disable_attn(void)
{
unsigned long hid0;
hid0 = mfspr(SPR_HID0);
hid0 &= ~hid0_attn;
set_hid0(hid0);
}
extern void __trigger_attn(void);
void trigger_attn(void)
{
enable_attn();
__trigger_attn();
}
static void init_hid(void)
{
/* attn is enabled even when HV=0, so make sure it's off */
disable_attn();
}
void __nomcount pre_init_boot_cpu(void)
{
struct cpu_thread *cpu = this_cpu();
/* We skip the stack guard ! */
memset(((void *)cpu) + 8, 0, sizeof(struct cpu_thread) - 8);
}
void init_boot_cpu(void)
{
unsigned int pir, pvr;
pir = mfspr(SPR_PIR);
pvr = mfspr(SPR_PVR);
/* Get CPU family and other flags based on PVR */
switch(PVR_TYPE(pvr)) {
case PVR_TYPE_P8E:
case PVR_TYPE_P8:
proc_gen = proc_gen_p8;
hile_supported = PVR_VERS_MAJ(mfspr(SPR_PVR)) >= 2;
hid0_hile = SPR_HID0_POWER8_HILE;
hid0_attn = SPR_HID0_POWER8_ENABLE_ATTN;
break;
case PVR_TYPE_P8NVL:
proc_gen = proc_gen_p8;
hile_supported = true;
hid0_hile = SPR_HID0_POWER8_HILE;
hid0_attn = SPR_HID0_POWER8_ENABLE_ATTN;
break;
case PVR_TYPE_P9:
case PVR_TYPE_P9P:
proc_gen = proc_gen_p9;
hile_supported = true;
radix_supported = true;
hid0_hile = SPR_HID0_POWER9_HILE;
hid0_attn = SPR_HID0_POWER9_ENABLE_ATTN;
break;
case PVR_TYPE_P10:
proc_gen = proc_gen_p10;
hile_supported = true;
radix_supported = true;
hid0_hile = SPR_HID0_POWER10_HILE;
hid0_attn = SPR_HID0_POWER10_ENABLE_ATTN;
break;
default:
proc_gen = proc_gen_unknown;
}
/* Get a CPU thread count based on family */
switch(proc_gen) {
case proc_gen_p8:
cpu_thread_count = 8;
prlog(PR_INFO, "CPU: P8 generation processor"
" (max %d threads/core)\n", cpu_thread_count);
break;
case proc_gen_p9:
if (is_fused_core(pvr))
cpu_thread_count = 8;
else
cpu_thread_count = 4;
prlog(PR_INFO, "CPU: P9 generation processor"
" (max %d threads/core)\n", cpu_thread_count);
break;
case proc_gen_p10:
if (is_fused_core(pvr))
cpu_thread_count = 8;
else
cpu_thread_count = 4;
prlog(PR_INFO, "CPU: P10 generation processor"
" (max %d threads/core)\n", cpu_thread_count);
break;
default:
prerror("CPU: Unknown PVR, assuming 1 thread\n");
cpu_thread_count = 1;
}
if (is_power9n(pvr) && (PVR_VERS_MAJ(pvr) == 1)) {
prerror("CPU: POWER9N DD1 is not supported\n");
abort();
}
prlog(PR_DEBUG, "CPU: Boot CPU PIR is 0x%04x PVR is 0x%08x\n",
pir, pvr);
/*
* Adjust top of RAM to include the boot CPU stack. If we have less
* RAM than this, it's not possible to boot.
*/
cpu_max_pir = pir;
top_of_ram += (cpu_max_pir + 1) * STACK_SIZE;
/* Setup boot CPU state */
boot_cpu = &cpu_stacks[pir].cpu;
init_cpu_thread(boot_cpu, cpu_state_active, pir);
init_boot_tracebuf(boot_cpu);
assert(this_cpu() == boot_cpu);
init_hid();
}
static void enable_large_dec(bool on)
{
u64 lpcr = mfspr(SPR_LPCR);
if (on)
lpcr |= SPR_LPCR_P9_LD;
else
lpcr &= ~SPR_LPCR_P9_LD;
mtspr(SPR_LPCR, lpcr);
isync();
}
#define HIGH_BIT (1ull << 63)
static int find_dec_bits(void)
{
int bits = 65; /* we always decrement once */
u64 mask = ~0ull;
if (proc_gen < proc_gen_p9)
return 32;
/* The ISA doesn't specify the width of the decrementer register so we
* need to discover it. When in large mode (LPCR.LD = 1) reads from the
* DEC SPR are sign extended to 64 bits and writes are truncated to the
* physical register width. We can use this behaviour to detect the
* width by starting from an all 1s value and left shifting until we
* read a value from the DEC with it's high bit cleared.
*/
enable_large_dec(true);
do {
bits--;
mask = mask >> 1;
mtspr(SPR_DEC, mask);
} while (mfspr(SPR_DEC) & HIGH_BIT);
enable_large_dec(false);
prlog(PR_DEBUG, "CPU: decrementer bits %d\n", bits);
return bits;
}
static void init_tm_suspend_mode_property(void)
{
struct dt_node *node;
/* If we don't find anything, assume TM suspend is enabled */
tm_suspend_enabled = true;
node = dt_find_by_path(dt_root, "/ibm,opal/fw-features/tm-suspend-mode");
if (!node)
return;
if (dt_find_property(node, "disabled"))
tm_suspend_enabled = false;
}
void init_cpu_max_pir(void)
{
struct dt_node *cpus, *cpu;
cpus = dt_find_by_path(dt_root, "/cpus");
assert(cpus);
/* Iterate all CPUs in the device-tree */
dt_for_each_child(cpus, cpu) {
unsigned int pir, server_no;
/* Skip cache nodes */
if (strcmp(dt_prop_get(cpu, "device_type"), "cpu"))
continue;
server_no = dt_prop_get_u32(cpu, "reg");
/* If PIR property is absent, assume it's the same as the
* server number
*/
pir = dt_prop_get_u32_def(cpu, "ibm,pir", server_no);
if (cpu_max_pir < pir + cpu_thread_count - 1)
cpu_max_pir = pir + cpu_thread_count - 1;
}
prlog(PR_DEBUG, "CPU: New max PIR set to 0x%x\n", cpu_max_pir);
}
/*
* Set cpu->state to cpu_state_no_cpu for all secondaries, before the dt is
* parsed and they will be flipped to present as populated CPUs are found.
*
* Some configurations (e.g., with memory encryption) will not zero system
* memory at boot, so can't rely on cpu->state to be zero (== cpu_state_no_cpu).
*/
static void mark_all_secondary_cpus_absent(void)
{
unsigned int pir;
struct cpu_thread *cpu;
for (pir = 0; pir <= cpu_max_pir; pir++) {
cpu = &cpu_stacks[pir].cpu;
if (cpu == boot_cpu)
continue;
cpu->state = cpu_state_no_cpu;
}
}
void init_all_cpus(void)
{
struct dt_node *cpus, *cpu;
unsigned int pir, thread;
int dec_bits = find_dec_bits();
cpus = dt_find_by_path(dt_root, "/cpus");
assert(cpus);
init_tm_suspend_mode_property();
mark_all_secondary_cpus_absent();
/* Iterate all CPUs in the device-tree */
dt_for_each_child(cpus, cpu) {
unsigned int server_no, chip_id, threads;
enum cpu_thread_state state;
const struct dt_property *p;
struct cpu_thread *t, *pt0, *pt1;
/* Skip cache nodes */
if (strcmp(dt_prop_get(cpu, "device_type"), "cpu"))
continue;
server_no = dt_prop_get_u32(cpu, "reg");
/* If PIR property is absent, assume it's the same as the
* server number
*/
pir = dt_prop_get_u32_def(cpu, "ibm,pir", server_no);
/* We should always have an ibm,chip-id property */
chip_id = dt_get_chip_id(cpu);
/* Only use operational CPUs */
if (!strcmp(dt_prop_get(cpu, "status"), "okay")) {
state = cpu_state_present;
get_chip(chip_id)->ex_present = true;
} else {
state = cpu_state_unavailable;
}
prlog(PR_INFO, "CPU: CPU from DT PIR=0x%04x Server#=0x%x"
" State=%d\n", pir, server_no, state);
/* Check max PIR */
if (cpu_max_pir < (pir + cpu_thread_count - 1)) {
prlog(PR_WARNING, "CPU: CPU potentially out of range"
"PIR=0x%04x MAX=0x%04x !\n",
pir, cpu_max_pir);
continue;
}
/* Setup thread 0 */
assert(pir <= cpu_max_pir);
t = pt0 = &cpu_stacks[pir].cpu;
if (t != boot_cpu) {
init_cpu_thread(t, state, pir);
/* Each cpu gets its own later in init_trace_buffers */
t->trace = boot_cpu->trace;
}
if (t->is_fused_core)
pt1 = &cpu_stacks[pir + 1].cpu;
else
pt1 = pt0;
t->server_no = server_no;
t->primary = t->ec_primary = t;
t->node = cpu;
t->chip_id = chip_id;
t->icp_regs = NULL; /* Will be set later */
#ifdef DEBUG_LOCKS
t->requested_lock = NULL;
#endif
t->core_hmi_state = 0;
t->core_hmi_state_ptr = &t->core_hmi_state;
/* Add associativity properties */
add_core_associativity(t);
/* Add the decrementer width property */
dt_add_property_cells(cpu, "ibm,dec-bits", dec_bits);
if (t->is_fused_core)
dt_add_property(t->node, "ibm,fused-core", NULL, 0);
/* Iterate threads */
p = dt_find_property(cpu, "ibm,ppc-interrupt-server#s");
if (!p)
continue;
threads = p->len / 4;
if (threads > cpu_thread_count) {
prlog(PR_WARNING, "CPU: Threads out of range for PIR 0x%04x"
" threads=%d max=%d\n",
pir, threads, cpu_thread_count);
threads = cpu_thread_count;
}
for (thread = 1; thread < threads; thread++) {
prlog(PR_TRACE, "CPU: secondary thread %d found\n",
thread);
t = &cpu_stacks[pir + thread].cpu;
init_cpu_thread(t, state, pir + thread);
t->trace = boot_cpu->trace;
t->server_no = dt_property_get_cell(p, thread);
t->is_secondary = true;
t->is_fused_core = pt0->is_fused_core;
t->primary = pt0;
t->ec_primary = (thread & 1) ? pt1 : pt0;
t->node = cpu;
t->chip_id = chip_id;
t->core_hmi_state_ptr = &pt0->core_hmi_state;
}
prlog(PR_INFO, "CPU: %d secondary threads\n", thread);
}
}
void cpu_bringup(void)
{
struct cpu_thread *t;
uint32_t count = 0;
prlog(PR_INFO, "CPU: Setting up secondary CPU state\n");
op_display(OP_LOG, OP_MOD_CPU, 0x0000);
/* Tell everybody to chime in ! */
prlog(PR_INFO, "CPU: Calling in all processors...\n");
cpu_secondary_start = 1;
sync();
op_display(OP_LOG, OP_MOD_CPU, 0x0002);
for_each_cpu(t) {
if (t->state != cpu_state_present &&
t->state != cpu_state_active)
continue;
/* Add a callin timeout ? If so, call cpu_remove_node(t). */
while (t->state != cpu_state_active) {
smt_lowest();
sync();
}
smt_medium();
count++;
}
prlog(PR_NOTICE, "CPU: All %d processors called in...\n", count);
op_display(OP_LOG, OP_MOD_CPU, 0x0003);
}
void cpu_callin(struct cpu_thread *cpu)
{
sync();
cpu->state = cpu_state_active;
sync();
cpu->job_has_no_return = false;
if (cpu_is_thread0(cpu))
init_hid();
}
static void opal_start_thread_job(void *data)
{
cpu_give_self_os();
/* We do not return, so let's mark the job as
* complete
*/
start_kernel_secondary((uint64_t)data);
}
static int64_t opal_start_cpu_thread(uint64_t server_no, uint64_t start_address)
{
struct cpu_thread *cpu;
struct cpu_job *job;
if (!opal_addr_valid((void *)start_address))
return OPAL_PARAMETER;
cpu = find_cpu_by_server(server_no);
if (!cpu) {
prerror("OPAL: Start invalid CPU 0x%04llx !\n", server_no);
return OPAL_PARAMETER;
}
prlog(PR_DEBUG, "OPAL: Start CPU 0x%04llx (PIR 0x%04x) -> 0x%016llx\n",
server_no, cpu->pir, start_address);
lock(&reinit_lock);
if (!cpu_is_available(cpu)) {
unlock(&reinit_lock);
prerror("OPAL: CPU not active in OPAL !\n");
return OPAL_WRONG_STATE;
}
if (cpu->in_reinit) {
unlock(&reinit_lock);
prerror("OPAL: CPU being reinitialized !\n");
return OPAL_WRONG_STATE;
}
job = __cpu_queue_job(cpu, "start_thread",
opal_start_thread_job, (void *)start_address,
true);
unlock(&reinit_lock);
if (!job) {
prerror("OPAL: Failed to create CPU start job !\n");
return OPAL_INTERNAL_ERROR;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_START_CPU, opal_start_cpu_thread, 2);
static int64_t opal_query_cpu_status(uint64_t server_no, uint8_t *thread_status)
{
struct cpu_thread *cpu;
if (!opal_addr_valid(thread_status))
return OPAL_PARAMETER;
cpu = find_cpu_by_server(server_no);
if (!cpu) {
prerror("OPAL: Query invalid CPU 0x%04llx !\n", server_no);
return OPAL_PARAMETER;
}
if (!cpu_is_available(cpu) && cpu->state != cpu_state_os) {
prerror("OPAL: CPU not active in OPAL nor OS !\n");
return OPAL_PARAMETER;
}
switch(cpu->state) {
case cpu_state_os:
*thread_status = OPAL_THREAD_STARTED;
break;
case cpu_state_active:
/* Active in skiboot -> inactive in OS */
*thread_status = OPAL_THREAD_INACTIVE;
break;
default:
*thread_status = OPAL_THREAD_UNAVAILABLE;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_QUERY_CPU_STATUS, opal_query_cpu_status, 2);
static int64_t opal_return_cpu(void)
{
prlog(PR_DEBUG, "OPAL: Returning CPU 0x%04x\n", this_cpu()->pir);
this_cpu()->in_opal_call--;
if (this_cpu()->in_opal_call != 0) {
printf("OPAL in_opal_call=%u\n", this_cpu()->in_opal_call);
}
__secondary_cpu_entry();
return OPAL_HARDWARE; /* Should not happen */
}
opal_call(OPAL_RETURN_CPU, opal_return_cpu, 0);
struct hid0_change_req {
uint64_t clr_bits;
uint64_t set_bits;
};
static void cpu_change_hid0(void *__req)
{
struct hid0_change_req *req = __req;
unsigned long hid0, new_hid0;
hid0 = new_hid0 = mfspr(SPR_HID0);
new_hid0 &= ~req->clr_bits;
new_hid0 |= req->set_bits;
prlog(PR_DEBUG, "CPU: [%08x] HID0 change 0x%016lx -> 0x%016lx\n",
this_cpu()->pir, hid0, new_hid0);
set_hid0(new_hid0);
}
static int64_t cpu_change_all_hid0(struct hid0_change_req *req)
{
struct cpu_thread *cpu;
struct cpu_job **jobs;
jobs = zalloc(sizeof(struct cpu_job *) * (cpu_max_pir + 1));
assert(jobs);
for_each_available_cpu(cpu) {
if (!cpu_is_thread0(cpu) && !cpu_is_core_chiplet_primary(cpu))
continue;
if (cpu == this_cpu())
continue;
jobs[cpu->pir] = cpu_queue_job(cpu, "cpu_change_hid0",
cpu_change_hid0, req);
}
/* this cpu */
cpu_change_hid0(req);
for_each_available_cpu(cpu) {
if (jobs[cpu->pir])
cpu_wait_job(jobs[cpu->pir], true);
}
free(jobs);
return OPAL_SUCCESS;
}
void cpu_set_hile_mode(bool hile)
{
struct hid0_change_req req;
if (hile == current_hile_mode)
return;
if (hile) {
req.clr_bits = 0;
req.set_bits = hid0_hile;
} else {
req.clr_bits = hid0_hile;
req.set_bits = 0;
}
cpu_change_all_hid0(&req);
current_hile_mode = hile;
}
static void cpu_cleanup_one(void *param __unused)
{
mtspr(SPR_AMR, 0);
mtspr(SPR_IAMR, 0);
mtspr(SPR_PCR, 0);
}
static int64_t cpu_cleanup_all(void)
{
struct cpu_thread *cpu;
struct cpu_job **jobs;
jobs = zalloc(sizeof(struct cpu_job *) * (cpu_max_pir + 1));
assert(jobs);
for_each_available_cpu(cpu) {
if (cpu == this_cpu())
continue;
jobs[cpu->pir] = cpu_queue_job(cpu, "cpu_cleanup",
cpu_cleanup_one, NULL);
}
/* this cpu */
cpu_cleanup_one(NULL);
for_each_available_cpu(cpu) {
if (jobs[cpu->pir])
cpu_wait_job(jobs[cpu->pir], true);
}
free(jobs);
return OPAL_SUCCESS;
}
void cpu_fast_reboot_complete(void)
{
/* Fast reboot will have set HID0:HILE to skiboot endian */
current_hile_mode = HAVE_LITTLE_ENDIAN;
/* and set HID0:RADIX */
if (proc_gen == proc_gen_p9)
current_radix_mode = true;
}
static int64_t opal_reinit_cpus(uint64_t flags)
{
struct hid0_change_req req = { 0, 0 };
struct cpu_thread *cpu;
int64_t rc = OPAL_SUCCESS;
int i;
prlog(PR_DEBUG, "OPAL: CPU re-init with flags: 0x%llx\n", flags);
if (flags & OPAL_REINIT_CPUS_HILE_LE)
prlog(PR_INFO, "OPAL: Switch to little-endian OS\n");
else if (flags & OPAL_REINIT_CPUS_HILE_BE)
prlog(PR_INFO, "OPAL: Switch to big-endian OS\n");
again:
lock(&reinit_lock);
for (cpu = first_cpu(); cpu; cpu = next_cpu(cpu)) {
if (cpu == this_cpu() || cpu->in_reinit)
continue;
if (cpu->state == cpu_state_os) {
unlock(&reinit_lock);
/*
* That might be a race with return CPU during kexec
* where we are still, wait a bit and try again
*/
for (i = 0; (i < 1000) &&
(cpu->state == cpu_state_os); i++) {
time_wait_ms(1);
}
if (cpu->state == cpu_state_os) {
prerror("OPAL: CPU 0x%x not in OPAL !\n", cpu->pir);
return OPAL_WRONG_STATE;
}
goto again;
}
cpu->in_reinit = true;
}
/*
* Now we need to mark ourselves "active" or we'll be skipped
* by the various "for_each_active_..." calls done by slw_reinit()
*/
this_cpu()->state = cpu_state_active;
this_cpu()->in_reinit = true;
unlock(&reinit_lock);
/*
* This cleans up a few things left over by Linux
* that can cause problems in cases such as radix->hash
* transitions. Ideally Linux should do it but doing it
* here works around existing broken kernels.
*/
cpu_cleanup_all();
/* If HILE change via HID0 is supported ... */
if (hile_supported &&
(flags & (OPAL_REINIT_CPUS_HILE_BE |
OPAL_REINIT_CPUS_HILE_LE))) {
bool hile = !!(flags & OPAL_REINIT_CPUS_HILE_LE);
flags &= ~(OPAL_REINIT_CPUS_HILE_BE | OPAL_REINIT_CPUS_HILE_LE);
if (hile != current_hile_mode) {
if (hile)
req.set_bits |= hid0_hile;
else
req.clr_bits |= hid0_hile;
current_hile_mode = hile;
}
}
/* If MMU mode change is supported */
if (radix_supported &&
(flags & (OPAL_REINIT_CPUS_MMU_HASH |
OPAL_REINIT_CPUS_MMU_RADIX))) {
bool radix = !!(flags & OPAL_REINIT_CPUS_MMU_RADIX);
flags &= ~(OPAL_REINIT_CPUS_MMU_HASH |
OPAL_REINIT_CPUS_MMU_RADIX);
if (proc_gen == proc_gen_p9 && radix != current_radix_mode) {
if (radix)
req.set_bits |= SPR_HID0_POWER9_RADIX;
else
req.clr_bits |= SPR_HID0_POWER9_RADIX;
current_radix_mode = radix;
}
}
/* Cleanup the TLB. We do that unconditionally, this works
* around issues where OSes fail to invalidate the PWC in Radix
* mode for example. This only works on P9 and later, but we
* also know we don't have a problem with Linux cleanups on
* P8 so this isn't a problem. If we wanted to cleanup the
* TLB on P8 as well, we'd have to use jobs to do it locally
* on each CPU.
*/
cleanup_global_tlb();
/* Apply HID bits changes if any */
if (req.set_bits || req.clr_bits)
cpu_change_all_hid0(&req);
if (flags & OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED) {
flags &= ~OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED;
if (tm_suspend_enabled)
rc = OPAL_UNSUPPORTED;
else
rc = OPAL_SUCCESS;
}
/* Handle P8 DD1 SLW reinit */
if (flags != 0 && proc_gen == proc_gen_p8 && !hile_supported)
rc = slw_reinit(flags);
else if (flags != 0)
rc = OPAL_UNSUPPORTED;
/* And undo the above */
lock(&reinit_lock);
this_cpu()->state = cpu_state_os;
for (cpu = first_cpu(); cpu; cpu = next_cpu(cpu))
cpu->in_reinit = false;
unlock(&reinit_lock);
return rc;
}
opal_call(OPAL_REINIT_CPUS, opal_reinit_cpus, 1);
#define NMMU_XLAT_CTL_PTCR 0xb
static int64_t nmmu_set_ptcr(uint64_t chip_id, struct dt_node *node, uint64_t ptcr)
{
uint32_t nmmu_base_addr;
nmmu_base_addr = dt_get_address(node, 0, NULL);
return xscom_write(chip_id, nmmu_base_addr + NMMU_XLAT_CTL_PTCR, ptcr);
}
/*
* Setup the the Nest MMU PTCR register for all chips in the system or
* the specified chip id.
*
* The PTCR value may be overwritten so long as all users have been
* quiesced. If it is set to an invalid memory address the system will
* checkstop if anything attempts to use it.
*
* Returns OPAL_UNSUPPORTED if no nest mmu was found.
*/
static int64_t opal_nmmu_set_ptcr(uint64_t chip_id, uint64_t ptcr)
{
struct dt_node *node;
int64_t rc = OPAL_UNSUPPORTED;
if (chip_id == -1ULL)
dt_for_each_compatible(dt_root, node, "ibm,power9-nest-mmu") {
chip_id = dt_get_chip_id(node);
if ((rc = nmmu_set_ptcr(chip_id, node, ptcr)))
return rc;
}
else
dt_for_each_compatible_on_chip(dt_root, node, "ibm,power9-nest-mmu", chip_id)
if ((rc = nmmu_set_ptcr(chip_id, node, ptcr)))
return rc;
return rc;
}
opal_call(OPAL_NMMU_SET_PTCR, opal_nmmu_set_ptcr, 2);
static void _exit_uv_mode(void *data __unused)
{
prlog(PR_DEBUG, "Exit uv mode on cpu pir 0x%04x\n", this_cpu()->pir);
/* HW has smfctrl shared between threads but on Mambo it is per-thread */
if (chip_quirk(QUIRK_MAMBO_CALLOUTS))
exit_uv_mode(1);
else
exit_uv_mode(cpu_is_thread0(this_cpu()));
}
void cpu_disable_pef(void)
{
struct cpu_thread *cpu;
struct cpu_job **jobs;
if (!(mfmsr() & MSR_S)) {
prlog(PR_DEBUG, "UV mode off on cpu pir 0x%04x\n", this_cpu()->pir);
return;
}
jobs = zalloc(sizeof(struct cpu_job *) * (cpu_max_pir + 1));
assert(jobs);
/* Exit uv mode on all secondary threads before touching
* smfctrl on thread 0 */
for_each_available_cpu(cpu) {
if (cpu == this_cpu())
continue;
if (!cpu_is_thread0(cpu))
jobs[cpu->pir] = cpu_queue_job(cpu, "exit_uv_mode",
_exit_uv_mode, NULL);
}
for_each_available_cpu(cpu)
if (jobs[cpu->pir]) {
cpu_wait_job(jobs[cpu->pir], true);
jobs[cpu->pir] = NULL;
}
/* Exit uv mode and disable smfctrl on primary threads */
for_each_available_cpu(cpu) {
if (cpu == this_cpu())
continue;
if (cpu_is_thread0(cpu))
jobs[cpu->pir] = cpu_queue_job(cpu, "exit_uv_mode",
_exit_uv_mode, NULL);
}
for_each_available_cpu(cpu)
if (jobs[cpu->pir])
cpu_wait_job(jobs[cpu->pir], true);
free(jobs);
_exit_uv_mode(NULL);
}
|