aboutsummaryrefslogtreecommitdiffstats
path: root/softmmu/icount.c
blob: 21341a4ce49eccb8bf8699ce056d1f8d1dae16d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*
 * QEMU System Emulator
 *
 * Copyright (c) 2003-2008 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/cutils.h"
#include "migration/vmstate.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "exec/exec-all.h"
#include "sysemu/cpus.h"
#include "sysemu/qtest.h"
#include "qemu/main-loop.h"
#include "qemu/option.h"
#include "qemu/seqlock.h"
#include "sysemu/replay.h"
#include "sysemu/runstate.h"
#include "hw/core/cpu.h"
#include "sysemu/cpu-timers.h"
#include "sysemu/cpu-throttle.h"
#include "timers-state.h"

/*
 * ICOUNT: Instruction Counter
 *
 * this module is split off from cpu-timers because the icount part
 * is TCG-specific, and does not need to be built for other accels.
 */
static bool icount_sleep = true;
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
#define MAX_ICOUNT_SHIFT 10

/*
 * 0 = Do not count executed instructions.
 * 1 = Fixed conversion of insn to ns via "shift" option
 * 2 = Runtime adaptive algorithm to compute shift
 */
int use_icount;

static void icount_enable_precise(void)
{
    use_icount = 1;
}

static void icount_enable_adaptive(void)
{
    use_icount = 2;
}

/*
 * The current number of executed instructions is based on what we
 * originally budgeted minus the current state of the decrementing
 * icount counters in extra/u16.low.
 */
static int64_t icount_get_executed(CPUState *cpu)
{
    return (cpu->icount_budget -
            (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
}

/*
 * Update the global shared timer_state.qemu_icount to take into
 * account executed instructions. This is done by the TCG vCPU
 * thread so the main-loop can see time has moved forward.
 */
static void icount_update_locked(CPUState *cpu)
{
    int64_t executed = icount_get_executed(cpu);
    cpu->icount_budget -= executed;

    qatomic_set_i64(&timers_state.qemu_icount,
                    timers_state.qemu_icount + executed);
}

/*
 * Update the global shared timer_state.qemu_icount to take into
 * account executed instructions. This is done by the TCG vCPU
 * thread so the main-loop can see time has moved forward.
 */
void icount_update(CPUState *cpu)
{
    seqlock_write_lock(&timers_state.vm_clock_seqlock,
                       &timers_state.vm_clock_lock);
    icount_update_locked(cpu);
    seqlock_write_unlock(&timers_state.vm_clock_seqlock,
                         &timers_state.vm_clock_lock);
}

static int64_t icount_get_raw_locked(void)
{
    CPUState *cpu = current_cpu;

    if (cpu && cpu->running) {
        if (!cpu->can_do_io) {
            error_report("Bad icount read");
            exit(1);
        }
        /* Take into account what has run */
        icount_update_locked(cpu);
    }
    /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
    return qatomic_read_i64(&timers_state.qemu_icount);
}

static int64_t icount_get_locked(void)
{
    int64_t icount = icount_get_raw_locked();
    return qatomic_read_i64(&timers_state.qemu_icount_bias) +
        icount_to_ns(icount);
}

int64_t icount_get_raw(void)
{
    int64_t icount;
    unsigned start;

    do {
        start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
        icount = icount_get_raw_locked();
    } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));

    return icount;
}

/* Return the virtual CPU time, based on the instruction counter.  */
int64_t icount_get(void)
{
    int64_t icount;
    unsigned start;

    do {
        start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
        icount = icount_get_locked();
    } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));

    return icount;
}

int64_t icount_to_ns(int64_t icount)
{
    return icount << qatomic_read(&timers_state.icount_time_shift);
}

/*
 * Correlation between real and virtual time is always going to be
 * fairly approximate, so ignore small variation.
 * When the guest is idle real and virtual time will be aligned in
 * the IO wait loop.
 */
#define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)

static void icount_adjust(void)
{
    int64_t cur_time;
    int64_t cur_icount;
    int64_t delta;

    /* If the VM is not running, then do nothing.  */
    if (!runstate_is_running()) {
        return;
    }

    seqlock_write_lock(&timers_state.vm_clock_seqlock,
                       &timers_state.vm_clock_lock);
    cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
                                   cpu_get_clock_locked());
    cur_icount = icount_get_locked();

    delta = cur_icount - cur_time;
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
    if (delta > 0
        && timers_state.last_delta + ICOUNT_WOBBLE < delta * 2
        && timers_state.icount_time_shift > 0) {
        /* The guest is getting too far ahead.  Slow time down.  */
        qatomic_set(&timers_state.icount_time_shift,
                    timers_state.icount_time_shift - 1);
    }
    if (delta < 0
        && timers_state.last_delta - ICOUNT_WOBBLE > delta * 2
        && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
        /* The guest is getting too far behind.  Speed time up.  */
        qatomic_set(&timers_state.icount_time_shift,
                    timers_state.icount_time_shift + 1);
    }
    timers_state.last_delta = delta;
    qatomic_set_i64(&timers_state.qemu_icount_bias,
                    cur_icount - (timers_state.qemu_icount
                                  << timers_state.icount_time_shift));
    seqlock_write_unlock(&timers_state.vm_clock_seqlock,
                         &timers_state.vm_clock_lock);
}

static void icount_adjust_rt(void *opaque)
{
    timer_mod(timers_state.icount_rt_timer,
              qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
    icount_adjust();
}

static void icount_adjust_vm(void *opaque)
{
    timer_mod(timers_state.icount_vm_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                   NANOSECONDS_PER_SECOND / 10);
    icount_adjust();
}

int64_t icount_round(int64_t count)
{
    int shift = qatomic_read(&timers_state.icount_time_shift);
    return (count + (1 << shift) - 1) >> shift;
}

static void icount_warp_rt(void)
{
    unsigned seq;
    int64_t warp_start;

    /*
     * The icount_warp_timer is rescheduled soon after vm_clock_warp_start
     * changes from -1 to another value, so the race here is okay.
     */
    do {
        seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
        warp_start = timers_state.vm_clock_warp_start;
    } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));

    if (warp_start == -1) {
        return;
    }

    seqlock_write_lock(&timers_state.vm_clock_seqlock,
                       &timers_state.vm_clock_lock);
    if (runstate_is_running()) {
        int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
                                            cpu_get_clock_locked());
        int64_t warp_delta;

        warp_delta = clock - timers_state.vm_clock_warp_start;
        if (icount_enabled() == 2) {
            /*
             * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
             * far ahead of real time.
             */
            int64_t cur_icount = icount_get_locked();
            int64_t delta = clock - cur_icount;
            warp_delta = MIN(warp_delta, delta);
        }
        qatomic_set_i64(&timers_state.qemu_icount_bias,
                        timers_state.qemu_icount_bias + warp_delta);
    }
    timers_state.vm_clock_warp_start = -1;
    seqlock_write_unlock(&timers_state.vm_clock_seqlock,
                       &timers_state.vm_clock_lock);

    if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
        qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
    }
}

static void icount_timer_cb(void *opaque)
{
    /*
     * No need for a checkpoint because the timer already synchronizes
     * with CHECKPOINT_CLOCK_VIRTUAL_RT.
     */
    icount_warp_rt();
}

void icount_start_warp_timer(void)
{
    int64_t clock;
    int64_t deadline;

    assert(icount_enabled());

    /*
     * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
     * do not fire, so computing the deadline does not make sense.
     */
    if (!runstate_is_running()) {
        return;
    }

    if (replay_mode != REPLAY_MODE_PLAY) {
        if (!all_cpu_threads_idle()) {
            return;
        }

        if (qtest_enabled()) {
            /* When testing, qtest commands advance icount.  */
            return;
        }

        replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
    } else {
        /* warp clock deterministically in record/replay mode */
        if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
            /*
             * vCPU is sleeping and warp can't be started.
             * It is probably a race condition: notification sent
             * to vCPU was processed in advance and vCPU went to sleep.
             * Therefore we have to wake it up for doing someting.
             */
            if (replay_has_checkpoint()) {
                qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
            }
            return;
        }
    }

    /* We want to use the earliest deadline from ALL vm_clocks */
    clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
    deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
                                          ~QEMU_TIMER_ATTR_EXTERNAL);
    if (deadline < 0) {
        static bool notified;
        if (!icount_sleep && !notified) {
            warn_report("icount sleep disabled and no active timers");
            notified = true;
        }
        return;
    }

    if (deadline > 0) {
        /*
         * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
         * sleep.  Otherwise, the CPU might be waiting for a future timer
         * interrupt to wake it up, but the interrupt never comes because
         * the vCPU isn't running any insns and thus doesn't advance the
         * QEMU_CLOCK_VIRTUAL.
         */
        if (!icount_sleep) {
            /*
             * We never let VCPUs sleep in no sleep icount mode.
             * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
             * to the next QEMU_CLOCK_VIRTUAL event and notify it.
             * It is useful when we want a deterministic execution time,
             * isolated from host latencies.
             */
            seqlock_write_lock(&timers_state.vm_clock_seqlock,
                               &timers_state.vm_clock_lock);
            qatomic_set_i64(&timers_state.qemu_icount_bias,
                            timers_state.qemu_icount_bias + deadline);
            seqlock_write_unlock(&timers_state.vm_clock_seqlock,
                                 &timers_state.vm_clock_lock);
            qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
        } else {
            /*
             * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
             * "real" time, (related to the time left until the next event) has
             * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
             * This avoids that the warps are visible externally; for example,
             * you will not be sending network packets continuously instead of
             * every 100ms.
             */
            seqlock_write_lock(&timers_state.vm_clock_seqlock,
                               &timers_state.vm_clock_lock);
            if (timers_state.vm_clock_warp_start == -1
                || timers_state.vm_clock_warp_start > clock) {
                timers_state.vm_clock_warp_start = clock;
            }
            seqlock_write_unlock(&timers_state.vm_clock_seqlock,
                                 &timers_state.vm_clock_lock);
            timer_mod_anticipate(timers_state.icount_warp_timer,
                                 clock + deadline);
        }
    } else if (deadline == 0) {
        qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
    }
}

void icount_account_warp_timer(void)
{
    if (!icount_sleep) {
        return;
    }

    /*
     * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
     * do not fire, so computing the deadline does not make sense.
     */
    if (!runstate_is_running()) {
        return;
    }

    /* warp clock deterministically in record/replay mode */
    if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
        return;
    }

    timer_del(timers_state.icount_warp_timer);
    icount_warp_rt();
}

void icount_configure(QemuOpts *opts, Error **errp)
{
    const char *option = qemu_opt_get(opts, "shift");
    bool sleep = qemu_opt_get_bool(opts, "sleep", true);
    bool align = qemu_opt_get_bool(opts, "align", false);
    long time_shift = -1;

    if (!option) {
        if (qemu_opt_get(opts, "align") != NULL) {
            error_setg(errp, "Please specify shift option when using align");
        }
        return;
    }

    if (align && !sleep) {
        error_setg(errp, "align=on and sleep=off are incompatible");
        return;
    }

    if (strcmp(option, "auto") != 0) {
        if (qemu_strtol(option, NULL, 0, &time_shift) < 0
            || time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
            error_setg(errp, "icount: Invalid shift value");
            return;
        }
    } else if (icount_align_option) {
        error_setg(errp, "shift=auto and align=on are incompatible");
        return;
    } else if (!icount_sleep) {
        error_setg(errp, "shift=auto and sleep=off are incompatible");
        return;
    }

    icount_sleep = sleep;
    if (icount_sleep) {
        timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
                                         icount_timer_cb, NULL);
    }

    icount_align_option = align;

    if (time_shift >= 0) {
        timers_state.icount_time_shift = time_shift;
        icount_enable_precise();
        return;
    }

    icount_enable_adaptive();

    /*
     * 125MIPS seems a reasonable initial guess at the guest speed.
     * It will be corrected fairly quickly anyway.
     */
    timers_state.icount_time_shift = 3;

    /*
     * Have both realtime and virtual time triggers for speed adjustment.
     * The realtime trigger catches emulated time passing too slowly,
     * the virtual time trigger catches emulated time passing too fast.
     * Realtime triggers occur even when idle, so use them less frequently
     * than VM triggers.
     */
    timers_state.vm_clock_warp_start = -1;
    timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
                                   icount_adjust_rt, NULL);
    timer_mod(timers_state.icount_rt_timer,
                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
    timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
                                        icount_adjust_vm, NULL);
    timer_mod(timers_state.icount_vm_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                   NANOSECONDS_PER_SECOND / 10);
}