1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* Copyright 2019 IBM Corp.
*/
#include <skiboot.h>
#include <npu3.h>
#include <npu3-regs.h>
#include <timebase.h>
#include <xscom.h>
#include <xscom-p9-regs.h>
#define NPU3DEVLOG(l, dev, fmt, a...) \
prlog(l, "NPU[%d:%d:%d]: " fmt, \
(dev)->npu->chip_id, \
(dev)->npu->index, \
(dev)->index, ##a)
#define NPU3DEVDBG(dev, fmt, a...) NPU3DEVLOG(PR_DEBUG, dev, fmt, ##a)
#define NPU3DEVINF(dev, fmt, a...) NPU3DEVLOG(PR_INFO, dev, fmt, ##a)
#define NPU3DEVERR(dev, fmt, a...) NPU3DEVLOG(PR_ERR, dev, fmt, ##a)
/*
* The documentation for the PHY training is written in terms of bits within an
* actual register so we use that representation here.
*/
struct npu3_phy_reg {
uint64_t offset;
uint64_t mask;
};
static struct npu3_phy_reg
NPU3_PHY_RX_RUN_LANE = { 0x0c8, PPC_BIT(48) },
NPU3_PHY_RX_IORESET = { 0x096, PPC_BIT(63) },
NPU3_PHY_TX_IORESET = { 0x113, PPC_BIT(48) },
NPU3_PHY_RX_PR_RESET = { 0x096, PPC_BIT(62) },
NPU3_PHY_RX_LANE_ANA_PDWN = { 0x002, PPC_BIT(54) },
NPU3_PHY_RX_LANE_DIG_PDWN = { 0x088, PPC_BIT(48) },
NPU3_PHY_RX_PR_PHASE_STEP = { 0x08a, PPC_BITMASK(60, 63) },
NPU3_PHY_TX_LANE_PDWN = { 0x101, PPC_BIT(48) },
NPU3_PHY_RX_RUN_DCCAL = { 0x0c8, PPC_BIT(49) },
NPU3_PHY_RX_DCCAL_DONE = { 0x0ca, PPC_BIT(49) },
NPU3_PHY_RX_LANE_BUSY = { 0x0ca, PPC_BIT(50) },
NPU3_PHY_RX_B_BANK_CONTROLS = { 0x002, PPC_BITMASK(58, 63) },
NPU3_PHY_TX_UNLOAD_CLK_DISABLE = { 0x103, PPC_BIT(56) },
NPU3_PHY_TX_FIFO_INIT = { 0x105, PPC_BIT(53) },
NPU3_PHY_TX_RXCAL = { 0x103, PPC_BIT(57) },
NPU3_PHY_RX_INIT_DONE = { 0x0ca, PPC_BIT(48) },
NPU3_PHY_RX_PR_EDGE_TRACK_CNTL = { 0x092, PPC_BITMASK(48, 49) },
NPU3_PHY_RX_PR_FW_OFF = { 0x08a, PPC_BIT(56) },
NPU3_PHY_RX_PR_FW_INERTIA_AMT = { 0x08a, PPC_BITMASK(57, 59) },
NPU3_PHY_RX_CFG_LTE_MC = { 0x000, PPC_BITMASK(60, 63) },
NPU3_PHY_RX_A_INTEG_COARSE_GAIN = { 0x00a, PPC_BITMASK(48, 51) },
NPU3_PHY_RX_B_INTEG_COARSE_GAIN = { 0x026, PPC_BITMASK(48, 51) },
NPU3_PHY_RX_E_INTEG_COARSE_GAIN = { 0x030, PPC_BITMASK(48, 51) },
/* These registers are per-PHY, not per lane */
NPU3_PHY_TX_ZCAL_SWO_EN = { 0x3c9, PPC_BIT(48) },
NPU3_PHY_TX_ZCAL_REQ = { 0x3c1, PPC_BIT(49) },
NPU3_PHY_TX_ZCAL_DONE = { 0x3c1, PPC_BIT(50) },
NPU3_PHY_TX_ZCAL_ERROR = { 0x3c1, PPC_BIT(51) },
NPU3_PHY_TX_ZCAL_N = { 0x3c3, PPC_BITMASK(48, 56) },
NPU3_PHY_TX_ZCAL_P = { 0x3c5, PPC_BITMASK(48, 56) },
NPU3_PHY_TX_PSEG_PRE_EN = { 0x34d, PPC_BITMASK(51, 55) },
NPU3_PHY_TX_PSEG_PRE_SELECT = { 0x34d, PPC_BITMASK(56, 60) },
NPU3_PHY_TX_NSEG_PRE_EN = { 0x34f, PPC_BITMASK(51, 55) },
NPU3_PHY_TX_NSEG_PRE_SELECT = { 0x34f, PPC_BITMASK(56, 60) },
NPU3_PHY_TX_PSEG_POST_EN = { 0x361, PPC_BITMASK(49, 55) },
NPU3_PHY_TX_PSEG_POST_SELECT = { 0x361, PPC_BITMASK(56, 62) },
NPU3_PHY_TX_NSEG_POST_EN = { 0x363, PPC_BITMASK(49, 55) },
NPU3_PHY_TX_NSEG_POST_SELECT = { 0x363, PPC_BITMASK(56, 62) },
NPU3_PHY_TX_PSEG_MARGINPU_EN = { 0x351, PPC_BITMASK(48, 55) },
NPU3_PHY_TX_NSEG_MARGINPU_EN = { 0x353, PPC_BITMASK(48, 55) },
NPU3_PHY_TX_PSEG_MARGINPD_EN = { 0x351, PPC_BITMASK(56, 63) },
NPU3_PHY_TX_NSEG_MARGINPD_EN = { 0x353, PPC_BITMASK(56, 63) },
NPU3_PHY_TX_MARGINPU_SELECT = { 0x355, PPC_BITMASK(48, 55) },
NPU3_PHY_TX_MARGINPD_SELECT = { 0x355, PPC_BITMASK(56, 63) },
NPU3_PHY_TX_PSEG_MAIN_EN = { 0x357, PPC_BITMASK(51, 57) },
NPU3_PHY_TX_NSEG_MAIN_EN = { 0x359, PPC_BITMASK(51, 57) },
NPU3_PHY_RX_CLKDIST_PDWN = { 0x204, PPC_BITMASK(48, 50) },
NPU3_PHY_RX_IREF_PDWN = { 0x230, PPC_BIT(54) },
NPU3_PHY_TX_CLKDIST_PDWN = { 0x305, PPC_BITMASK(48, 50) },
NPU3_PHY_RX_CTL_DATASM_CLKDIST_PDWN = { 0x2e0, PPC_BIT(60) };
static uint64_t npu3_phy_scom(struct npu3_dev *dev, struct npu3_phy_reg *reg,
int lane)
{
uint64_t scom;
/* Don't specify a lane for a non-per-lane register */
if (lane >= 0)
assert(reg->offset < 0x200);
else
assert(reg->offset >= 0x200);
scom = OB_INDIRECT(dev->ob_chiplet);
scom = SETFIELD(PPC_BITMASK(12, 21), scom, reg->offset);
if (lane > 0)
scom = SETFIELD(PPC_BITMASK(27, 31), scom, lane);
return scom;
}
static void npu3_phy_write_lane(struct npu3_dev *dev, struct npu3_phy_reg *reg,
int lane, uint64_t val)
{
struct npu3 *npu = dev->npu;
uint64_t scom, scom_val;
scom = npu3_phy_scom(dev, reg, lane);
xscom_read(npu->chip_id, scom, &scom_val);
scom_val = SETFIELD(reg->mask, scom_val, val);
xscom_write(npu->chip_id, scom, scom_val);
}
static uint64_t npu3_phy_read_lane(struct npu3_dev *dev,
struct npu3_phy_reg *reg,
int lane)
{
struct npu3 *npu = dev->npu;
uint64_t scom, scom_val;
scom = npu3_phy_scom(dev, reg, lane);
xscom_read(npu->chip_id, scom, &scom_val);
return GETFIELD(reg->mask, scom_val);
}
static inline void npu3_phy_write(struct npu3_dev *dev,
struct npu3_phy_reg *reg,
uint64_t val)
{
npu3_phy_write_lane(dev, reg, -1, val);
}
static inline uint64_t npu3_phy_read(struct npu3_dev *dev,
struct npu3_phy_reg *reg)
{
return npu3_phy_read_lane(dev, reg, -1);
}
struct procedure {
const char *name;
uint32_t (*steps[])(struct npu3_dev *);
};
#define DEFINE_PROCEDURE(NAME, STEPS...) \
static struct procedure procedure_##NAME = { \
.name = #NAME, \
.steps = { NAME, ##STEPS } \
}
static uint32_t stop(struct npu3_dev *npu_dev __unused)
{
return NPU3_PROC_COMPLETE | NPU3_PROC_ABORTED;
}
DEFINE_PROCEDURE(stop);
static uint32_t nop(struct npu3_dev *npu_dev __unused)
{
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(nop);
static void set_iovalid(struct npu3_dev *dev, bool raise)
{
struct npu3 *npu = dev->npu;
uint64_t reg, val;
reg = OB_CPLT_CONF1(dev->ob_chiplet);
xscom_read(npu->chip_id, reg, &val);
val = SETFIELD(OB_CPLT_CONF1_NV_IOVALID(dev->index), val, raise);
xscom_write(npu->chip_id, reg, val);
}
#define NPU3_PHY_LANES 24
#define npu3_for_each_lane(lane, dev) \
for (lane = 0; lane < NPU3_PHY_LANES; lane++) \
if (dev->phy_lane_mask & PPC_BIT32(lane)) \
static uint32_t phy_reset(struct npu3_dev *dev)
{
uint32_t lane;
set_iovalid(dev, false);
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_RUN_LANE, lane, 0);
return NPU3_PROC_NEXT;
}
static uint32_t phy_reset_wait(struct npu3_dev *dev)
{
int lane;
/* Wait for all lanes to become inactive */
npu3_for_each_lane(lane, dev)
if (npu3_phy_read_lane(dev, &NPU3_PHY_RX_LANE_BUSY, lane))
return NPU3_PROC_INPROGRESS;
npu3_for_each_lane(lane, dev) {
/* Set lane in reset */
npu3_phy_write_lane(dev, &NPU3_PHY_RX_IORESET, lane, 1);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_IORESET, lane, 1);
/* Release lane from reset */
npu3_phy_write_lane(dev, &NPU3_PHY_RX_IORESET, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_IORESET, lane, 0);
/* Reset the phase rotator */
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_RESET, lane, 1);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_RESET, lane, 0);
}
return NPU3_PROC_NEXT;
}
/* Procedure 1.2.3 - Initialise I/O PHY Registers */
static uint32_t phy_reset_complete(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev) {
npu3_phy_write_lane(dev, &NPU3_PHY_RX_LANE_ANA_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_LANE_DIG_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_PHASE_STEP, lane, 0xc);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_LANE_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_FW_INERTIA_AMT, lane, 4);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_CFG_LTE_MC, lane, 3);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_A_INTEG_COARSE_GAIN, lane, 11);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_B_INTEG_COARSE_GAIN, lane, 11);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_E_INTEG_COARSE_GAIN, lane, 11);
}
set_iovalid(dev, true);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_reset, phy_reset_wait, phy_reset_complete);
/* Procedure 1.2.6 - I/O PHY Tx Impedance Calibration */
static uint32_t phy_tx_zcal(struct npu3_dev *dev)
{
if (dev->npu->tx_zcal_complete)
return NPU3_PROC_COMPLETE;
/* Turn off SW enable and enable zcal state machine */
npu3_phy_write(dev, &NPU3_PHY_TX_ZCAL_SWO_EN, 0);
/* Start impedance calibration state machine */
npu3_phy_write(dev, &NPU3_PHY_TX_ZCAL_REQ, 1);
return NPU3_PROC_NEXT;
}
static uint32_t phy_tx_zcal_wait(struct npu3_dev *dev)
{
if (npu3_phy_read(dev, &NPU3_PHY_TX_ZCAL_ERROR))
return NPU3_PROC_COMPLETE | NPU3_PROC_FAILED;
if (!npu3_phy_read(dev, &NPU3_PHY_TX_ZCAL_DONE))
return NPU3_PROC_INPROGRESS;
return NPU3_PROC_NEXT;
}
#define MARGIN_RATIO 0
#define FFE_PRE_COEFF 0
#define FFE_POST_COEFF 0
#define PRE_WIDTH 5
#define POST_WIDTH 7
#define MAIN_WIDTH 7
#define ZCAL_MIN (16 * 2)
#define ZCAL_MAX (33 * 2)
#define PRECURSOR_X2_MAX (4 * 2 + 1)
#define POSTCURSOR_X2_MAX (6 * 2 + 1)
#define MARGIN_X2_MAX (8 * 2)
#define MAIN_X2_MAX (6 * 2 + 1)
#define TOTAL_X2_MAX (PRECURSOR_X2_MAX + POSTCURSOR_X2_MAX + \
2 * MARGIN_X2_MAX + MAIN_X2_MAX)
static uint32_t therm(uint32_t dec)
{
return (0x1 << dec) - 1;
}
static uint32_t therm_with_half(uint32_t dec, uint8_t width)
{
/* If the LSB of the 2r equivalent is on, then we need to set the 2r bit (MSB) */
uint32_t half_on = (dec & 0x1) << (width - 1);
/* Shift the 2r equivalent to a 1r value and convert to a thermometer code. */
uint32_t x1_equiv = ((1 << (dec >> 1)) - 1);
/* Combine 1r equivalent thermometer code + the 2r MSB value. */
return half_on | x1_equiv;
}
static uint32_t phy_tx_zcal_calculate(struct npu3_dev *dev)
{
int p_value, n_value;
uint32_t zcal_n;
uint32_t zcal_p;
uint32_t p_main_enable = MAIN_X2_MAX;
uint32_t p_margin_pu_enable = MARGIN_X2_MAX;
uint32_t p_margin_pd_enable = MARGIN_X2_MAX;
uint32_t p_precursor_select;
uint32_t p_postcursor_select;
uint32_t margin_pu_select;
uint32_t n_main_enable = MAIN_X2_MAX;
uint32_t n_margin_pu_enable = MARGIN_X2_MAX;
uint32_t n_margin_pd_enable = MARGIN_X2_MAX;
uint32_t n_precursor_select;
uint32_t n_postcursor_select;
uint32_t margin_pd_select;
uint32_t margin_select;
/* Convert the value from 8R to 2R by / 4 */
zcal_n = npu3_phy_read(dev, &NPU3_PHY_TX_ZCAL_N) / 4;
zcal_p = npu3_phy_read(dev, &NPU3_PHY_TX_ZCAL_P) / 4;
/*
* Again, if the hardware detects an unexpected condition it's
* better just to fail loudly.
*/
if (zcal_n < ZCAL_MIN || zcal_n > ZCAL_MAX ||
zcal_p < ZCAL_MIN || zcal_p > ZCAL_MAX)
return NPU3_PROC_COMPLETE | NPU3_PROC_FAILED;
p_value = zcal_p - TOTAL_X2_MAX;
p_precursor_select = p_value * FFE_PRE_COEFF / 128;
p_postcursor_select = p_value * FFE_POST_COEFF / 128;
margin_pu_select = p_value * MARGIN_RATIO / 256;
if (p_value % 2) {
p_main_enable--;
p_value++;
}
while (p_value < 0) {
if (p_main_enable > 1) {
p_main_enable -= 2;
} else if (p_margin_pu_enable + p_margin_pd_enable > 0) {
if (p_margin_pu_enable == p_margin_pd_enable)
p_margin_pd_enable -= 2;
else
p_margin_pu_enable -= 2;
}
p_value += 2;
}
n_value = zcal_n - TOTAL_X2_MAX;
n_precursor_select = n_value * FFE_PRE_COEFF / 128;
n_postcursor_select = n_value * FFE_POST_COEFF / 128;
margin_pd_select = p_value * MARGIN_RATIO / 256;
if (n_value % 2) {
n_main_enable--;
n_value++;
}
while (n_value < 0) {
if (n_main_enable > 1) {
n_main_enable -= 2;
} else if (n_margin_pu_enable + n_margin_pd_enable > 0) {
if (n_margin_pu_enable == n_margin_pd_enable)
n_margin_pd_enable -= 2;
else
n_margin_pu_enable -= 2;
}
n_value += 2;
}
margin_select = therm((margin_pu_select + 1) / 2) &
therm((margin_pd_select + 1) / 2) &
therm((p_margin_pu_enable + 1) / 2) &
therm((p_margin_pd_enable + 1) / 2) &
therm((n_margin_pu_enable + 1) / 2) &
therm((n_margin_pd_enable + 1) / 2);
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_PRE_EN, therm_with_half(PRECURSOR_X2_MAX, PRE_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_PRE_SELECT, therm_with_half(p_precursor_select, PRE_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_POST_EN, therm_with_half(POSTCURSOR_X2_MAX, POST_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_POST_SELECT, therm_with_half(p_postcursor_select, POST_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_MARGINPU_EN, therm((p_margin_pu_enable + 1) / 2));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_MARGINPD_EN, therm((p_margin_pd_enable + 1) / 2));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_MAIN_EN, therm_with_half(p_main_enable, MAIN_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_PRE_EN, therm_with_half(PRECURSOR_X2_MAX, PRE_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_PRE_SELECT, therm_with_half(n_precursor_select, PRE_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_POST_EN, therm_with_half(POSTCURSOR_X2_MAX, POST_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_POST_SELECT, therm_with_half(n_postcursor_select, POST_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_MARGINPU_EN, therm((n_margin_pu_enable + 1) / 2));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_MARGINPD_EN, therm((n_margin_pd_enable + 1) / 2));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_MAIN_EN, therm_with_half(n_main_enable, MAIN_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_MARGINPU_SELECT, therm(margin_select + 1) / 2);
npu3_phy_write(dev, &NPU3_PHY_TX_MARGINPD_SELECT, therm(margin_select + 1) / 2);
dev->npu->tx_zcal_complete = true;
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_tx_zcal, phy_tx_zcal_wait, phy_tx_zcal_calculate);
/* Procedure 1.2.4 - I/O PHY DC Calibration */
static uint32_t phy_rx_dccal(struct npu3_dev *dev)
{
int lane;
set_iovalid(dev, false);
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_FW_OFF, lane, 1);
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_RUN_DCCAL, lane, 1);
return NPU3_PROC_NEXT;
}
static uint32_t phy_rx_dccal_complete(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
if (!npu3_phy_read_lane(dev, &NPU3_PHY_RX_DCCAL_DONE, lane))
return NPU3_PROC_INPROGRESS;
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_RUN_DCCAL, lane, 0);
npu3_for_each_lane(lane, dev) {
npu3_phy_write_lane(dev, &NPU3_PHY_RX_B_BANK_CONTROLS, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_EDGE_TRACK_CNTL, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_FW_OFF, lane, 0);
}
return NPU3_PROC_NEXT;
}
/* Procedure 1.2.5 - IO PHY Tx FIFO Init */
static uint32_t phy_tx_fifo_init(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev) {
npu3_phy_write_lane(dev, &NPU3_PHY_TX_UNLOAD_CLK_DISABLE, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_FIFO_INIT, lane, 1);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_UNLOAD_CLK_DISABLE, lane, 1);
}
set_iovalid(dev, true);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_rx_dccal, phy_rx_dccal_complete, phy_tx_fifo_init);
/* Procedure 1.2.8 - Enable Downstream Link Training */
static uint32_t phy_enable_tx_rxcal(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_TX_RXCAL, lane, 1);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_enable_tx_rxcal);
/* Procedure 1.2.9 - Disable Downstream Link Training */
static uint32_t phy_disable_tx_rxcal(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_TX_RXCAL, lane, 0);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_disable_tx_rxcal);
/* Procedure 1.2.7 - I/O PHY Upstream Link Training */
static uint32_t phy_rx_training(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_RUN_LANE, lane, 1);
return NPU3_PROC_NEXT;
}
static uint32_t phy_rx_training_wait(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
if (!npu3_phy_read_lane(dev, &NPU3_PHY_RX_INIT_DONE, lane))
return NPU3_PROC_INPROGRESS;
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_rx_training, phy_rx_training_wait);
static void npu3_dev_fence_set(struct npu3_dev *dev, uint8_t state)
{
struct npu3 *npu = dev->npu;
uint64_t val;
val = npu3_read(npu, NPU3_NTL_MISC_CFG1(dev->index));
val = SETFIELD(NPU3_NTL_MISC_CFG1_NTL_RESET, val, state);
npu3_write(npu, NPU3_NTL_MISC_CFG1(dev->index), val);
}
static uint8_t npu3_dev_fence_get(struct npu3_dev *dev)
{
uint64_t val;
val = npu3_read(dev->npu, NPU3_NTL_CQ_FENCE_STATUS(dev->index));
return GETFIELD(NPU3_NTL_CQ_FENCE_STATUS_FIELD, val);
}
/* Procedure 1.2.1 - Reset NPU/NDL */
static uint32_t reset_ntl(struct npu3_dev *dev)
{
struct npu3 *npu = dev->npu;
uint64_t val;
int lane;
set_iovalid(dev, true);
/* Power on clocks */
npu3_phy_write(dev, &NPU3_PHY_RX_CLKDIST_PDWN, 0);
npu3_phy_write(dev, &NPU3_PHY_RX_IREF_PDWN, 1);
npu3_phy_write(dev, &NPU3_PHY_TX_CLKDIST_PDWN, 0);
npu3_phy_write(dev, &NPU3_PHY_RX_CTL_DATASM_CLKDIST_PDWN, 0);
npu3_for_each_lane(lane, dev) {
npu3_phy_write_lane(dev, &NPU3_PHY_RX_LANE_ANA_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_LANE_DIG_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_LANE_PDWN, lane, 0);
}
/* Write PRI */
val = SETFIELD(NPU3_NTL_PRI_CFG_NDL, 0ull, dev->index);
npu3_write(npu, NPU3_NTL_PRI_CFG(dev->index), val);
/* Disable parity checking */
val = npu3_read(npu, NPU3_NTL_MISC_CFG2(dev->index));
val &= ~(NPU3_NTL_MISC_CFG2_NDL_RX_PARITY_ENA |
NPU3_NTL_MISC_CFG2_NDL_TX_PARITY_ENA |
NPU3_NTL_MISC_CFG2_NDL_PRI_PARITY_ENA);
npu3_write(npu, NPU3_NTL_MISC_CFG2(dev->index), val);
if (dev->type == NPU3_DEV_TYPE_NVLINK)
npu3_pvd_flag_clear(dev, NPU3_DEV_DL_RESET);
npu3_dev_fence_set(dev, NPU3_NTL_CQ_FENCE_STATUS_FULL);
return NPU3_PROC_NEXT;
}
static uint32_t reset_ndl(struct npu3_dev *dev)
{
struct npu3 *npu = dev->npu;
uint64_t reg;
uint32_t val32;
if (npu3_dev_fence_get(dev) != NPU3_NTL_CQ_FENCE_STATUS_FULL)
return NPU3_PROC_INPROGRESS;
reg = NPU3_DLPL_CTL(dev->index);
val32 = npu3_read_4b(npu, reg);
val32 |= NPU3_DLPL_CTL_RESET_RX | NPU3_DLPL_CTL_RESET_MISC;
npu3_write_4b(npu, reg, val32);
val32 = npu3_read_4b(npu, reg);
val32 &= ~(NPU3_DLPL_CTL_RESET_RX | NPU3_DLPL_CTL_RESET_MISC);
npu3_write_4b(npu, reg, val32);
reg = NPU3_DLPL_CFG(dev->index);
val32 = NPU3_DLPL_CFG_PRI_BYTESWAP;
npu3_write_4b(npu, reg, val32);
/* Clear FIR bits */
for (uint32_t i = 0; i < NPU3_FIR_MAX; i++)
xscom_write(npu->chip_id, npu->xscom_base + NPU3_FIR(i), 0ull);
npu3_dev_fence_set(dev, NPU3_NTL_CQ_FENCE_STATUS_HALF);
return NPU3_PROC_NEXT;
}
static uint32_t reset_ntl_release(struct npu3_dev *dev)
{
struct npu3 *npu = dev->npu;
uint32_t i = dev->index;
if (npu3_dev_fence_get(dev) != NPU3_NTL_CQ_FENCE_STATUS_HALF)
return NPU3_PROC_INPROGRESS;
/* Credit setup */
npu3_write(npu, NPU3_NTL_CREQ_HDR_CRED_SND(i), 0x0200000000000000);
npu3_write(npu, NPU3_NTL_PRB_HDR_CRED_SND(i), 0x0200000000000000);
npu3_write(npu, NPU3_NTL_ATR_HDR_CRED_SND(i), 0x0200000000000000);
npu3_write(npu, NPU3_NTL_RSP_HDR_CRED_SND(i), 0x0200000000000000);
npu3_write(npu, NPU3_NTL_CREQ_DAT_CRED_SND(i), 0x1000000000000000);
npu3_write(npu, NPU3_NTL_RSP_DAT_CRED_SND(i), 0x1000000000000000);
npu3_write(npu, NPU3_NTL_CREQ_HDR_CRED_RCV(i), 0x0000be0000000000);
npu3_write(npu, NPU3_NTL_DGD_HDR_CRED_RCV(i), 0x0000640000000000);
npu3_write(npu, NPU3_NTL_ATSD_HDR_CRED_RCV(i), 0x0000200000000000);
npu3_write(npu, NPU3_NTL_RSP_HDR_CRED_RCV(i), 0x0000be0000000000);
npu3_write(npu, NPU3_NTL_CREQ_DAT_CRED_RCV(i), 0x0001000000000000);
npu3_write(npu, NPU3_NTL_RSP_DAT_CRED_RCV(i), 0x0001000000000000);
npu3_dev_fence_set(dev, NPU3_NTL_CQ_FENCE_STATUS_NONE);
return NPU3_PROC_NEXT;
}
static uint32_t reset_ntl_finish(struct npu3_dev *dev) {
struct npu3 *npu = dev->npu;
uint64_t val;
if (npu3_dev_fence_get(dev) != NPU3_NTL_CQ_FENCE_STATUS_NONE)
return NPU3_PROC_INPROGRESS;
/* Enable parity checking */
val = npu3_read(npu, NPU3_NTL_MISC_CFG2(dev->index));
val |= NPU3_NTL_MISC_CFG2_NDL_RX_PARITY_ENA |
NPU3_NTL_MISC_CFG2_NDL_TX_PARITY_ENA |
NPU3_NTL_MISC_CFG2_NDL_PRI_PARITY_ENA;
npu3_write(npu, NPU3_NTL_MISC_CFG2(dev->index), val);
if (dev->type == NPU3_DEV_TYPE_NVLINK)
npu3_pvd_flag_set(dev, NPU3_DEV_DL_RESET);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(reset_ntl, reset_ndl, reset_ntl_release, reset_ntl_finish);
static int npu3_dev_regcmp(struct npu3_dev *dev, uint64_t reg,
const char *reg_name, uint64_t expected)
{
uint64_t val;
val = npu3_read(dev->npu, reg);
if (val == expected)
return 0;
NPU3DEVERR(dev, "%s: expected 0x%llx, read 0x%llx\n",
reg_name, expected, val);
return 1;
}
#define REGCMP(reg, expected) \
npu3_dev_regcmp(dev, reg(dev->index), #reg, expected)
static uint32_t check_credits(struct npu3_dev *dev)
{
/* Use bitwise OR to prevent short-circuit evaluation */
if (REGCMP(NPU3_NTL_CREQ_HDR_CRED_RCV, 0x0be0be0000000000ull) |
REGCMP(NPU3_NTL_DGD_HDR_CRED_RCV, 0x0640640000000000ull) |
REGCMP(NPU3_NTL_ATSD_HDR_CRED_RCV, 0x0200200000000000ull) |
REGCMP(NPU3_NTL_RSP_HDR_CRED_RCV, 0x0be0be0000000000ull) |
REGCMP(NPU3_NTL_CREQ_DAT_CRED_RCV, 0x1001000000000000ull) |
REGCMP(NPU3_NTL_RSP_DAT_CRED_RCV, 0x1001000000000000ull))
return NPU3_PROC_COMPLETE | NPU3_PROC_FAILED;
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(check_credits);
static struct procedure *procedures[] = {
[0] = &procedure_stop,
[1] = &procedure_nop,
[4] = &procedure_phy_reset,
[5] = &procedure_phy_tx_zcal,
[6] = &procedure_phy_rx_dccal,
[7] = &procedure_phy_enable_tx_rxcal,
[8] = &procedure_phy_disable_tx_rxcal,
[9] = &procedure_phy_rx_training,
[10] = &procedure_reset_ntl,
[11] = &procedure_nop, /* Placeholder for pre-terminate */
[12] = &procedure_nop, /* Placeholder for terminate */
[13] = &procedure_check_credits,
};
void npu3_dev_procedure_init(struct npu3_dev *dev, uint32_t pnum)
{
struct npu3_procedure *proc = &dev->proc;
const char *name;
if (pnum >= ARRAY_SIZE(procedures) || !procedures[pnum]) {
NPU3DEVERR(dev, "Unsupported procedure number %d\n", pnum);
proc->status = NPU3_PROC_COMPLETE | NPU3_PROC_UNSUPPORTED;
return;
}
name = procedures[pnum]->name;
if (proc->number == pnum && !(proc->status & NPU3_PROC_COMPLETE))
NPU3DEVINF(dev, "Restarting procedure %s\n", name);
else
NPU3DEVINF(dev, "Starting procedure %s\n", name);
proc->status = NPU3_PROC_INPROGRESS;
proc->number = pnum;
proc->step = 0;
proc->timeout = mftb() + msecs_to_tb(1000);
}
static uint32_t npu3_dev_procedure_run_step(struct npu3_dev *dev)
{
struct npu3_procedure *proc = &dev->proc;
uint32_t result;
result = procedures[proc->number]->steps[proc->step](dev);
if (result & NPU3_PROC_NEXT) {
proc->step++;
NPU3DEVINF(dev, "Running procedure %s step %d\n",
procedures[proc->number]->name, proc->step);
}
return result;
}
static void npu3_dev_procedure_run(struct npu3_dev *dev)
{
struct npu3_procedure *proc = &dev->proc;
const char *name;
uint32_t result;
do {
result = npu3_dev_procedure_run_step(dev);
} while (result & NPU3_PROC_NEXT);
name = procedures[proc->number]->name;
if (result & NPU3_PROC_COMPLETE) {
NPU3DEVINF(dev, "Procedure %s complete\n", name);
} else if (tb_compare(mftb(), proc->timeout) == TB_AAFTERB) {
NPU3DEVINF(dev, "Procedure %s timed out\n", name);
result = NPU3_PROC_COMPLETE | NPU3_PROC_FAILED;
}
/* Mask off internal state bits */
proc->status = result & NPU3_PROC_STATUS_MASK;
}
uint32_t npu3_dev_procedure_status(struct npu3_dev *dev)
{
/* Run the procedure if not already complete */
if (!(dev->proc.status & NPU3_PROC_COMPLETE))
npu3_dev_procedure_run(dev);
return dev->proc.status;
}
int64_t npu3_dev_reset(struct npu3_dev *dev)
{
unsigned long timeout;
reset_ntl(dev);
timeout = mftb() + msecs_to_tb(1000);
while (npu3_dev_fence_get(dev) != NPU3_NTL_CQ_FENCE_STATUS_FULL) {
if (tb_compare(mftb(), timeout) == TB_AAFTERB) {
NPU3DEVINF(dev, "Device reset timed out\n");
return OPAL_BUSY;
}
}
return OPAL_SUCCESS;
}
|