aboutsummaryrefslogtreecommitdiffstats
path: root/tool_bin/lib/linux/z3/include/z3_api.h
blob: f3d61c1cff386793f0d02dc7bc3e8820d8c1db23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
/*++
    Copyright (c) 2015 Microsoft Corporation
--*/

#ifndef Z3_API_H_
#define Z3_API_H_

DEFINE_TYPE(Z3_symbol);
DEFINE_TYPE(Z3_literals);
DEFINE_TYPE(Z3_config);
DEFINE_TYPE(Z3_context);
DEFINE_TYPE(Z3_sort);
#define Z3_sort_opt Z3_sort
DEFINE_TYPE(Z3_func_decl);
DEFINE_TYPE(Z3_ast);
#define Z3_ast_opt Z3_ast
DEFINE_TYPE(Z3_app);
DEFINE_TYPE(Z3_pattern);
DEFINE_TYPE(Z3_model);
DEFINE_TYPE(Z3_constructor);
DEFINE_TYPE(Z3_constructor_list);
DEFINE_TYPE(Z3_params);
DEFINE_TYPE(Z3_param_descrs);
DEFINE_TYPE(Z3_goal);
DEFINE_TYPE(Z3_tactic);
DEFINE_TYPE(Z3_probe);
DEFINE_TYPE(Z3_stats);
DEFINE_TYPE(Z3_solver);
DEFINE_TYPE(Z3_ast_vector);
DEFINE_TYPE(Z3_ast_map);
DEFINE_TYPE(Z3_apply_result);
DEFINE_TYPE(Z3_func_interp);
#define Z3_func_interp_opt Z3_func_interp
DEFINE_TYPE(Z3_func_entry);
DEFINE_TYPE(Z3_fixedpoint);
DEFINE_TYPE(Z3_optimize);
DEFINE_TYPE(Z3_rcf_num);

/** \defgroup capi C API */
/*@{*/

/** @name Types
    @{

   Most of the types in the C API are opaque pointers.

   - \c Z3_config: configuration object used to initialize logical contexts.
   - \c Z3_context: manager of all other Z3 objects, global configuration options, etc.
   - \c Z3_symbol: Lisp-like symbol used to name types, constants, and functions.  A symbol can be created using string or integers.
   - \c Z3_ast: abstract syntax tree node. That is, the data-structure used in Z3 to represent terms, formulas and types.
   - \c Z3_sort: kind of AST used to represent types.
   - \c Z3_func_decl: kind of AST used to represent function symbols.
   - \c Z3_app: kind of AST used to represent function applications.
   - \c Z3_pattern: kind of AST used to represent pattern and multi-patterns used to guide quantifier instantiation.
   - \c Z3_constructor: type constructor for a (recursive) datatype.
   - \c Z3_constructor_list: list of constructors for a (recursive) datatype.
   - \c Z3_params: parameter set used to configure many components such as: simplifiers, tactics, solvers, etc.
   - \c Z3_param_descrs: provides a collection of parameter names, their types, default values and documentation strings. Solvers, tactics, and other objects accept different collection of parameters.
   - \c Z3_model: model for the constraints asserted into the logical context.
   - \c Z3_func_interp: interpretation of a function in a model.
   - \c Z3_func_entry: representation of the value of a \c Z3_func_interp at a particular point.
   - \c Z3_fixedpoint: context for the recursive predicate solver.
   - \c Z3_optimize: context for solving optimization queries.
   - \c Z3_ast_vector: vector of \c Z3_ast objects.
   - \c Z3_ast_map: mapping from \c Z3_ast to \c Z3_ast objects.
   - \c Z3_goal: set of formulas that can be solved and/or transformed using tactics and solvers.
   - \c Z3_tactic: basic building block for creating custom solvers for specific problem domains.
   - \c Z3_probe: function/predicate used to inspect a goal and collect information that may be used to decide which solver and/or preprocessing step will be used.
   - \c Z3_apply_result: collection of subgoals resulting from applying of a tactic to a goal.
   - \c Z3_solver: (incremental) solver, possibly specialized by a particular tactic or logic.
   - \c Z3_stats: statistical data for a solver.
*/

/**
   \brief Z3 Boolean type. It is just an alias for \c bool.
*/
typedef bool Z3_bool;

/**
   \brief Z3 string type. It is just an alias for \ccode{const char *}.
*/
typedef const char * Z3_string;
typedef Z3_string * Z3_string_ptr;

/**
   \brief True value. It is just an alias for \c true.
*/
#define Z3_TRUE  true

/**
   \brief False value. It is just an alias for \c false.
*/
#define Z3_FALSE false

/**
   \brief Lifted Boolean type: \c false, \c undefined, \c true.
*/
typedef enum
{
    Z3_L_FALSE = -1,
    Z3_L_UNDEF,
    Z3_L_TRUE
} Z3_lbool;

/**
   \brief The different kinds of symbol.
   In Z3, a symbol can be represented using integers and strings (See #Z3_get_symbol_kind).

   \sa Z3_mk_int_symbol
   \sa Z3_mk_string_symbol
*/
typedef enum
{
    Z3_INT_SYMBOL,
    Z3_STRING_SYMBOL
} Z3_symbol_kind;


/**
   \brief The different kinds of parameters that can be associated with function symbols.
   \sa Z3_get_decl_num_parameters
   \sa Z3_get_decl_parameter_kind

   - Z3_PARAMETER_INT is used for integer parameters.
   - Z3_PARAMETER_DOUBLE is used for double parameters.
   - Z3_PARAMETER_RATIONAL is used for parameters that are rational numbers.
   - Z3_PARAMETER_SYMBOL is used for parameters that are symbols.
   - Z3_PARAMETER_SORT is used for sort parameters.
   - Z3_PARAMETER_AST is used for expression parameters.
   - Z3_PARAMETER_FUNC_DECL is used for function declaration parameters.
*/
typedef enum
{
    Z3_PARAMETER_INT,
    Z3_PARAMETER_DOUBLE,
    Z3_PARAMETER_RATIONAL,
    Z3_PARAMETER_SYMBOL,
    Z3_PARAMETER_SORT,
    Z3_PARAMETER_AST,
    Z3_PARAMETER_FUNC_DECL
} Z3_parameter_kind;

/**
   \brief The different kinds of Z3 types (See #Z3_get_sort_kind).
*/
typedef enum
{
    Z3_UNINTERPRETED_SORT,
    Z3_BOOL_SORT,
    Z3_INT_SORT,
    Z3_REAL_SORT,
    Z3_BV_SORT,
    Z3_ARRAY_SORT,
    Z3_DATATYPE_SORT,
    Z3_RELATION_SORT,
    Z3_FINITE_DOMAIN_SORT,
    Z3_FLOATING_POINT_SORT,
    Z3_ROUNDING_MODE_SORT,
    Z3_SEQ_SORT,
    Z3_RE_SORT,
    Z3_UNKNOWN_SORT = 1000
} Z3_sort_kind;

/**
   \brief
   The different kinds of Z3 AST (abstract syntax trees). That is, terms, formulas and types.

   - Z3_APP_AST:            constant and applications
   - Z3_NUMERAL_AST:        numeral constants
   - Z3_VAR_AST:            bound variables
   - Z3_QUANTIFIER_AST:     quantifiers
   - Z3_SORT_AST:           sort
   - Z3_FUNC_DECL_AST:      function declaration
   - Z3_UNKNOWN_AST:        internal
*/
typedef enum
{
    Z3_NUMERAL_AST,
    Z3_APP_AST,
    Z3_VAR_AST,
    Z3_QUANTIFIER_AST,
    Z3_SORT_AST,
    Z3_FUNC_DECL_AST,
    Z3_UNKNOWN_AST = 1000
} Z3_ast_kind;

/**
   \brief The different kinds of interpreted function kinds.

   - Z3_OP_TRUE The constant true.

   - Z3_OP_FALSE The constant false.

   - Z3_OP_EQ The equality predicate.

   - Z3_OP_DISTINCT The n-ary distinct predicate (every argument is mutually distinct).

   - Z3_OP_ITE The ternary if-then-else term.

   - Z3_OP_AND n-ary conjunction.

   - Z3_OP_OR n-ary disjunction.

   - Z3_OP_IFF equivalence (binary).

   - Z3_OP_XOR Exclusive or.

   - Z3_OP_NOT Negation.

   - Z3_OP_IMPLIES Implication.

   - Z3_OP_OEQ Binary equivalence modulo namings. This binary predicate is used in proof terms.
        It captures equisatisfiability and equivalence modulo renamings.

   - Z3_OP_ANUM Arithmetic numeral.

   - Z3_OP_AGNUM Arithmetic algebraic numeral. Algebraic numbers are used to represent irrational numbers in Z3.

   - Z3_OP_LE <=.

   - Z3_OP_GE >=.

   - Z3_OP_LT <.

   - Z3_OP_GT >.

   - Z3_OP_ADD Addition - Binary.

   - Z3_OP_SUB Binary subtraction.

   - Z3_OP_UMINUS Unary minus.

   - Z3_OP_MUL Multiplication - Binary.

   - Z3_OP_DIV Division - Binary.

   - Z3_OP_IDIV Integer division - Binary.

   - Z3_OP_REM Remainder - Binary.

   - Z3_OP_MOD Modulus - Binary.

   - Z3_OP_TO_REAL Coercion of integer to real - Unary.

   - Z3_OP_TO_INT Coercion of real to integer - Unary.

   - Z3_OP_IS_INT Check if real is also an integer - Unary.

   - Z3_OP_POWER Power operator x^y.

   - Z3_OP_STORE Array store. It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
        Array store takes at least 3 arguments.

   - Z3_OP_SELECT Array select.

   - Z3_OP_CONST_ARRAY The constant array. For example, select(const(v),i) = v holds for every v and i. The function is unary.

   - Z3_OP_ARRAY_DEFAULT Default value of arrays. For example default(const(v)) = v. The function is unary.

   - Z3_OP_ARRAY_MAP Array map operator.
         It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.

   - Z3_OP_SET_UNION Set union between two Boolean arrays (two arrays whose range type is Boolean). The function is binary.

   - Z3_OP_SET_INTERSECT Set intersection between two Boolean arrays. The function is binary.

   - Z3_OP_SET_DIFFERENCE Set difference between two Boolean arrays. The function is binary.

   - Z3_OP_SET_COMPLEMENT Set complement of a Boolean array. The function is unary.

   - Z3_OP_SET_SUBSET Subset predicate between two Boolean arrays. The relation is binary.

   - Z3_OP_AS_ARRAY An array value that behaves as the function graph of the
                    function passed as parameter.

   - Z3_OP_ARRAY_EXT Array extensionality function. It takes two arrays as arguments and produces an index, such that the arrays
                    are different if they are different on the index.

   - Z3_OP_BNUM Bit-vector numeral.

   - Z3_OP_BIT1 One bit bit-vector.

   - Z3_OP_BIT0 Zero bit bit-vector.

   - Z3_OP_BNEG Unary minus.

   - Z3_OP_BADD Binary addition.

   - Z3_OP_BSUB Binary subtraction.

   - Z3_OP_BMUL Binary multiplication.

   - Z3_OP_BSDIV Binary signed division.

   - Z3_OP_BUDIV Binary unsigned division.

   - Z3_OP_BSREM Binary signed remainder.

   - Z3_OP_BUREM Binary unsigned remainder.

   - Z3_OP_BSMOD Binary signed modulus.

   - Z3_OP_BSDIV0 Unary function. bsdiv(x,0) is congruent to bsdiv0(x).

   - Z3_OP_BUDIV0 Unary function. budiv(x,0) is congruent to budiv0(x).

   - Z3_OP_BSREM0 Unary function. bsrem(x,0) is congruent to bsrem0(x).

   - Z3_OP_BUREM0 Unary function. burem(x,0) is congruent to burem0(x).

   - Z3_OP_BSMOD0 Unary function. bsmod(x,0) is congruent to bsmod0(x).

   - Z3_OP_ULEQ Unsigned bit-vector <= - Binary relation.

   - Z3_OP_SLEQ Signed bit-vector  <= - Binary relation.

   - Z3_OP_UGEQ Unsigned bit-vector  >= - Binary relation.

   - Z3_OP_SGEQ Signed bit-vector  >= - Binary relation.

   - Z3_OP_ULT Unsigned bit-vector  < - Binary relation.

   - Z3_OP_SLT Signed bit-vector < - Binary relation.

   - Z3_OP_UGT Unsigned bit-vector > - Binary relation.

   - Z3_OP_SGT Signed bit-vector > - Binary relation.

   - Z3_OP_BAND Bit-wise and - Binary.

   - Z3_OP_BOR Bit-wise or - Binary.

   - Z3_OP_BNOT Bit-wise not - Unary.

   - Z3_OP_BXOR Bit-wise xor - Binary.

   - Z3_OP_BNAND Bit-wise nand - Binary.

   - Z3_OP_BNOR Bit-wise nor - Binary.

   - Z3_OP_BXNOR Bit-wise xnor - Binary.

   - Z3_OP_CONCAT Bit-vector concatenation - Binary.

   - Z3_OP_SIGN_EXT Bit-vector sign extension.

   - Z3_OP_ZERO_EXT Bit-vector zero extension.

   - Z3_OP_EXTRACT Bit-vector extraction.

   - Z3_OP_REPEAT Repeat bit-vector n times.

   - Z3_OP_BREDOR Bit-vector reduce or - Unary.

   - Z3_OP_BREDAND Bit-vector reduce and - Unary.

   - Z3_OP_BCOMP .

   - Z3_OP_BSHL Shift left.

   - Z3_OP_BLSHR Logical shift right.

   - Z3_OP_BASHR Arithmetical shift right.

   - Z3_OP_ROTATE_LEFT Left rotation.

   - Z3_OP_ROTATE_RIGHT Right rotation.

   - Z3_OP_EXT_ROTATE_LEFT (extended) Left rotation. Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.

   - Z3_OP_EXT_ROTATE_RIGHT (extended) Right rotation. Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.

   - Z3_OP_INT2BV Coerce integer to bit-vector. NB. This function
       is not supported by the decision procedures. Only the most
       rudimentary simplification rules are applied to this function.

   - Z3_OP_BV2INT Coerce bit-vector to integer. NB. This function
       is not supported by the decision procedures. Only the most
       rudimentary simplification rules are applied to this function.

   - Z3_OP_CARRY Compute the carry bit in a full-adder.
       The meaning is given by the equivalence
       (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))

   - Z3_OP_XOR3 Compute ternary XOR.
       The meaning is given by the equivalence
       (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)

   - Z3_OP_BSMUL_NO_OVFL: a predicate to check that bit-wise signed multiplication does not overflow.
     Signed multiplication overflows if the operands have the same sign and the result of multiplication
     does not fit within the available bits. \sa Z3_mk_bvmul_no_overflow.

   - Z3_OP_BUMUL_NO_OVFL: check that bit-wise unsigned multiplication does not overflow.
     Unsigned multiplication overflows if the result does not fit within the available bits.
     \sa Z3_mk_bvmul_no_overflow.

   - Z3_OP_BSMUL_NO_UDFL: check that bit-wise signed multiplication does not underflow.
     Signed multiplication underflows if the operands have opposite signs and the result of multiplication
     does not fit within the available bits. Z3_mk_bvmul_no_underflow.

   - Z3_OP_BSDIV_I: Binary signed division.
     It has the same semantics as Z3_OP_BSDIV, but created in a context where the second operand can be assumed to be non-zero.

   - Z3_OP_BUDIV_I: Binary unsigned division.
     It has the same semantics as Z3_OP_BUDIV, but created in a context where the second operand can be assumed to be non-zero.

   - Z3_OP_BSREM_I: Binary signed remainder.
     It has the same semantics as Z3_OP_BSREM, but created in a context where the second operand can be assumed to be non-zero.

   - Z3_OP_BUREM_I: Binary unsigned remainder.
     It has the same semantics as Z3_OP_BUREM, but created in a context where the second operand can be assumed to be non-zero.

   - Z3_OP_BSMOD_I: Binary signed modulus.
     It has the same semantics as Z3_OP_BSMOD, but created in a context where the second operand can be assumed to be non-zero.

   - Z3_OP_PR_UNDEF: Undef/Null proof object.

   - Z3_OP_PR_TRUE: Proof for the expression 'true'.

   - Z3_OP_PR_ASSERTED: Proof for a fact asserted by the user.

   - Z3_OP_PR_GOAL: Proof for a fact (tagged as goal) asserted by the user.

   - Z3_OP_PR_MODUS_PONENS: Given a proof for p and a proof for (implies p q), produces a proof for q.
       \nicebox{
          T1: p
          T2: (implies p q)
          [mp T1 T2]: q
          }
          The second antecedents may also be a proof for (iff p q).

   - Z3_OP_PR_REFLEXIVITY: A proof for (R t t), where R is a reflexive relation. This proof object has no antecedents.
        The only reflexive relations that are used are
        equivalence modulo namings, equality and equivalence.
        That is, R is either '~', '=' or 'iff'.

   - Z3_OP_PR_SYMMETRY: Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
          \nicebox{
          T1: (R t s)
          [symmetry T1]: (R s t)
          }
          T1 is the antecedent of this proof object.

   - Z3_OP_PR_TRANSITIVITY: Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
       for (R t u).
       \nicebox{
       T1: (R t s)
       T2: (R s u)
       [trans T1 T2]: (R t u)
       }

   - Z3_OP_PR_TRANSITIVITY_STAR: Condensed transitivity proof. 
     It combines several symmetry and transitivity proofs.

          Example:
          \nicebox{
          T1: (R a b)
          T2: (R c b)
          T3: (R c d)
          [trans* T1 T2 T3]: (R a d)
          }
          R must be a symmetric and transitive relation.

          Assuming that this proof object is a proof for (R s t), then
          a proof checker must check if it is possible to prove (R s t)
          using the antecedents, symmetry and transitivity.  That is,
          if there is a path from s to t, if we view every
          antecedent (R a b) as an edge between a and b.

   - Z3_OP_PR_MONOTONICITY: Monotonicity proof object.
          \nicebox{
          T1: (R t_1 s_1)
          ...
          Tn: (R t_n s_n)
          [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
          }
          Remark: if t_i == s_i, then the antecedent Ti is suppressed.
          That is, reflexivity proofs are suppressed to save space.

   - Z3_OP_PR_QUANT_INTRO: Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).

       T1: (~ p q)
       [quant-intro T1]: (~ (forall (x) p) (forall (x) q))

   - Z3_OP_PR_BIND: Given a proof p, produces a proof of lambda x . p, where x are free variables in p.
       T1: f
       [proof-bind T1] forall (x) f

   - Z3_OP_PR_DISTRIBUTIVITY: Distributivity proof object.
          Given that f (= or) distributes over g (= and), produces a proof for

          (= (f a (g c d))
             (g (f a c) (f a d)))

          If f and g are associative, this proof also justifies the following equality:

          (= (f (g a b) (g c d))
             (g (f a c) (f a d) (f b c) (f b d)))

          where each f and g can have arbitrary number of arguments.

          This proof object has no antecedents.
          Remark. This rule is used by the CNF conversion pass and
          instantiated by f = or, and g = and.

   - Z3_OP_PR_AND_ELIM: Given a proof for (and l_1 ... l_n), produces a proof for l_i

       \nicebox{
       T1: (and l_1 ... l_n)
       [and-elim T1]: l_i
       }
   - Z3_OP_PR_NOT_OR_ELIM: Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).

       \nicebox{
       T1: (not (or l_1 ... l_n))
       [not-or-elim T1]: (not l_i)
       }

   - Z3_OP_PR_REWRITE: A proof for a local rewriting step (= t s).
          The head function symbol of t is interpreted.

          This proof object has no antecedents.
          The conclusion of a rewrite rule is either an equality (= t s),
          an equivalence (iff t s), or equi-satisfiability (~ t s).
          Remark: if f is bool, then = is iff.


          Examples:
          \nicebox{
          (= (+ x 0) x)
          (= (+ x 1 2) (+ 3 x))
          (iff (or x false) x)
          }

   - Z3_OP_PR_REWRITE_STAR: A proof for rewriting an expression t into an expression s.
       This proof object can have n antecedents.
       The antecedents are proofs for equalities used as substitution rules.
       The proof rule is used in a few cases. The cases are:
         - When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
         - When converting bit-vectors to Booleans (BIT2BOOL=true)

   - Z3_OP_PR_PULL_QUANT: A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.

   - Z3_OP_PR_PUSH_QUANT: A proof for:

       \nicebox{
          (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
               (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
                 ...
               (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
               }
         This proof object has no antecedents.

   - Z3_OP_PR_ELIM_UNUSED_VARS:
          A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
                           (forall (x_1 ... x_n) p[x_1 ... x_n]))

          It is used to justify the elimination of unused variables.
          This proof object has no antecedents.

   - Z3_OP_PR_DER: A proof for destructive equality resolution:
          (iff (forall (x) (or (not (= x t)) P[x])) P[t])
          if x does not occur in t.

          This proof object has no antecedents.

          Several variables can be eliminated simultaneously.

   - Z3_OP_PR_QUANT_INST: A proof of (or (not (forall (x) (P x))) (P a))

   - Z3_OP_PR_HYPOTHESIS: Mark a hypothesis in a natural deduction style proof.

   - Z3_OP_PR_LEMMA:

       \nicebox{
          T1: false
          [lemma T1]: (or (not l_1) ... (not l_n))
          }
          This proof object has one antecedent: a hypothetical proof for false.
          It converts the proof in a proof for (or (not l_1) ... (not l_n)),
          when T1 contains the open hypotheses: l_1, ..., l_n.
          The hypotheses are closed after an application of a lemma.
          Furthermore, there are no other open hypotheses in the subtree covered by
          the lemma.

   - Z3_OP_PR_UNIT_RESOLUTION:
       \nicebox{
          T1:      (or l_1 ... l_n l_1' ... l_m')
          T2:      (not l_1)
          ...
          T(n+1):  (not l_n)
          [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')
          }

   - Z3_OP_PR_IFF_TRUE:
      \nicebox{
       T1: p
       [iff-true T1]: (iff p true)
       }

   - Z3_OP_PR_IFF_FALSE:
      \nicebox{
       T1: (not p)
       [iff-false T1]: (iff p false)
       }

   - Z3_OP_PR_COMMUTATIVITY:

          [comm]: (= (f a b) (f b a))

          f is a commutative operator.

          This proof object has no antecedents.
          Remark: if f is bool, then = is iff.

   - Z3_OP_PR_DEF_AXIOM: Proof object used to justify Tseitin's like axioms:

          \nicebox{
          (or (not (and p q)) p)
          (or (not (and p q)) q)
          (or (not (and p q r)) p)
          (or (not (and p q r)) q)
          (or (not (and p q r)) r)
          ...
          (or (and p q) (not p) (not q))
          (or (not (or p q)) p q)
          (or (or p q) (not p))
          (or (or p q) (not q))
          (or (not (iff p q)) (not p) q)
          (or (not (iff p q)) p (not q))
          (or (iff p q) (not p) (not q))
          (or (iff p q) p q)
          (or (not (ite a b c)) (not a) b)
          (or (not (ite a b c)) a c)
          (or (ite a b c) (not a) (not b))
          (or (ite a b c) a (not c))
          (or (not (not a)) (not a))
          (or (not a) a)
          }
          This proof object has no antecedents.
          Note: all axioms are propositional tautologies.
          Note also that 'and' and 'or' can take multiple arguments.
          You can recover the propositional tautologies by
          unfolding the Boolean connectives in the axioms a small
          bounded number of steps (=3).

   - Z3_OP_PR_DEF_INTRO: Introduces a name for a formula/term.
       Suppose e is an expression with free variables x, and def-intro
       introduces the name n(x). The possible cases are:

       When e is of Boolean type:
       [def-intro]: (and (or n (not e)) (or (not n) e))

       or:
       [def-intro]: (or (not n) e)
       when e only occurs positively.

       When e is of the form (ite cond th el):
       [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))

       Otherwise:
       [def-intro]: (= n e)

   - Z3_OP_PR_APPLY_DEF:
       [apply-def T1]: F ~ n
       F is 'equivalent' to n, given that T1 is a proof that
       n is a name for F.

   - Z3_OP_PR_IFF_OEQ:
       T1: (iff p q)
       [iff~ T1]: (~ p q)

   - Z3_OP_PR_NNF_POS: Proof for a (positive) NNF step. Example:
       \nicebox{
          T1: (not s_1) ~ r_1
          T2: (not s_2) ~ r_2
          T3: s_1 ~ r_1'
          T4: s_2 ~ r_2'
          [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2)
                                    (and (or r_1 r_2') (or r_1' r_2)))
          }
       The negation normal form steps NNF_POS and NNF_NEG are used in the following cases:
       (a) When creating the NNF of a positive force quantifier.
        The quantifier is retained (unless the bound variables are eliminated).
        Example
        \nicebox{
           T1: q ~ q_new
           [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
        }
       (b) When recursively creating NNF over Boolean formulas, where the top-level
       connective is changed during NNF conversion. The relevant Boolean connectives
       for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
       NNF_NEG furthermore handles the case where negation is pushed
       over Boolean connectives 'and' and 'or'.


   - Z3_OP_PR_NNF_NEG: Proof for a (negative) NNF step. Examples:
          \nicebox{
          T1: (not s_1) ~ r_1
          ...
          Tn: (not s_n) ~ r_n
         [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n)
      and
          T1: (not s_1) ~ r_1
          ...
          Tn: (not s_n) ~ r_n
         [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n)
      and
          T1: (not s_1) ~ r_1
          T2: (not s_2) ~ r_2
          T3: s_1 ~ r_1'
          T4: s_2 ~ r_2'
         [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
                                   (and (or r_1 r_2) (or r_1' r_2')))
       }

   - Z3_OP_PR_SKOLEMIZE: Proof for:

          \nicebox{
          [sk]: (~ (not (forall x (p x y))) (not (p (sk y) y)))
          [sk]: (~ (exists x (p x y)) (p (sk y) y))
          }

          This proof object has no antecedents.

   - Z3_OP_PR_MODUS_PONENS_OEQ: Modus ponens style rule for equi-satisfiability.
       \nicebox{
          T1: p
          T2: (~ p q)
          [mp~ T1 T2]: q
          }

    - Z3_OP_PR_TH_LEMMA: Generic proof for theory lemmas.

         The theory lemma function comes with one or more parameters.
         The first parameter indicates the name of the theory.
         For the theory of arithmetic, additional parameters provide hints for
         checking the theory lemma.
         The hints for arithmetic are:

         - farkas - followed by rational coefficients. Multiply the coefficients to the
           inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.

         - triangle-eq - Indicates a lemma related to the equivalence:
         \nicebox{
            (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
         }

         - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.


    - Z3_OP_PR_HYPER_RESOLVE: Hyper-resolution rule.

        The premises of the rules is a sequence of clauses.
        The first clause argument is the main clause of the rule.
        with a literal from the first (main) clause.

        Premises of the rules are of the form
        \nicebox{
                (or l0 l1 l2 .. ln)
        }
        or
        \nicebox{
             (=> (and l1 l2 .. ln) l0)
        }
        or in the most general (ground) form:
        \nicebox{
             (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln))
        }
        In other words we use the following (Prolog style) convention for Horn
        implications:
        The head of a Horn implication is position 0,
        the first conjunct in the body of an implication is position 1
        the second conjunct in the body of an implication is position 2

        For general implications where the head is a disjunction, the
        first n positions correspond to the n disjuncts in the head.
        The next m positions correspond to the m conjuncts in the body.

        The premises can be universally quantified so that the most
        general non-ground form is:

        \nicebox{
             (forall (vars) (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln)))
        }

        The hyper-resolution rule takes a sequence of parameters.
        The parameters are substitutions of bound variables separated by pairs
        of literal positions from the main clause and side clause.


      - Z3_OP_RA_STORE: Insert a record into a relation.
        The function takes \c n+1 arguments, where the first argument is the relation and the remaining \c n elements
        correspond to the \c n columns of the relation.

      - Z3_OP_RA_EMPTY: Creates the empty relation.

      - Z3_OP_RA_IS_EMPTY: Tests if the relation is empty.

      - Z3_OP_RA_JOIN: Create the relational join.

      - Z3_OP_RA_UNION: Create the union or convex hull of two relations.
        The function takes two arguments.

      - Z3_OP_RA_WIDEN: Widen two relations.
        The function takes two arguments.

      - Z3_OP_RA_PROJECT: Project the columns (provided as numbers in the parameters).
        The function takes one argument.

      - Z3_OP_RA_FILTER: Filter (restrict) a relation with respect to a predicate.
        The first argument is a relation.
        The second argument is a predicate with free de-Bruijn indices
        corresponding to the columns of the relation.
        So the first column in the relation has index 0.

      - Z3_OP_RA_NEGATION_FILTER: Intersect the first relation with respect to negation
        of the second relation (the function takes two arguments).
        Logically, the specification can be described by a function

           target = filter_by_negation(pos, neg, columns)

        where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
        target are elements in x in pos, such that there is no y in neg that agrees with
        x on the columns c1, d1, .., cN, dN.


      - Z3_OP_RA_RENAME: rename columns in the relation.
        The function takes one argument.
        The parameters contain the renaming as a cycle.

      - Z3_OP_RA_COMPLEMENT: Complement the relation.

      - Z3_OP_RA_SELECT: Check if a record is an element of the relation.
        The function takes \c n+1 arguments, where the first argument is a relation,
        and the remaining \c n arguments correspond to a record.

      - Z3_OP_RA_CLONE: Create a fresh copy (clone) of a relation.
        The function is logically the identity, but
        in the context of a register machine allows
        for #Z3_OP_RA_UNION to perform destructive updates to the first argument.


      - Z3_OP_FD_LT: A less than predicate over the finite domain Z3_FINITE_DOMAIN_SORT.

      - Z3_OP_LABEL: A label (used by the Boogie Verification condition generator).
                     The label has two parameters, a string and a Boolean polarity.
                     It takes one argument, a formula.

      - Z3_OP_LABEL_LIT: A label literal (used by the Boogie Verification condition generator).
                     A label literal has a set of string parameters. It takes no arguments.

      - Z3_OP_DT_CONSTRUCTOR: datatype constructor.

      - Z3_OP_DT_RECOGNISER: datatype recognizer.

      - Z3_OP_DT_IS: datatype recognizer.

      - Z3_OP_DT_ACCESSOR: datatype accessor.

      - Z3_OP_DT_UPDATE_FIELD: datatype field update.

      - Z3_OP_PB_AT_MOST: Cardinality constraint.
              E.g., x + y + z <= 2

      - Z3_OP_PB_AT_LEAST: Cardinality constraint.
              E.g., x + y + z >= 2

      - Z3_OP_PB_LE: Generalized Pseudo-Boolean cardinality constraint.
              Example  2*x + 3*y <= 4

      - Z3_OP_PB_GE: Generalized Pseudo-Boolean cardinality constraint.
              Example  2*x + 3*y + 2*z >= 4

      - Z3_OP_PB_EQ: Generalized Pseudo-Boolean equality constraint.
              Example  2*x + 1*y + 2*z + 1*u = 4

      - Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN: Floating-point rounding mode RNE

      - Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY: Floating-point rounding mode RNA

      - Z3_OP_FPA_RM_TOWARD_POSITIVE: Floating-point rounding mode RTP

      - Z3_OP_FPA_RM_TOWARD_NEGATIVE: Floating-point rounding mode RTN

      - Z3_OP_FPA_RM_TOWARD_ZERO: Floating-point rounding mode RTZ

      - Z3_OP_FPA_NUM: Floating-point value

      - Z3_OP_FPA_PLUS_INF: Floating-point +oo

      - Z3_OP_FPA_MINUS_INF: Floating-point -oo

      - Z3_OP_FPA_NAN: Floating-point NaN

      - Z3_OP_FPA_PLUS_ZERO: Floating-point +zero

      - Z3_OP_FPA_MINUS_ZERO: Floating-point -zero

      - Z3_OP_FPA_ADD: Floating-point addition

      - Z3_OP_FPA_SUB: Floating-point subtraction

      - Z3_OP_FPA_NEG: Floating-point negation

      - Z3_OP_FPA_MUL: Floating-point multiplication

      - Z3_OP_FPA_DIV: Floating-point division

      - Z3_OP_FPA_REM: Floating-point remainder

      - Z3_OP_FPA_ABS: Floating-point absolute value

      - Z3_OP_FPA_MIN: Floating-point minimum

      - Z3_OP_FPA_MAX: Floating-point maximum

      - Z3_OP_FPA_FMA: Floating-point fused multiply-add

      - Z3_OP_FPA_SQRT: Floating-point square root

      - Z3_OP_FPA_ROUND_TO_INTEGRAL: Floating-point round to integral

      - Z3_OP_FPA_EQ: Floating-point equality

      - Z3_OP_FPA_LT: Floating-point less than

      - Z3_OP_FPA_GT: Floating-point greater than

      - Z3_OP_FPA_LE: Floating-point less than or equal

      - Z3_OP_FPA_GE: Floating-point greater than or equal

      - Z3_OP_FPA_IS_NAN: Floating-point isNaN

      - Z3_OP_FPA_IS_INF: Floating-point isInfinite

      - Z3_OP_FPA_IS_ZERO: Floating-point isZero

      - Z3_OP_FPA_IS_NORMAL: Floating-point isNormal

      - Z3_OP_FPA_IS_SUBNORMAL: Floating-point isSubnormal

      - Z3_OP_FPA_IS_NEGATIVE: Floating-point isNegative

      - Z3_OP_FPA_IS_POSITIVE: Floating-point isPositive

      - Z3_OP_FPA_FP: Floating-point constructor from 3 bit-vectors

      - Z3_OP_FPA_TO_FP: Floating-point conversion (various)

      - Z3_OP_FPA_TO_FP_UNSIGNED: Floating-point conversion from unsigned bit-vector

      - Z3_OP_FPA_TO_UBV: Floating-point conversion to unsigned bit-vector

      - Z3_OP_FPA_TO_SBV: Floating-point conversion to signed bit-vector

      - Z3_OP_FPA_TO_REAL: Floating-point conversion to real number

      - Z3_OP_FPA_TO_IEEE_BV: Floating-point conversion to IEEE-754 bit-vector

      - Z3_OP_FPA_BVWRAP: (Implicitly) represents the internal bitvector-
        representation of a floating-point term (used for the lazy encoding
        of non-relevant terms in theory_fpa)

      - Z3_OP_FPA_BV2RM: Conversion of a 3-bit bit-vector term to a
        floating-point rounding-mode term

        The conversion uses the following values:
            0 = 000 = Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN,
            1 = 001 = Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY,
            2 = 010 = Z3_OP_FPA_RM_TOWARD_POSITIVE,
            3 = 011 = Z3_OP_FPA_RM_TOWARD_NEGATIVE,
            4 = 100 = Z3_OP_FPA_RM_TOWARD_ZERO.

      - Z3_OP_INTERNAL: internal (often interpreted) symbol, but no additional
        information is exposed. Tools may use the string representation of the
        function declaration to obtain more information.

      - Z3_OP_UNINTERPRETED: kind used for uninterpreted symbols.
*/
typedef enum {
    // Basic
    Z3_OP_TRUE = 0x100,
    Z3_OP_FALSE,
    Z3_OP_EQ,
    Z3_OP_DISTINCT,
    Z3_OP_ITE,
    Z3_OP_AND,
    Z3_OP_OR,
    Z3_OP_IFF,
    Z3_OP_XOR,
    Z3_OP_NOT,
    Z3_OP_IMPLIES,
    Z3_OP_OEQ,

    // Arithmetic
    Z3_OP_ANUM = 0x200,
    Z3_OP_AGNUM,
    Z3_OP_LE,
    Z3_OP_GE,
    Z3_OP_LT,
    Z3_OP_GT,
    Z3_OP_ADD,
    Z3_OP_SUB,
    Z3_OP_UMINUS,
    Z3_OP_MUL,
    Z3_OP_DIV,
    Z3_OP_IDIV,
    Z3_OP_REM,
    Z3_OP_MOD,
    Z3_OP_TO_REAL,
    Z3_OP_TO_INT,
    Z3_OP_IS_INT,
    Z3_OP_POWER,

    // Arrays & Sets
    Z3_OP_STORE = 0x300,
    Z3_OP_SELECT,
    Z3_OP_CONST_ARRAY,
    Z3_OP_ARRAY_MAP,
    Z3_OP_ARRAY_DEFAULT,
    Z3_OP_SET_UNION,
    Z3_OP_SET_INTERSECT,
    Z3_OP_SET_DIFFERENCE,
    Z3_OP_SET_COMPLEMENT,
    Z3_OP_SET_SUBSET,
    Z3_OP_AS_ARRAY,
    Z3_OP_ARRAY_EXT,

    // Bit-vectors
    Z3_OP_BNUM = 0x400,
    Z3_OP_BIT1,
    Z3_OP_BIT0,
    Z3_OP_BNEG,
    Z3_OP_BADD,
    Z3_OP_BSUB,
    Z3_OP_BMUL,

    Z3_OP_BSDIV,
    Z3_OP_BUDIV,
    Z3_OP_BSREM,
    Z3_OP_BUREM,
    Z3_OP_BSMOD,

    // special functions to record the division by 0 cases
    // these are internal functions
    Z3_OP_BSDIV0,
    Z3_OP_BUDIV0,
    Z3_OP_BSREM0,
    Z3_OP_BUREM0,
    Z3_OP_BSMOD0,

    Z3_OP_ULEQ,
    Z3_OP_SLEQ,
    Z3_OP_UGEQ,
    Z3_OP_SGEQ,
    Z3_OP_ULT,
    Z3_OP_SLT,
    Z3_OP_UGT,
    Z3_OP_SGT,

    Z3_OP_BAND,
    Z3_OP_BOR,
    Z3_OP_BNOT,
    Z3_OP_BXOR,
    Z3_OP_BNAND,
    Z3_OP_BNOR,
    Z3_OP_BXNOR,

    Z3_OP_CONCAT,
    Z3_OP_SIGN_EXT,
    Z3_OP_ZERO_EXT,
    Z3_OP_EXTRACT,
    Z3_OP_REPEAT,

    Z3_OP_BREDOR,
    Z3_OP_BREDAND,
    Z3_OP_BCOMP,

    Z3_OP_BSHL,
    Z3_OP_BLSHR,
    Z3_OP_BASHR,
    Z3_OP_ROTATE_LEFT,
    Z3_OP_ROTATE_RIGHT,
    Z3_OP_EXT_ROTATE_LEFT,
    Z3_OP_EXT_ROTATE_RIGHT,

    Z3_OP_BIT2BOOL,
    Z3_OP_INT2BV,
    Z3_OP_BV2INT,
    Z3_OP_CARRY,
    Z3_OP_XOR3,

    Z3_OP_BSMUL_NO_OVFL,
    Z3_OP_BUMUL_NO_OVFL,
    Z3_OP_BSMUL_NO_UDFL,
    Z3_OP_BSDIV_I,
    Z3_OP_BUDIV_I,
    Z3_OP_BSREM_I,
    Z3_OP_BUREM_I,
    Z3_OP_BSMOD_I,

    // Proofs
    Z3_OP_PR_UNDEF = 0x500,
    Z3_OP_PR_TRUE,
    Z3_OP_PR_ASSERTED,
    Z3_OP_PR_GOAL,
    Z3_OP_PR_MODUS_PONENS,
    Z3_OP_PR_REFLEXIVITY,
    Z3_OP_PR_SYMMETRY,
    Z3_OP_PR_TRANSITIVITY,
    Z3_OP_PR_TRANSITIVITY_STAR,
    Z3_OP_PR_MONOTONICITY,
    Z3_OP_PR_QUANT_INTRO,
    Z3_OP_PR_BIND,
    Z3_OP_PR_DISTRIBUTIVITY,
    Z3_OP_PR_AND_ELIM,
    Z3_OP_PR_NOT_OR_ELIM,
    Z3_OP_PR_REWRITE,
    Z3_OP_PR_REWRITE_STAR,
    Z3_OP_PR_PULL_QUANT,
    Z3_OP_PR_PUSH_QUANT,
    Z3_OP_PR_ELIM_UNUSED_VARS,
    Z3_OP_PR_DER,
    Z3_OP_PR_QUANT_INST,
    Z3_OP_PR_HYPOTHESIS,
    Z3_OP_PR_LEMMA,
    Z3_OP_PR_UNIT_RESOLUTION,
    Z3_OP_PR_IFF_TRUE,
    Z3_OP_PR_IFF_FALSE,
    Z3_OP_PR_COMMUTATIVITY,
    Z3_OP_PR_DEF_AXIOM,
    Z3_OP_PR_DEF_INTRO,
    Z3_OP_PR_APPLY_DEF,
    Z3_OP_PR_IFF_OEQ,
    Z3_OP_PR_NNF_POS,
    Z3_OP_PR_NNF_NEG,
    Z3_OP_PR_SKOLEMIZE,
    Z3_OP_PR_MODUS_PONENS_OEQ,
    Z3_OP_PR_TH_LEMMA,
    Z3_OP_PR_HYPER_RESOLVE,

    // Relational algebra
    Z3_OP_RA_STORE = 0x600,
    Z3_OP_RA_EMPTY,
    Z3_OP_RA_IS_EMPTY,
    Z3_OP_RA_JOIN,
    Z3_OP_RA_UNION,
    Z3_OP_RA_WIDEN,
    Z3_OP_RA_PROJECT,
    Z3_OP_RA_FILTER,
    Z3_OP_RA_NEGATION_FILTER,
    Z3_OP_RA_RENAME,
    Z3_OP_RA_COMPLEMENT,
    Z3_OP_RA_SELECT,
    Z3_OP_RA_CLONE,
    Z3_OP_FD_CONSTANT,
    Z3_OP_FD_LT,

    // Sequences
    Z3_OP_SEQ_UNIT,
    Z3_OP_SEQ_EMPTY,
    Z3_OP_SEQ_CONCAT,
    Z3_OP_SEQ_PREFIX,
    Z3_OP_SEQ_SUFFIX,
    Z3_OP_SEQ_CONTAINS,
    Z3_OP_SEQ_EXTRACT,
    Z3_OP_SEQ_REPLACE,
    Z3_OP_SEQ_AT,
    Z3_OP_SEQ_LENGTH,
    Z3_OP_SEQ_INDEX,
    Z3_OP_SEQ_TO_RE,
    Z3_OP_SEQ_IN_RE,

    // strings
    Z3_OP_STR_TO_INT,
    Z3_OP_INT_TO_STR,

    // regular expressions
    Z3_OP_RE_PLUS,
    Z3_OP_RE_STAR,
    Z3_OP_RE_OPTION,
    Z3_OP_RE_CONCAT,
    Z3_OP_RE_UNION,
    Z3_OP_RE_RANGE,
    Z3_OP_RE_LOOP,
    Z3_OP_RE_INTERSECT,
    Z3_OP_RE_EMPTY_SET,
    Z3_OP_RE_FULL_SET,
    Z3_OP_RE_COMPLEMENT,

    // Auxiliary
    Z3_OP_LABEL = 0x700,
    Z3_OP_LABEL_LIT,

    // Datatypes
    Z3_OP_DT_CONSTRUCTOR=0x800,
    Z3_OP_DT_RECOGNISER,
    Z3_OP_DT_IS,
    Z3_OP_DT_ACCESSOR,
    Z3_OP_DT_UPDATE_FIELD,

    // Pseudo Booleans
    Z3_OP_PB_AT_MOST=0x900,
    Z3_OP_PB_AT_LEAST,
    Z3_OP_PB_LE,
    Z3_OP_PB_GE,
    Z3_OP_PB_EQ,

    // Floating-Point Arithmetic
    Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN,
    Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY,
    Z3_OP_FPA_RM_TOWARD_POSITIVE,
    Z3_OP_FPA_RM_TOWARD_NEGATIVE,
    Z3_OP_FPA_RM_TOWARD_ZERO,

    Z3_OP_FPA_NUM,
    Z3_OP_FPA_PLUS_INF,
    Z3_OP_FPA_MINUS_INF,
    Z3_OP_FPA_NAN,
    Z3_OP_FPA_PLUS_ZERO,
    Z3_OP_FPA_MINUS_ZERO,

    Z3_OP_FPA_ADD,
    Z3_OP_FPA_SUB,
    Z3_OP_FPA_NEG,
    Z3_OP_FPA_MUL,
    Z3_OP_FPA_DIV,
    Z3_OP_FPA_REM,
    Z3_OP_FPA_ABS,
    Z3_OP_FPA_MIN,
    Z3_OP_FPA_MAX,
    Z3_OP_FPA_FMA,
    Z3_OP_FPA_SQRT,
    Z3_OP_FPA_ROUND_TO_INTEGRAL,

    Z3_OP_FPA_EQ,
    Z3_OP_FPA_LT,
    Z3_OP_FPA_GT,
    Z3_OP_FPA_LE,
    Z3_OP_FPA_GE,
    Z3_OP_FPA_IS_NAN,
    Z3_OP_FPA_IS_INF,
    Z3_OP_FPA_IS_ZERO,
    Z3_OP_FPA_IS_NORMAL,
    Z3_OP_FPA_IS_SUBNORMAL,
    Z3_OP_FPA_IS_NEGATIVE,
    Z3_OP_FPA_IS_POSITIVE,

    Z3_OP_FPA_FP,
    Z3_OP_FPA_TO_FP,
    Z3_OP_FPA_TO_FP_UNSIGNED,
    Z3_OP_FPA_TO_UBV,
    Z3_OP_FPA_TO_SBV,
    Z3_OP_FPA_TO_REAL,

    Z3_OP_FPA_TO_IEEE_BV,

    Z3_OP_FPA_BVWRAP,
    Z3_OP_FPA_BV2RM,

    Z3_OP_INTERNAL,

    Z3_OP_UNINTERPRETED
} Z3_decl_kind;

/**
   \brief The different kinds of parameters that can be associated with parameter sets.
   (see #Z3_mk_params).

    - Z3_PK_UINT integer parameters.
    - Z3_PK_BOOL boolean parameters.
    - Z3_PK_DOUBLE double parameters.
    - Z3_PK_SYMBOL symbol parameters.
    - Z3_PK_STRING string parameters.
    - Z3_PK_OTHER all internal parameter kinds which are not exposed in the API.
    - Z3_PK_INVALID invalid parameter.
*/
typedef enum {
    Z3_PK_UINT,
    Z3_PK_BOOL,
    Z3_PK_DOUBLE,
    Z3_PK_SYMBOL,
    Z3_PK_STRING,
    Z3_PK_OTHER,
    Z3_PK_INVALID
} Z3_param_kind;

/**
    \brief Z3 pretty printing modes (See #Z3_set_ast_print_mode).

   - Z3_PRINT_SMTLIB_FULL:   Print AST nodes in SMTLIB verbose format.
   - Z3_PRINT_LOW_LEVEL:     Print AST nodes using a low-level format.
   - Z3_PRINT_SMTLIB2_COMPLIANT: Print AST nodes in SMTLIB 2.x compliant format.
*/
typedef enum {
    Z3_PRINT_SMTLIB_FULL,
    Z3_PRINT_LOW_LEVEL,
    Z3_PRINT_SMTLIB2_COMPLIANT
} Z3_ast_print_mode;


/**
   \brief Z3 error codes (See #Z3_get_error_code).

   - Z3_OK:            No error.
   - Z3_SORT_ERROR:    User tried to build an invalid (type incorrect) AST.
   - Z3_IOB:           Index out of bounds.
   - Z3_INVALID_ARG:   Invalid argument was provided.
   - Z3_PARSER_ERROR:  An error occurred when parsing a string or file.
   - Z3_NO_PARSER:     Parser output is not available, that is, user didn't invoke #Z3_parse_smtlib2_string or #Z3_parse_smtlib2_file.
   - Z3_INVALID_PATTERN: Invalid pattern was used to build a quantifier.
   - Z3_MEMOUT_FAIL:   A memory allocation failure was encountered.
   - Z3_FILE_ACCESS_ERRROR: A file could not be accessed.
   - Z3_INVALID_USAGE:   API call is invalid in the current state.
   - Z3_INTERNAL_FATAL: An error internal to Z3 occurred.
   - Z3_DEC_REF_ERROR: Trying to decrement the reference counter of an AST that was deleted or the reference counter was not initialized with #Z3_inc_ref.
   - Z3_EXCEPTION:     Internal Z3 exception. Additional details can be retrieved using #Z3_get_error_msg.
*/
typedef enum
{
    Z3_OK,
    Z3_SORT_ERROR,
    Z3_IOB,
    Z3_INVALID_ARG,
    Z3_PARSER_ERROR,
    Z3_NO_PARSER,
    Z3_INVALID_PATTERN,
    Z3_MEMOUT_FAIL,
    Z3_FILE_ACCESS_ERROR,
    Z3_INTERNAL_FATAL,
    Z3_INVALID_USAGE,
    Z3_DEC_REF_ERROR,
    Z3_EXCEPTION
} Z3_error_code;

/**
  Definitions for update_api.py

  def_Type('CONFIG',           'Z3_config',           'Config')
  def_Type('CONTEXT',          'Z3_context',          'ContextObj')
  def_Type('AST',              'Z3_ast',              'Ast')
  def_Type('APP',              'Z3_app',              'Ast')
  def_Type('SORT',             'Z3_sort',             'Sort')
  def_Type('FUNC_DECL',        'Z3_func_decl',        'FuncDecl')
  def_Type('PATTERN',          'Z3_pattern',          'Pattern')
  def_Type('MODEL',            'Z3_model',            'Model')
  def_Type('LITERALS',         'Z3_literals',         'Literals')
  def_Type('CONSTRUCTOR',      'Z3_constructor',      'Constructor')
  def_Type('CONSTRUCTOR_LIST', 'Z3_constructor_list', 'ConstructorList')
  def_Type('SOLVER',           'Z3_solver',           'SolverObj')
  def_Type('GOAL',             'Z3_goal',             'GoalObj')
  def_Type('TACTIC',           'Z3_tactic',           'TacticObj')
  def_Type('PARAMS',           'Z3_params',           'Params')
  def_Type('PROBE',            'Z3_probe',            'ProbeObj')
  def_Type('STATS',            'Z3_stats',            'StatsObj')
  def_Type('AST_VECTOR',       'Z3_ast_vector',       'AstVectorObj')
  def_Type('AST_MAP',          'Z3_ast_map',          'AstMapObj')
  def_Type('APPLY_RESULT',     'Z3_apply_result',     'ApplyResultObj')
  def_Type('FUNC_INTERP',      'Z3_func_interp',      'FuncInterpObj')
  def_Type('FUNC_ENTRY',       'Z3_func_entry',       'FuncEntryObj')
  def_Type('FIXEDPOINT',       'Z3_fixedpoint',       'FixedpointObj')
  def_Type('OPTIMIZE',         'Z3_optimize',         'OptimizeObj')
  def_Type('PARAM_DESCRS',     'Z3_param_descrs',     'ParamDescrs')
  def_Type('RCF_NUM',          'Z3_rcf_num',          'RCFNumObj')
*/

/**
   \brief Z3 custom error handler (See #Z3_set_error_handler).
*/
typedef void Z3_error_handler(Z3_context c, Z3_error_code e);

/**
   \brief A Goal is essentially a set of formulas.
   Z3 provide APIs for building strategies/tactics for solving and transforming Goals.
   Some of these transformations apply under/over approximations.

   - Z3_GOAL_PRECISE:    Approximations/Relaxations were not applied on the goal (sat and unsat answers were preserved).
   - Z3_GOAL_UNDER:      Goal is the product of a under-approximation (sat answers are preserved).
   - Z3_GOAL_OVER:       Goal is the product of an over-approximation (unsat answers are preserved).
   - Z3_GOAL_UNDER_OVER: Goal is garbage (it is the product of over- and under-approximations, sat and unsat answers are not preserved).
*/
typedef enum
{
    Z3_GOAL_PRECISE,
    Z3_GOAL_UNDER,
    Z3_GOAL_OVER,
    Z3_GOAL_UNDER_OVER
} Z3_goal_prec;

/*@}*/

#ifdef __cplusplus
extern "C" {
#endif // __cplusplus

    /** @name Global Parameters */

    /*@{*/
    /**
       \brief Set a global (or module) parameter.
       This setting is shared by all Z3 contexts.

       When a Z3 module is initialized it will use the value of these parameters
       when Z3_params objects are not provided.

       The name of parameter can be composed of characters [a-z][A-Z], digits [0-9], '-' and '_'.
       The character '.' is a delimiter (more later).

       The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'.
       Thus, the following parameter names are considered equivalent: "pp.decimal-precision"  and "PP.DECIMAL_PRECISION".

       This function can be used to set parameters for a specific Z3 module.
       This can be done by using <module-name>.<parameter-name>.
       For example:
       Z3_global_param_set('pp.decimal', 'true')
       will set the parameter "decimal" in the module "pp" to true.

       def_API('Z3_global_param_set', VOID, (_in(STRING), _in(STRING)))
    */
    void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value);


    /**
       \brief Restore the value of all global (and module) parameters.
       This command will not affect already created objects (such as tactics and solvers).

       \sa Z3_global_param_set

       def_API('Z3_global_param_reset_all', VOID, ())
    */
    void Z3_API Z3_global_param_reset_all(void);

    /**
       \brief Get a global (or module) parameter.

       Returns \c false if the parameter value does not exist.

       \sa Z3_global_param_set

       \remark This function cannot be invoked simultaneously from different threads without synchronization.
       The result string stored in param_value is stored in shared location.

       def_API('Z3_global_param_get', BOOL, (_in(STRING), _out(STRING)))
    */
    Z3_bool_opt Z3_API Z3_global_param_get(Z3_string param_id, Z3_string_ptr param_value);

    /*@}*/

    /** @name Create configuration */
    /*@{*/

    /**
        \brief Create a configuration object for the Z3 context object.

        Configurations are created in order to assign parameters prior to creating
        contexts for Z3 interaction. For example, if the users wishes to use proof
        generation, then call:

        \ccode{Z3_set_param_value(cfg\, "proof"\, "true")}

        \remark In previous versions of Z3, the \c Z3_config was used to store
        global and module configurations. Now, we should use \c Z3_global_param_set.

        The following parameters can be set:

            - proof  (Boolean)           Enable proof generation
            - debug_ref_count (Boolean)  Enable debug support for Z3_ast reference counting
            - trace  (Boolean)           Tracing support for VCC
            - trace_file_name (String)   Trace out file for VCC traces
            - timeout (unsigned)         default timeout (in milliseconds) used for solvers
            - well_sorted_check          type checker
            - auto_config                use heuristics to automatically select solver and configure it
            - model                      model generation for solvers, this parameter can be overwritten when creating a solver
            - model_validate             validate models produced by solvers
            - unsat_core                 unsat-core generation for solvers, this parameter can be overwritten when creating a solver

        \sa Z3_set_param_value
        \sa Z3_del_config

        def_API('Z3_mk_config', CONFIG, ())
    */
    Z3_config Z3_API Z3_mk_config(void);

    /**
        \brief Delete the given configuration object.

        \sa Z3_mk_config

        def_API('Z3_del_config', VOID, (_in(CONFIG),))
    */
    void Z3_API Z3_del_config(Z3_config c);

    /**
        \brief Set a configuration parameter.

        The following parameters can be set for

        \sa Z3_mk_config

        def_API('Z3_set_param_value', VOID, (_in(CONFIG), _in(STRING), _in(STRING)))
    */
    void Z3_API Z3_set_param_value(Z3_config c, Z3_string param_id, Z3_string param_value);

    /*@}*/

    /** @name Context and AST Reference Counting */
    /*@{*/

    /**
       \brief Create a context using the given configuration.

       After a context is created, the configuration cannot be changed,
       although some parameters can be changed using #Z3_update_param_value.
       All main interaction with Z3 happens in the context of a \c Z3_context.

       In contrast to #Z3_mk_context_rc, the life time of \c Z3_ast objects
       are determined by the scope level of #Z3_solver_push and #Z3_solver_pop.
       In other words, a \c Z3_ast object remains valid until there is a
       call to #Z3_solver_pop that takes the current scope below the level where
       the object was created.

       Note that all other reference counted objects, including \c Z3_model,
       \c Z3_solver, \c Z3_func_interp have to be managed by the caller.
       Their reference counts are not handled by the context.

       Further remarks:
       - \c Z3_sort, \c Z3_func_decl, \c Z3_app, \c Z3_pattern are \c Z3_ast's.
       - Z3 uses hash-consing, i.e., when the same \c Z3_ast is created twice,
         Z3 will return the same pointer twice.

       \sa Z3_del_context

       def_API('Z3_mk_context', CONTEXT, (_in(CONFIG),))
    */
    Z3_context Z3_API Z3_mk_context(Z3_config c);

    /**
       \brief Create a context using the given configuration.
       This function is similar to #Z3_mk_context. However,
       in the context returned by this function, the user
       is responsible for managing \c Z3_ast reference counters.
       Managing reference counters is a burden and error-prone,
       but allows the user to use the memory more efficiently.
       The user must invoke #Z3_inc_ref for any \c Z3_ast returned
       by Z3, and #Z3_dec_ref whenever the \c Z3_ast is not needed
       anymore. This idiom is similar to the one used in
       BDD (binary decision diagrams) packages such as CUDD.

       Remarks:

       - \c Z3_sort, \c Z3_func_decl, \c Z3_app, \c Z3_pattern are \c Z3_ast's.
       - After a context is created, the configuration cannot be changed.
       - All main interaction with Z3 happens in the context of a \c Z3_context.
       - Z3 uses hash-consing, i.e., when the same \c Z3_ast is created twice,
         Z3 will return the same pointer twice.

       def_API('Z3_mk_context_rc', CONTEXT, (_in(CONFIG),))
    */
    Z3_context Z3_API Z3_mk_context_rc(Z3_config c);

    /**
       \brief Delete the given logical context.

       \sa Z3_mk_context

       def_API('Z3_del_context', VOID, (_in(CONTEXT),))
    */
    void Z3_API Z3_del_context(Z3_context c);

    /**
       \brief Increment the reference counter of the given AST.
       The context \c c should have been created using #Z3_mk_context_rc.
       This function is a NOOP if \c c was created using #Z3_mk_context.

       def_API('Z3_inc_ref', VOID, (_in(CONTEXT), _in(AST)))
    */
    void Z3_API Z3_inc_ref(Z3_context c, Z3_ast a);

    /**
       \brief Decrement the reference counter of the given AST.
       The context \c c should have been created using #Z3_mk_context_rc.
       This function is a NOOP if \c c was created using #Z3_mk_context.

       def_API('Z3_dec_ref', VOID, (_in(CONTEXT), _in(AST)))
    */
    void Z3_API Z3_dec_ref(Z3_context c, Z3_ast a);

    /**
       \brief Set a value of a context parameter.

       \sa Z3_global_param_set

       def_API('Z3_update_param_value', VOID, (_in(CONTEXT), _in(STRING), _in(STRING)))
    */
    void Z3_API Z3_update_param_value(Z3_context c, Z3_string param_id, Z3_string param_value);

    /**
       \brief Interrupt the execution of a Z3 procedure.
       This procedure can be used to interrupt: solvers, simplifiers and tactics.

       def_API('Z3_interrupt', VOID, (_in(CONTEXT),))
    */
    void Z3_API Z3_interrupt(Z3_context c);


    /*@}*/

    /** @name Parameters */
    /*@{*/

    /**
       \brief Create a Z3 (empty) parameter set.
       Starting at Z3 4.0, parameter sets are used to configure many components such as:
       simplifiers, tactics, solvers, etc.

       \remark Reference counting must be used to manage parameter sets, even when the \c Z3_context was
       created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_params', PARAMS, (_in(CONTEXT),))
    */
    Z3_params Z3_API Z3_mk_params(Z3_context c);

    /**
       \brief Increment the reference counter of the given parameter set.

       def_API('Z3_params_inc_ref', VOID, (_in(CONTEXT), _in(PARAMS)))
    */
    void Z3_API Z3_params_inc_ref(Z3_context c, Z3_params p);

    /**
       \brief Decrement the reference counter of the given parameter set.

       def_API('Z3_params_dec_ref', VOID, (_in(CONTEXT), _in(PARAMS)))
    */
    void Z3_API Z3_params_dec_ref(Z3_context c, Z3_params p);

    /**
       \brief Add a Boolean parameter \c k with value \c v to the parameter set \c p.

       def_API('Z3_params_set_bool', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(BOOL)))
    */
    void Z3_API Z3_params_set_bool(Z3_context c, Z3_params p, Z3_symbol k, bool v);

    /**
       \brief Add a unsigned parameter \c k with value \c v to the parameter set \c p.

       def_API('Z3_params_set_uint', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(UINT)))
    */
    void Z3_API Z3_params_set_uint(Z3_context c, Z3_params p, Z3_symbol k, unsigned v);

    /**
       \brief Add a double parameter \c k with value \c v to the parameter set \c p.

       def_API('Z3_params_set_double', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(DOUBLE)))
    */
    void Z3_API Z3_params_set_double(Z3_context c, Z3_params p, Z3_symbol k, double v);

    /**
       \brief Add a symbol parameter \c k with value \c v to the parameter set \c p.

       def_API('Z3_params_set_symbol', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(SYMBOL)))
    */
    void Z3_API Z3_params_set_symbol(Z3_context c, Z3_params p, Z3_symbol k, Z3_symbol v);

    /**
       \brief Convert a parameter set into a string. This function is mainly used for printing the
       contents of a parameter set.

       def_API('Z3_params_to_string', STRING, (_in(CONTEXT), _in(PARAMS)))
    */
    Z3_string Z3_API Z3_params_to_string(Z3_context c, Z3_params p);

    /**
       \brief Validate the parameter set \c p against the parameter description set \c d.

       The procedure invokes the error handler if \c p is invalid.

       def_API('Z3_params_validate', VOID, (_in(CONTEXT), _in(PARAMS), _in(PARAM_DESCRS)))
    */
    void Z3_API Z3_params_validate(Z3_context c, Z3_params p, Z3_param_descrs d);

    /*@}*/

    /** @name Parameter Descriptions */
    /*@{*/

    /**
       \brief Increment the reference counter of the given parameter description set.

       def_API('Z3_param_descrs_inc_ref', VOID, (_in(CONTEXT), _in(PARAM_DESCRS)))
    */
    void Z3_API Z3_param_descrs_inc_ref(Z3_context c, Z3_param_descrs p);

    /**
       \brief Decrement the reference counter of the given parameter description set.

       def_API('Z3_param_descrs_dec_ref', VOID, (_in(CONTEXT), _in(PARAM_DESCRS)))
    */
    void Z3_API Z3_param_descrs_dec_ref(Z3_context c, Z3_param_descrs p);

    /**
       \brief Return the kind associated with the given parameter name \c n.

       def_API('Z3_param_descrs_get_kind', UINT, (_in(CONTEXT), _in(PARAM_DESCRS), _in(SYMBOL)))
    */
    Z3_param_kind Z3_API Z3_param_descrs_get_kind(Z3_context c, Z3_param_descrs p, Z3_symbol n);

    /**
       \brief Return the number of parameters in the given parameter description set.

       def_API('Z3_param_descrs_size', UINT, (_in(CONTEXT), _in(PARAM_DESCRS)))
    */
    unsigned Z3_API Z3_param_descrs_size(Z3_context c, Z3_param_descrs p);

    /**
       \brief Return the name of the parameter at given index \c i.

       \pre i < Z3_param_descrs_size(c, p)

       def_API('Z3_param_descrs_get_name', SYMBOL, (_in(CONTEXT), _in(PARAM_DESCRS), _in(UINT)))
    */
    Z3_symbol Z3_API Z3_param_descrs_get_name(Z3_context c, Z3_param_descrs p, unsigned i);

    /**
       \brief Retrieve documentation string corresponding to parameter name \c s.

       def_API('Z3_param_descrs_get_documentation', STRING, (_in(CONTEXT), _in(PARAM_DESCRS), _in(SYMBOL)))
     */
    Z3_string Z3_API Z3_param_descrs_get_documentation(Z3_context c, Z3_param_descrs p, Z3_symbol s);

    /**
       \brief Convert a parameter description set into a string. This function is mainly used for printing the
       contents of a parameter description set.

       def_API('Z3_param_descrs_to_string', STRING, (_in(CONTEXT), _in(PARAM_DESCRS)))
    */
    Z3_string Z3_API Z3_param_descrs_to_string(Z3_context c, Z3_param_descrs p);

    /*@}*/

    /** @name Symbols */
    /*@{*/

    /**
       \brief Create a Z3 symbol using an integer.

       Symbols are used to name several term and type constructors.

       NB. Not all integers can be passed to this function.
       The legal range of unsigned integers is 0 to 2^30-1.

       \sa Z3_get_symbol_int
       \sa Z3_mk_string_symbol

       def_API('Z3_mk_int_symbol', SYMBOL, (_in(CONTEXT), _in(INT)))
    */
    Z3_symbol Z3_API Z3_mk_int_symbol(Z3_context c, int i);

    /**
       \brief Create a Z3 symbol using a C string.

       Symbols are used to name several term and type constructors.

       \sa Z3_get_symbol_string
       \sa Z3_mk_int_symbol

       def_API('Z3_mk_string_symbol', SYMBOL, (_in(CONTEXT), _in(STRING)))
    */
    Z3_symbol Z3_API Z3_mk_string_symbol(Z3_context c, Z3_string s);

    /*@}*/

    /** @name Sorts */
    /*@{*/

    /**
       \brief Create a free (uninterpreted) type using the given name (symbol).

       Two free types are considered the same iff the have the same name.

       def_API('Z3_mk_uninterpreted_sort', SORT, (_in(CONTEXT), _in(SYMBOL)))
    */
    Z3_sort Z3_API Z3_mk_uninterpreted_sort(Z3_context c, Z3_symbol s);

    /**
       \brief Create the Boolean type.

       This type is used to create propositional variables and predicates.

       def_API('Z3_mk_bool_sort', SORT, (_in(CONTEXT), ))
    */
    Z3_sort Z3_API Z3_mk_bool_sort(Z3_context c);

    /**
       \brief Create the integer type.

       This type is not the int type found in programming languages.
       A machine integer can be represented using bit-vectors. The function
       #Z3_mk_bv_sort creates a bit-vector type.

       \sa Z3_mk_bv_sort

       def_API('Z3_mk_int_sort', SORT, (_in(CONTEXT), ))
    */
    Z3_sort Z3_API Z3_mk_int_sort(Z3_context c);

    /**
       \brief Create the real type.

       Note that this type is not a floating point number.

       def_API('Z3_mk_real_sort', SORT, (_in(CONTEXT), ))
    */
    Z3_sort Z3_API Z3_mk_real_sort(Z3_context c);

    /**
       \brief Create a bit-vector type of the given size.

       This type can also be seen as a machine integer.

       \remark The size of the bit-vector type must be greater than zero.

       def_API('Z3_mk_bv_sort', SORT, (_in(CONTEXT), _in(UINT)))
    */
    Z3_sort Z3_API Z3_mk_bv_sort(Z3_context c, unsigned sz);

    /**
       \brief Create a named finite domain sort.

       To create constants that belong to the finite domain,
       use the APIs for creating numerals and pass a numeric
       constant together with the sort returned by this call.
       The numeric constant should be between 0 and the less
       than the size of the domain.

       \sa Z3_get_finite_domain_sort_size

       def_API('Z3_mk_finite_domain_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT64)))
    */
    Z3_sort Z3_API Z3_mk_finite_domain_sort(Z3_context c, Z3_symbol name, uint64_t size);

    /**
       \brief Create an array type.

       We usually represent the array type as: \ccode{[domain -> range]}.
       Arrays are usually used to model the heap/memory in software verification.

       \sa Z3_mk_select
       \sa Z3_mk_store

       def_API('Z3_mk_array_sort', SORT, (_in(CONTEXT), _in(SORT), _in(SORT)))
    */
    Z3_sort Z3_API Z3_mk_array_sort(Z3_context c, Z3_sort domain, Z3_sort range);

    /**
       \brief Create an array type with N arguments

       \sa Z3_mk_select_n
       \sa Z3_mk_store_n

       def_API('Z3_mk_array_sort_n', SORT, (_in(CONTEXT), _in(UINT), _in_array(1, SORT), _in(SORT)))
    */
    Z3_sort Z3_API Z3_mk_array_sort_n(Z3_context c, unsigned n, Z3_sort const * domain, Z3_sort range);

    /**
       \brief Create a tuple type.

       A tuple with \c n fields has a constructor and \c n projections.
       This function will also declare the constructor and projection functions.

       \param c logical context
       \param mk_tuple_name name of the constructor function associated with the tuple type.
       \param num_fields number of fields in the tuple type.
       \param field_names name of the projection functions.
       \param field_sorts type of the tuple fields.
       \param mk_tuple_decl output parameter that will contain the constructor declaration.
       \param proj_decl output parameter that will contain the projection function declarations. This field must be a buffer of size \c num_fields allocated by the user.

       def_API('Z3_mk_tuple_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _out(FUNC_DECL), _out_array(2, FUNC_DECL)))
    */
    Z3_sort Z3_API Z3_mk_tuple_sort(Z3_context c,
                                        Z3_symbol mk_tuple_name,
                                        unsigned num_fields,
                                        Z3_symbol const field_names[],
                                        Z3_sort const field_sorts[],
                                        Z3_func_decl * mk_tuple_decl,
                                        Z3_func_decl proj_decl[]);

    /**
       \brief Create a enumeration sort.

       An enumeration sort with \c n elements.
       This function will also declare the functions corresponding to the enumerations.

       \param c logical context
       \param name name of the enumeration sort.
       \param n number of elements in enumeration sort.
       \param enum_names names of the enumerated elements.
       \param enum_consts constants corresponding to the enumerated elements.
       \param enum_testers predicates testing if terms of the enumeration sort correspond to an enumeration.

       For example, if this function is called with three symbols A, B, C and the name S, then
       \c s is a sort whose name is S, and the function returns three terms corresponding to A, B, C in
       \c enum_consts. The array \c enum_testers has three predicates of type \ccode{(s -> Bool)}.
       The first predicate (corresponding to A) is true when applied to A, and false otherwise.
       Similarly for the other predicates.

       def_API('Z3_mk_enumeration_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SYMBOL), _out_array(2, FUNC_DECL), _out_array(2, FUNC_DECL)))
    */
    Z3_sort Z3_API Z3_mk_enumeration_sort(Z3_context c,
                                          Z3_symbol name,
                                          unsigned n,
                                          Z3_symbol  const enum_names[],
                                          Z3_func_decl enum_consts[],
                                          Z3_func_decl enum_testers[]);

    /**
       \brief Create a list sort

       A list sort over \c elem_sort
       This function declares the corresponding constructors and testers for lists.

       \param c logical context
       \param name name of the list sort.
       \param elem_sort sort of list elements.
       \param nil_decl declaration for the empty list.
       \param is_nil_decl test for the empty list.
       \param cons_decl declaration for a cons cell.
       \param is_cons_decl cons cell test.
       \param head_decl list head.
       \param tail_decl list tail.

       def_API('Z3_mk_list_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(SORT), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL)))
    */
    Z3_sort Z3_API Z3_mk_list_sort(Z3_context c,
                                   Z3_symbol name,
                                   Z3_sort   elem_sort,
                                   Z3_func_decl* nil_decl,
                                   Z3_func_decl* is_nil_decl,
                                   Z3_func_decl* cons_decl,
                                   Z3_func_decl* is_cons_decl,
                                   Z3_func_decl* head_decl,
                                   Z3_func_decl* tail_decl
                                   );

    /**
       \brief Create a constructor.

       \param c logical context.
       \param name constructor name.
       \param recognizer name of recognizer function.
       \param num_fields number of fields in constructor.
       \param field_names names of the constructor fields.
       \param sorts field sorts, 0 if the field sort refers to a recursive sort.
       \param sort_refs reference to datatype sort that is an argument to the constructor; if the corresponding
                        sort reference is 0, then the value in sort_refs should be an index referring to
                        one of the recursive datatypes that is declared.

       def_API('Z3_mk_constructor', CONSTRUCTOR, (_in(CONTEXT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(3, SYMBOL), _in_array(3, SORT), _in_array(3, UINT)))
    */
    Z3_constructor Z3_API Z3_mk_constructor(Z3_context c,
                                            Z3_symbol name,
                                            Z3_symbol recognizer,
                                            unsigned num_fields,
                                            Z3_symbol const field_names[],
                                            Z3_sort_opt const sorts[],
                                            unsigned sort_refs[]
                                            );

    /**
       \brief Reclaim memory allocated to constructor.

       \param c logical context.
       \param constr constructor.

       def_API('Z3_del_constructor', VOID, (_in(CONTEXT), _in(CONSTRUCTOR)))
    */
    void Z3_API Z3_del_constructor(Z3_context c, Z3_constructor constr);

    /**
       \brief Create datatype, such as lists, trees, records, enumerations or unions of records.
       The datatype may be recursive. Return the datatype sort.

       \param c logical context.
       \param name name of datatype.
       \param num_constructors number of constructors passed in.
       \param constructors array of constructor containers.

       def_API('Z3_mk_datatype', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _inout_array(2, CONSTRUCTOR)))
    */
    Z3_sort Z3_API Z3_mk_datatype(Z3_context c,
                                  Z3_symbol name,
                                  unsigned num_constructors,
                                  Z3_constructor constructors[]);

    /**
       \brief Create list of constructors.

       \param c logical context.
       \param num_constructors number of constructors in list.
       \param constructors list of constructors.

       def_API('Z3_mk_constructor_list', CONSTRUCTOR_LIST, (_in(CONTEXT), _in(UINT), _in_array(1, CONSTRUCTOR)))
    */
    Z3_constructor_list Z3_API Z3_mk_constructor_list(Z3_context c,
                                                      unsigned num_constructors,
                                                      Z3_constructor const constructors[]);

    /**
       \brief Reclaim memory allocated for constructor list.

       Each constructor inside the constructor list must be independently reclaimed using #Z3_del_constructor.

       \param c logical context.
       \param clist constructor list container.

       def_API('Z3_del_constructor_list', VOID, (_in(CONTEXT), _in(CONSTRUCTOR_LIST)))
    */
    void Z3_API Z3_del_constructor_list(Z3_context c, Z3_constructor_list clist);

    /**
       \brief Create mutually recursive datatypes.

       \param c logical context.
       \param num_sorts number of datatype sorts.
       \param sort_names names of datatype sorts.
       \param sorts array of datatype sorts.
       \param constructor_lists list of constructors, one list per sort.

       def_API('Z3_mk_datatypes', VOID, (_in(CONTEXT), _in(UINT), _in_array(1, SYMBOL), _out_array(1, SORT), _inout_array(1, CONSTRUCTOR_LIST)))
    */
    void Z3_API Z3_mk_datatypes(Z3_context c,
                                unsigned num_sorts,
                                Z3_symbol const sort_names[],
                                Z3_sort sorts[],
                                Z3_constructor_list constructor_lists[]);

    /**
       \brief Query constructor for declared functions.

       \param c logical context.
       \param constr constructor container. The container must have been passed in to a #Z3_mk_datatype call.
       \param num_fields number of accessor fields in the constructor.
       \param constructor constructor function declaration, allocated by user.
       \param tester constructor test function declaration, allocated by user.
       \param accessors array of accessor function declarations allocated by user. The array must contain num_fields elements.

       def_API('Z3_query_constructor', VOID, (_in(CONTEXT), _in(CONSTRUCTOR), _in(UINT), _out(FUNC_DECL), _out(FUNC_DECL), _out_array(2, FUNC_DECL)))
    */
    void Z3_API Z3_query_constructor(Z3_context c,
                                     Z3_constructor constr,
                                     unsigned num_fields,
                                     Z3_func_decl* constructor,
                                     Z3_func_decl* tester,
                                     Z3_func_decl accessors[]);

    /*@}*/

    /** @name Constants and Applications */
    /*@{*/

    /**
       \brief Declare a constant or function.

       \param c logical context.
       \param s name of the constant or function.
       \param domain_size number of arguments. It is 0 when declaring a constant.
       \param domain array containing the sort of each argument. The array must contain domain_size elements. It is 0 when declaring a constant.
       \param range sort of the constant or the return sort of the function.

       After declaring a constant or function, the function
       #Z3_mk_app can be used to create a constant or function
       application.

       \sa Z3_mk_app

       def_API('Z3_mk_func_decl', FUNC_DECL, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SORT), _in(SORT)))
    */
    Z3_func_decl Z3_API Z3_mk_func_decl(Z3_context c, Z3_symbol s,
                                        unsigned domain_size, Z3_sort const domain[],
                                        Z3_sort range);



    /**
       \brief Create a constant or function application.

       \sa Z3_mk_func_decl

       def_API('Z3_mk_app', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_mk_app(
        Z3_context c,
        Z3_func_decl d,
        unsigned num_args,
        Z3_ast const args[]);

    /**
       \brief Declare and create a constant.

       This function is a shorthand for:
       \code
       Z3_func_decl d = Z3_mk_func_decl(c, s, 0, 0, ty);
       Z3_ast n            = Z3_mk_app(c, d, 0, 0);
       \endcode

       \sa Z3_mk_func_decl
       \sa Z3_mk_app

       def_API('Z3_mk_const', AST, (_in(CONTEXT), _in(SYMBOL), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_const(Z3_context c, Z3_symbol s, Z3_sort ty);

    /**
       \brief Declare a fresh constant or function.

       Z3 will generate an unique name for this function declaration.
       If prefix is different from \c NULL, then the name generate by Z3 will start with \c prefix.

       \remark If \c prefix is \c NULL, then it is assumed to be the empty string.

       \sa Z3_mk_func_decl

       def_API('Z3_mk_fresh_func_decl', FUNC_DECL, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SORT), _in(SORT)))
    */
    Z3_func_decl Z3_API Z3_mk_fresh_func_decl(Z3_context c, Z3_string prefix,
                                                   unsigned domain_size, Z3_sort const domain[],
                                                   Z3_sort range);

    /**
       \brief Declare and create a fresh constant.

       This function is a shorthand for:
       \code Z3_func_decl d = Z3_mk_fresh_func_decl(c, prefix, 0, 0, ty); Z3_ast n = Z3_mk_app(c, d, 0, 0); \endcode

       \remark If \c prefix is \c NULL, then it is assumed to be the empty string.

       \sa Z3_mk_func_decl
       \sa Z3_mk_app

       def_API('Z3_mk_fresh_const', AST, (_in(CONTEXT), _in(STRING), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_fresh_const(Z3_context c, Z3_string prefix, Z3_sort ty);


    /**
       \brief Declare a recursive function

       \param c logical context.
       \param s name of the function.
       \param domain_size number of arguments. It should be greater than 0.
       \param domain array containing the sort of each argument. The array must contain domain_size elements. 
       \param range sort of the constant or the return sort of the function.

       After declaring recursive function, it should be associated with a recursive definition #Z3_add_rec_def.
       The function #Z3_mk_app can be used to create a constant or function
       application.

       \sa Z3_mk_app
       \sa Z3_add_rec_def

       def_API('Z3_mk_rec_func_decl', FUNC_DECL, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SORT), _in(SORT)))
    */
    Z3_func_decl Z3_API Z3_mk_rec_func_decl(Z3_context c, Z3_symbol s,
                                        unsigned domain_size, Z3_sort const domain[],
                                        Z3_sort range);

    /**
       \brief Define the body of a recursive function.
       
       \param c logical context.
       \param f function declaration.
       \param n number of arguments to the function
       \param args constants that are used as arguments to the recursive function in the definition.
       \param body body of the recursive function

       After declaring a recursive function or a collection of  mutually recursive functions, use 
       this function to provide the definition for the recursive function.

       \sa Z3_mk_rec_func_decl

       def_API('Z3_add_rec_def', VOID, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST), _in(AST)))
     */
    void Z3_API Z3_add_rec_def(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast args[], Z3_ast body);

    /*@}*/

    /** @name Propositional Logic and Equality */
    /*@{*/
    /**
        \brief Create an AST node representing \c true.

        def_API('Z3_mk_true', AST, (_in(CONTEXT), ))
    */
    Z3_ast Z3_API Z3_mk_true(Z3_context c);

    /**
        \brief Create an AST node representing \c false.

        def_API('Z3_mk_false', AST, (_in(CONTEXT), ))
    */
    Z3_ast Z3_API Z3_mk_false(Z3_context c);

    /**
        \brief Create an AST node representing \ccode{l = r}.

        The nodes \c l and \c r must have the same type.

        def_API('Z3_mk_eq', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r);

    /**
       \brief Create an AST node representing \ccode{distinct(args[0], ..., args[num_args-1])}.

       The \c distinct construct is used for declaring the arguments pairwise distinct.
       That is, \ccode{Forall 0 <= i < j < num_args. not args[i] = args[j]}.

       All arguments must have the same sort.

       \remark The number of arguments of a distinct construct must be greater than one.

       def_API('Z3_mk_distinct', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[]);

    /**
        \brief Create an AST node representing \ccode{not(a)}.

        The node \c a must have Boolean sort.

        def_API('Z3_mk_not', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a);

    /**
       \brief Create an AST node representing an if-then-else: \ccode{ite(t1, t2, t3)}.

       The node \c t1 must have Boolean sort, \c t2 and \c t3 must have the same sort.
       The sort of the new node is equal to the sort of \c t2 and \c t3.

       def_API('Z3_mk_ite', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3);

    /**
       \brief Create an AST node representing \ccode{t1 iff t2}.

       The nodes \c t1 and \c t2 must have Boolean sort.

       def_API('Z3_mk_iff', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_iff(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Create an AST node representing \ccode{t1 implies t2}.

       The nodes \c t1 and \c t2 must have Boolean sort.

       def_API('Z3_mk_implies', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Create an AST node representing \ccode{t1 xor t2}.

       The nodes \c t1 and \c t2 must have Boolean sort.

       def_API('Z3_mk_xor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Create an AST node representing \ccode{args[0] and ... and args[num_args-1]}.

       The array \c args must have \c num_args elements.
       All arguments must have Boolean sort.

       \remark The number of arguments must be greater than zero.

       def_API('Z3_mk_and', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[]);

    /**
       \brief Create an AST node representing \ccode{args[0] or ... or args[num_args-1]}.

       The array \c args must have \c num_args elements.
       All arguments must have Boolean sort.

       \remark The number of arguments must be greater than zero.

       def_API('Z3_mk_or', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[]);
    /*@}*/

    /** @name Integers and Reals */
    /*@{*/
    /**
       \brief Create an AST node representing \ccode{args[0] + ... + args[num_args-1]}.

       The array \c args must have \c num_args elements.
       All arguments must have int or real sort.

       \remark The number of arguments must be greater than zero.

       def_API('Z3_mk_add', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[]);

    /**
       \brief Create an AST node representing \ccode{args[0] * ... * args[num_args-1]}.

       The array \c args must have \c num_args elements.
       All arguments must have int or real sort.

       \remark Z3 has limited support for non-linear arithmetic.
       \remark The number of arguments must be greater than zero.

       def_API('Z3_mk_mul', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[]);

    /**
       \brief Create an AST node representing \ccode{args[0] - ... - args[num_args - 1]}.

       The array \c args must have \c num_args elements.
       All arguments must have int or real sort.

       \remark The number of arguments must be greater than zero.

       def_API('Z3_mk_sub', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_sub(Z3_context c, unsigned num_args, Z3_ast const args[]);

    /**
       \brief Create an AST node representing \ccode{- arg}.

       The arguments must have int or real type.

       def_API('Z3_mk_unary_minus', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg);

    /**
       \brief Create an AST node representing \ccode{arg1 div arg2}.

       The arguments must either both have int type or both have real type.
       If the arguments have int type, then the result type is an int type, otherwise the
       the result type is real.

       def_API('Z3_mk_div', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2);

    /**
       \brief Create an AST node representing \ccode{arg1 mod arg2}.

       The arguments must have int type.

       def_API('Z3_mk_mod', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2);

    /**
       \brief Create an AST node representing \ccode{arg1 rem arg2}.

       The arguments must have int type.

       def_API('Z3_mk_rem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_rem(Z3_context c, Z3_ast arg1, Z3_ast arg2);

    /**
       \brief Create an AST node representing \ccode{arg1 ^ arg2}.

       The arguments must have int or real type.

       def_API('Z3_mk_power', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2);

    /**
        \brief Create less than.

        The nodes \c t1 and \c t2 must have the same sort, and must be int or real.

        def_API('Z3_mk_lt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
        \brief Create less than or equal to.

        The nodes \c t1 and \c t2 must have the same sort, and must be int or real.

        def_API('Z3_mk_le', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
        \brief Create greater than.

        The nodes \c t1 and \c t2 must have the same sort, and must be int or real.

        def_API('Z3_mk_gt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
        \brief Create greater than or equal to.

        The nodes \c t1 and \c t2 must have the same sort, and must be int or real.

        def_API('Z3_mk_ge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
        \brief Coerce an integer to a real.

        There is also a converse operation exposed.
        It follows the semantics prescribed by the SMT-LIB standard.

        You can take the floor of a real by
        creating an auxiliary integer constant \c k and
        and asserting \ccode{mk_int2real(k) <= t1 < mk_int2real(k)+1}.

        The node \c t1 must have sort integer.

        \sa Z3_mk_real2int
        \sa Z3_mk_is_int

        def_API('Z3_mk_int2real', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1);

    /**
        \brief Coerce a real to an integer.

        The semantics of this function follows the SMT-LIB standard
        for the function to_int

        \sa Z3_mk_int2real
        \sa Z3_mk_is_int

        def_API('Z3_mk_real2int', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_real2int(Z3_context c, Z3_ast t1);

    /**
        \brief Check if a real number is an integer.

        \sa Z3_mk_int2real
        \sa Z3_mk_real2int

        def_API('Z3_mk_is_int', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1);
    /*@}*/

    /** @name Bit-vectors */
    /*@{*/
    /**
       \brief Bitwise negation.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_bvnot', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1);

    /**
       \brief Take conjunction of bits in vector, return vector of length 1.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_bvredand', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1);

    /**
       \brief Take disjunction of bits in vector, return vector of length 1.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_bvredor', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1);

    /**
       \brief Bitwise and.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvand', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Bitwise or.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Bitwise exclusive-or.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvxor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Bitwise nand.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvnand', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvnand(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Bitwise nor.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvnor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvnor(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Bitwise xnor.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvxnor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvxnor(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Standard two's complement unary minus.

       The node \c t1 must have bit-vector sort.

       def_API('Z3_mk_bvneg', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1);

    /**
        \brief Standard two's complement addition.

        The nodes \c t1 and \c t2 must have the same bit-vector sort.

        def_API('Z3_mk_bvadd', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
        \brief Standard two's complement subtraction.

        The nodes \c t1 and \c t2 must have the same bit-vector sort.

        def_API('Z3_mk_bvsub', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
        \brief Standard two's complement multiplication.

        The nodes \c t1 and \c t2 must have the same bit-vector sort.

        def_API('Z3_mk_bvmul', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
        \brief Unsigned division.

        It is defined as the \c floor of \ccode{t1/t2} if \c t2 is
        different from zero. If \ccode{t2} is zero, then the result
        is undefined.

        The nodes \c t1 and \c t2 must have the same bit-vector sort.

        def_API('Z3_mk_bvudiv', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
        \brief Two's complement signed division.

        It is defined in the following way:

        - The \c floor of \ccode{t1/t2} if \c t2 is different from zero, and \ccode{t1*t2 >= 0}.

        - The \c ceiling of \ccode{t1/t2} if \c t2 is different from zero, and \ccode{t1*t2 < 0}.

        If \ccode{t2} is zero, then the result is undefined.

        The nodes \c t1 and \c t2 must have the same bit-vector sort.

        def_API('Z3_mk_bvsdiv', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Unsigned remainder.

       It is defined as \ccode{t1 - (t1 /u t2) * t2}, where \ccode{/u} represents unsigned division.

       If \ccode{t2} is zero, then the result is undefined.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvurem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Two's complement signed remainder (sign follows dividend).

       It is defined as \ccode{t1 - (t1 /s t2) * t2}, where \ccode{/s} represents signed division.
       The most significant bit (sign) of the result is equal to the most significant bit of \c t1.

       If \ccode{t2} is zero, then the result is undefined.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       \sa Z3_mk_bvsmod

       def_API('Z3_mk_bvsrem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Two's complement signed remainder (sign follows divisor).

       If \ccode{t2} is zero, then the result is undefined.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       \sa Z3_mk_bvsrem

       def_API('Z3_mk_bvsmod', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Unsigned less than.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvult', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Two's complement signed less than.

       It abbreviates:
       \code
        (or (and (= (extract[|m-1|:|m-1|] t1) bit1)
                (= (extract[|m-1|:|m-1|] t2) bit0))
            (and (= (extract[|m-1|:|m-1|] t1) (extract[|m-1|:|m-1|] t2))
                (bvult t1 t2)))
       \endcode

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvslt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Unsigned less than or equal to.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvule', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Two's complement signed less than or equal to.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvsle', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Unsigned greater than or equal to.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvuge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Two's complement signed greater than or equal to.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvsge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Unsigned greater than.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvugt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Two's complement signed greater than.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvsgt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Concatenate the given bit-vectors.

       The nodes \c t1 and \c t2 must have (possibly different) bit-vector sorts

       The result is a bit-vector of size \ccode{n1+n2}, where \c n1 (\c n2) is the size
       of \c t1 (\c t2).

       def_API('Z3_mk_concat', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Extract the bits \c high down to \c low from a bit-vector of
       size \c m to yield a new bit-vector of size \c n, where \ccode{n = high - low + 1}.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_extract', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1);

    /**
       \brief Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of
       size \ccode{m+i}, where \c m is the size of the given
       bit-vector.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_sign_ext', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1);

    /**
       \brief Extend the given bit-vector with zeros to the (unsigned) equivalent
       bit-vector of size \ccode{m+i}, where \c m is the size of the
       given bit-vector.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_zero_ext', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1);

    /**
       \brief Repeat the given bit-vector up length \ccode{i}.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_repeat', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1);

    /**
       \brief Shift left.

       It is equivalent to multiplication by \ccode{2^x} where \c x is the value of the
       third argument.

       NB. The semantics of shift operations varies between environments. This
       definition does not necessarily capture directly the semantics of the
       programming language or assembly architecture you are modeling.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvshl', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Logical shift right.

       It is equivalent to unsigned division by \ccode{2^x} where \c x is the
       value of the third argument.

       NB. The semantics of shift operations varies between environments. This
       definition does not necessarily capture directly the semantics of the
       programming language or assembly architecture you are modeling.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvlshr', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Arithmetic shift right.

       It is like logical shift right except that the most significant
       bits of the result always copy the most significant bit of the
       second argument.

       The semantics of shift operations varies between environments. This
       definition does not necessarily capture directly the semantics of the
       programming language or assembly architecture you are modeling.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvashr', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Rotate bits of \c t1 to the left \c i times.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_rotate_left', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_rotate_left(Z3_context c, unsigned i, Z3_ast t1);

    /**
       \brief Rotate bits of \c t1 to the right \c i times.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_rotate_right', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_rotate_right(Z3_context c, unsigned i, Z3_ast t1);

    /**
       \brief Rotate bits of \c t1 to the left \c t2 times.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_ext_rotate_left', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_ext_rotate_left(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Rotate bits of \c t1 to the right \c t2 times.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_ext_rotate_right', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_ext_rotate_right(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Create an \c n bit bit-vector from the integer argument \c t1.

       The resulting bit-vector has \c n bits, where the i'th bit (counting
       from 0 to \c n-1) is 1 if \c (t1 div 2^i) mod 2 is 1.       

       The node \c t1 must have integer sort.

       def_API('Z3_mk_int2bv', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1);

    /**
       \brief Create an integer from the bit-vector argument \c t1.
       If \c is_signed is false, then the bit-vector \c t1 is treated as unsigned.
       So the result is non-negative
       and in the range \ccode{[0..2^N-1]}, where N are the number of bits in \c t1.
       If \c is_signed is true, \c t1 is treated as a signed bit-vector.


       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_bv2int', AST, (_in(CONTEXT), _in(AST), _in(BOOL)))
    */
    Z3_ast Z3_API Z3_mk_bv2int(Z3_context c,Z3_ast t1, bool is_signed);

    /**
       \brief Create a predicate that checks that the bit-wise addition
       of \c t1 and \c t2 does not overflow.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvadd_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
    */
    Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed);

    /**
       \brief Create a predicate that checks that the bit-wise signed addition
       of \c t1 and \c t2 does not underflow.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvadd_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Create a predicate that checks that the bit-wise signed subtraction
       of \c t1 and \c t2 does not overflow.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvsub_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Create a predicate that checks that the bit-wise subtraction
       of \c t1 and \c t2 does not underflow.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvsub_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
    */
    Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed);

    /**
       \brief Create a predicate that checks that the bit-wise signed division
       of \c t1 and \c t2 does not overflow.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvsdiv_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
       \brief Check that bit-wise negation does not overflow when
       \c t1 is interpreted as a signed bit-vector.

       The node \c t1 must have bit-vector sort.

       def_API('Z3_mk_bvneg_no_overflow', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1);

    /**
       \brief Create a predicate that checks that the bit-wise multiplication
       of \c t1 and \c t2 does not overflow.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvmul_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
    */
    Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed);

    /**
       \brief Create a predicate that checks that the bit-wise signed multiplication
       of \c t1 and \c t2 does not underflow.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvmul_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2);
    /*@}*/

    /** @name Arrays */
    /*@{*/
    /**
       \brief Array read.
       The argument \c a is the array and \c i is the index of the array that gets read.

       The node \c a must have an array sort \ccode{[domain -> range]},
       and \c i must have the sort \c domain.
       The sort of the result is \c range.

       \sa Z3_mk_array_sort
       \sa Z3_mk_store

       def_API('Z3_mk_select', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_select(Z3_context c, Z3_ast a, Z3_ast i);

    

    /**
       \brief n-ary Array read.
       The argument \c a is the array and \c idxs are the indices of the array that gets read.

       def_API('Z3_mk_select_n', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))

    */
    Z3_ast Z3_API Z3_mk_select_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const* idxs);


    /**
       \brief Array update.

       The node \c a must have an array sort \ccode{[domain -> range]}, \c i must have sort \c domain,
       \c v must have sort range. The sort of the result is \ccode{[domain -> range]}.
       The semantics of this function is given by the theory of arrays described in the SMT-LIB
       standard. See http://smtlib.org for more details.
       The result of this function is an array that is equal to \c a (with respect to \c select)
       on all indices except for \c i, where it maps to \c v (and the \c select of \c a with
       respect to \c i may be a different value).

       \sa Z3_mk_array_sort
       \sa Z3_mk_select

       def_API('Z3_mk_store', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v);


    /**
       \brief n-ary Array update.

       def_API('Z3_mk_store_n', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST), _in(AST)))

    */
    Z3_ast Z3_API Z3_mk_store_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const* idxs, Z3_ast v);

    /**
        \brief Create the constant array.

        The resulting term is an array, such that a \c select on an arbitrary index
        produces the value \c v.

        \param c logical context.
        \param domain domain sort for the array.
        \param v value that the array maps to.

        def_API('Z3_mk_const_array', AST, (_in(CONTEXT), _in(SORT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v);

    /**
       \brief Map f on the argument arrays.

       The \c n nodes \c args must be of array sorts \ccode{[domain_i -> range_i]}.
       The function declaration \c f must have type \ccode{ range_1 .. range_n -> range}.
       \c v must have sort range. The sort of the result is \ccode{[domain_i -> range]}.

       \sa Z3_mk_array_sort
       \sa Z3_mk_store
       \sa Z3_mk_select

       def_API('Z3_mk_map', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_mk_map(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast const* args);

    /**
        \brief Access the array default value.
        Produces the default range value, for arrays that can be represented as
        finite maps with a default range value.

        \param c logical context.
        \param array array value whose default range value is accessed.

        def_API('Z3_mk_array_default', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_array_default(Z3_context c, Z3_ast array);

    /**
       \brief Create array with the same interpretation as a function.
       The array satisfies the property (f x) = (select (_ as-array f) x) 
       for every argument x.

       def_API('Z3_mk_as_array', AST, (_in(CONTEXT), _in(FUNC_DECL)))
     */
    Z3_ast Z3_API Z3_mk_as_array(Z3_context c, Z3_func_decl f);
    /*@}*/

    /** @name Sets */
    /*@{*/
    /**
       \brief Create Set type.

       def_API('Z3_mk_set_sort', SORT, (_in(CONTEXT), _in(SORT)))
    */
    Z3_sort Z3_API Z3_mk_set_sort(Z3_context c, Z3_sort ty);

    /**
        \brief Create the empty set.

        def_API('Z3_mk_empty_set', AST, (_in(CONTEXT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain);

    /**
        \brief Create the full set.

        def_API('Z3_mk_full_set', AST, (_in(CONTEXT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain);

    /**
       \brief Add an element to a set.

       The first argument must be a set, the second an element.

       def_API('Z3_mk_set_add', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem);

    /**
       \brief Remove an element to a set.

       The first argument must be a set, the second an element.

       def_API('Z3_mk_set_del', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem);

    /**
       \brief Take the union of a list of sets.

       def_API('Z3_mk_set_union', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[]);

    /**
       \brief Take the intersection of a list of sets.

       def_API('Z3_mk_set_intersect', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[]);

    /**
       \brief Take the set difference between two sets.

       def_API('Z3_mk_set_difference', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2);

    /**
       \brief Take the complement of a set.

       def_API('Z3_mk_set_complement', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg);

    /**
       \brief Check for set membership.

       The first argument should be an element type of the set.

       def_API('Z3_mk_set_member', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set);

    /**
       \brief Check for subsetness of sets.

       def_API('Z3_mk_set_subset', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2);

    /**
       \brief Create array extensionality index given two arrays with the same sort.
              The meaning is given by the axiom:
              (=> (= (select A (array-ext A B)) (select B (array-ext A B))) (= A B))

       def_API('Z3_mk_array_ext', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */

    Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2);
    /*@}*/

    /** @name Numerals */
    /*@{*/
    /**
       \brief Create a numeral of a given sort.

       \param c logical context.
       \param numeral A string representing the numeral value in decimal notation. The string may be of the form `[num]*[.[num]*][E[+|-][num]+]`.
                      If the given sort is a real, then the numeral can be a rational, that is, a string of the form `[num]* / [num]*` .
       \param ty The sort of the numeral. In the current implementation, the given sort can be an int, real, finite-domain, or bit-vectors of arbitrary size.

       \sa Z3_mk_int
       \sa Z3_mk_unsigned_int

       def_API('Z3_mk_numeral', AST, (_in(CONTEXT), _in(STRING), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_numeral(Z3_context c, Z3_string numeral, Z3_sort ty);

    /**
       \brief Create a real from a fraction.

       \param c logical context.
       \param num numerator of rational.
       \param den denominator of rational.

       \pre den != 0

       \sa Z3_mk_numeral
       \sa Z3_mk_int
       \sa Z3_mk_unsigned_int

       def_API('Z3_mk_real', AST, (_in(CONTEXT), _in(INT), _in(INT)))
    */
    Z3_ast Z3_API Z3_mk_real(Z3_context c, int num, int den);

    /**
       \brief Create a numeral of an int, bit-vector, or finite-domain sort.

       This function can be used to create numerals that fit in a machine integer.
       It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

       \sa Z3_mk_numeral

       def_API('Z3_mk_int', AST, (_in(CONTEXT), _in(INT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_int(Z3_context c, int v, Z3_sort ty);

    /**
       \brief Create a numeral of a int, bit-vector, or finite-domain sort.

       This function can be used to create numerals that fit in a machine unsigned integer.
       It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

       \sa Z3_mk_numeral

       def_API('Z3_mk_unsigned_int', AST, (_in(CONTEXT), _in(UINT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_unsigned_int(Z3_context c, unsigned v, Z3_sort ty);

    /**
       \brief Create a numeral of a int, bit-vector, or finite-domain sort.

       This function can be used to create numerals that fit in a machine \c int64_t integer.
       It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

       \sa Z3_mk_numeral

       def_API('Z3_mk_int64', AST, (_in(CONTEXT), _in(INT64), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_int64(Z3_context c, int64_t v, Z3_sort ty);

    /**
       \brief Create a numeral of a int, bit-vector, or finite-domain sort.

       This function can be used to create numerals that fit in a machine \c uint64_t integer.
       It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

       \sa Z3_mk_numeral

       def_API('Z3_mk_unsigned_int64', AST, (_in(CONTEXT), _in(UINT64), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_unsigned_int64(Z3_context c, uint64_t v, Z3_sort ty);

    /**
       \brief create a bit-vector numeral from a vector of Booleans.
       
       \sa Z3_mk_numeral
       def_API('Z3_mk_bv_numeral', AST, (_in(CONTEXT), _in(UINT), _in_array(1, BOOL)))
    */
    Z3_ast Z3_API Z3_mk_bv_numeral(Z3_context c, unsigned sz, bool const* bits);

    /*@}*/

    /** @name Sequences and regular expressions */
    /*@{*/

    /**
       \brief Create a sequence sort out of the sort for the elements.

       def_API('Z3_mk_seq_sort', SORT, (_in(CONTEXT), _in(SORT)))
     */
    Z3_sort Z3_API Z3_mk_seq_sort(Z3_context c, Z3_sort s);

    /**
       \brief Check if \c s is a sequence sort.

       def_API('Z3_is_seq_sort', BOOL, (_in(CONTEXT), _in(SORT)))
     */
    bool Z3_API Z3_is_seq_sort(Z3_context c, Z3_sort s);

    /**
       \brief Create a regular expression sort out of a sequence sort.

       def_API('Z3_mk_re_sort', SORT, (_in(CONTEXT), _in(SORT)))
     */
    Z3_sort Z3_API Z3_mk_re_sort(Z3_context c, Z3_sort seq);

    /**
       \brief Check if \c s is a regular expression sort.

       def_API('Z3_is_re_sort', BOOL, (_in(CONTEXT), _in(SORT)))
     */
    bool Z3_API Z3_is_re_sort(Z3_context c, Z3_sort s);

    /**
       \brief Create a sort for 8 bit strings.

       This function creates a sort for ASCII strings.
       Each character is 8 bits.

       def_API('Z3_mk_string_sort', SORT ,(_in(CONTEXT), ))
     */
    Z3_sort Z3_API Z3_mk_string_sort(Z3_context c);

    /**
       \brief Check if \c s is a string sort.

       def_API('Z3_is_string_sort', BOOL, (_in(CONTEXT), _in(SORT)))
     */
    bool Z3_API Z3_is_string_sort(Z3_context c, Z3_sort s);

    /**
       \brief Create a string constant out of the string that is passed in
       def_API('Z3_mk_string' ,AST ,(_in(CONTEXT), _in(STRING)))
     */
    Z3_ast Z3_API Z3_mk_string(Z3_context c, Z3_string s);

    /**
       \brief Determine if \c s is a string constant.

       def_API('Z3_is_string', BOOL, (_in(CONTEXT), _in(AST)))
     */
    bool Z3_API Z3_is_string(Z3_context c, Z3_ast s);

    /**
       \brief Retrieve the string constant stored in \c s.

       \pre  Z3_is_string(c, s)

       def_API('Z3_get_string' ,STRING ,(_in(CONTEXT), _in(AST)))
     */
    Z3_string Z3_API Z3_get_string(Z3_context c, Z3_ast s);

    /**
       \brief Create an empty sequence of the sequence sort \c seq.

       \pre s is a sequence sort.

       def_API('Z3_mk_seq_empty' ,AST ,(_in(CONTEXT), _in(SORT)))
     */
    Z3_ast Z3_API Z3_mk_seq_empty(Z3_context c, Z3_sort seq);

    /**
       \brief Create a unit sequence of \c a.

       def_API('Z3_mk_seq_unit' ,AST ,(_in(CONTEXT), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a);

    /**
       \brief Concatenate sequences.

       \pre n > 0

       def_API('Z3_mk_seq_concat' ,AST ,(_in(CONTEXT), _in(UINT), _in_array(1, AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[]);

    /**
       \brief Check if \c prefix is a prefix of \c s.

       \pre prefix and s are the same sequence sorts.

       def_API('Z3_mk_seq_prefix' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_prefix(Z3_context c, Z3_ast prefix, Z3_ast s);

    /**
       \brief Check if \c suffix is a suffix of \c s.

       \pre \c suffix and \c s are the same sequence sorts.

       def_API('Z3_mk_seq_suffix' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_suffix(Z3_context c, Z3_ast suffix, Z3_ast s);

    /**
       \brief Check if \c container contains \c containee.

       \pre \c container and \c containee are the same sequence sorts.

       def_API('Z3_mk_seq_contains' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee);

    /**
       \brief Extract subsequence starting at \c offset of \c length.

       def_API('Z3_mk_seq_extract' ,AST ,(_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length);

    /**
       \brief Replace the first occurrence of \c src with \c dst in \c s.

       def_API('Z3_mk_seq_replace' ,AST ,(_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst);

    /**
       \brief Retrieve from \c s the unit sequence positioned at position \c index.

       def_API('Z3_mk_seq_at' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_at(Z3_context c, Z3_ast s, Z3_ast index);

    /**
       \brief Return the length of the sequence \c s.

       def_API('Z3_mk_seq_length' ,AST ,(_in(CONTEXT), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_length(Z3_context c, Z3_ast s);


    /**
       \brief Return index of first occurrence of \c substr in \c s starting from offset \c offset.
       If \c s does not contain \c substr, then the value is -1, if \c offset is the length of \c s, then the value is -1 as well.
       The function is under-specified if \c offset is negative or larger than the length of \c s.

       def_API('Z3_mk_seq_index' ,AST ,(_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset);

    /**
       \brief Convert string to integer.

       def_API('Z3_mk_str_to_int' ,AST ,(_in(CONTEXT), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s);


    /**
       \brief Integer to string conversion.

       def_API('Z3_mk_int_to_str' ,AST ,(_in(CONTEXT), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s);

    /**
       \brief Create a regular expression that accepts the sequence \c seq.

       def_API('Z3_mk_seq_to_re' ,AST ,(_in(CONTEXT), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_to_re(Z3_context c, Z3_ast seq);

    /**
       \brief Check if \c seq is in the language generated by the regular expression \c re.

       def_API('Z3_mk_seq_in_re' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_seq_in_re(Z3_context c, Z3_ast seq, Z3_ast re);

    /**
       \brief Create the regular language \c re+.

       def_API('Z3_mk_re_plus' ,AST ,(_in(CONTEXT), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_re_plus(Z3_context c, Z3_ast re);

    /**
       \brief Create the regular language \c re*.

       def_API('Z3_mk_re_star' ,AST ,(_in(CONTEXT), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_re_star(Z3_context c, Z3_ast re);

    /**
       \brief Create the regular language \c [re].

       def_API('Z3_mk_re_option' ,AST ,(_in(CONTEXT), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_re_option(Z3_context c, Z3_ast re);

    /**
       \brief Create the union of the regular languages.

       \pre n > 0

       def_API('Z3_mk_re_union' ,AST ,(_in(CONTEXT), _in(UINT), _in_array(1, AST)))
     */
    Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[]);

    /**
       \brief Create the concatenation of the regular languages.

       \pre n > 0

       def_API('Z3_mk_re_concat' ,AST ,(_in(CONTEXT), _in(UINT), _in_array(1, AST)))
     */
    Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[]);


    /**
       \brief Create the range regular expression over two sequences of length 1.

       def_API('Z3_mk_re_range' ,AST ,(_in(CONTEXT), _in(AST), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi);

    /**
       \brief Create a regular expression loop. The supplied regular expression \c r is repeated
       between \c lo and \c hi times. The \c lo should be below \c hi with one exception: when
       supplying the value \c hi as 0, the meaning is to repeat the argument \c r at least
       \c lo number of times, and with an unbounded upper bound.

       def_API('Z3_mk_re_loop', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in(UINT)))
     */
    Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi);

    /**
       \brief Create the intersection of the regular languages.

       \pre n > 0

       def_API('Z3_mk_re_intersect' ,AST ,(_in(CONTEXT), _in(UINT), _in_array(1, AST)))
     */
    Z3_ast Z3_API Z3_mk_re_intersect(Z3_context c, unsigned n, Z3_ast const args[]);

    /**
       \brief Create the complement of the regular language \c re.

       def_API('Z3_mk_re_complement' ,AST ,(_in(CONTEXT), _in(AST)))
     */
    Z3_ast Z3_API Z3_mk_re_complement(Z3_context c, Z3_ast re);

    /**
       \brief Create an empty regular expression of sort \c re.

       \pre re is a regular expression sort.

       def_API('Z3_mk_re_empty' ,AST ,(_in(CONTEXT), _in(SORT)))
     */
    Z3_ast Z3_API Z3_mk_re_empty(Z3_context c, Z3_sort re);


    /**
       \brief Create an universal regular expression of sort \c re.

       \pre re is a regular expression sort.

       def_API('Z3_mk_re_full' ,AST ,(_in(CONTEXT), _in(SORT)))
     */
    Z3_ast Z3_API Z3_mk_re_full(Z3_context c, Z3_sort re);


    /*@}*/


    /** @name Quantifiers */
    /*@{*/
    /**
       \brief Create a pattern for quantifier instantiation.

       Z3 uses pattern matching to instantiate quantifiers. If a
       pattern is not provided for a quantifier, then Z3 will
       automatically compute a set of patterns for it. However, for
       optimal performance, the user should provide the patterns.

       Patterns comprise a list of terms. The list should be
       non-empty.  If the list comprises of more than one term, it is
       a called a multi-pattern.

       In general, one can pass in a list of (multi-)patterns in the
       quantifier constructor.

       \sa Z3_mk_forall
       \sa Z3_mk_exists

       def_API('Z3_mk_pattern', PATTERN, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_pattern Z3_API Z3_mk_pattern(Z3_context c, unsigned num_patterns, Z3_ast const terms[]);

    /**
       \brief Create a bound variable.

       Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain
       the meaning of de-Bruijn indices by indicating the compilation process from
       non-de-Bruijn formulas to de-Bruijn format.

       \verbatim
       abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
       abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
       abs1(x, x, n) = b_n
       abs1(y, x, n) = y
       abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
       abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
       \endverbatim

       The last line is significant: the index of a bound variable is different depending
       on the scope in which it appears. The deeper x appears, the higher is its
       index.

       \param c logical context
       \param index de-Bruijn index
       \param ty sort of the bound variable

       \sa Z3_mk_forall
       \sa Z3_mk_exists

       def_API('Z3_mk_bound', AST, (_in(CONTEXT), _in(UINT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_bound(Z3_context c, unsigned index, Z3_sort ty);

    /**
       \brief Create a forall formula. It takes an expression \c body that contains bound variables
       of the same sorts as the sorts listed in the array \c sorts. The bound variables are de-Bruijn indices created
       using #Z3_mk_bound. The array \c decl_names contains the names that the quantified formula uses for the
       bound variables. Z3 applies the convention that the last element in the \c decl_names and \c sorts array
       refers to the variable with index 0, the second to last element of \c decl_names and \c sorts refers
       to the variable with index 1, etc.

       \param c logical context.
       \param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param num_decls number of variables to be bound.
       \param sorts the sorts of the bound variables.
       \param decl_names names of the bound variables
       \param body the body of the quantifier.

       \sa Z3_mk_pattern
       \sa Z3_mk_bound
       \sa Z3_mk_exists

       def_API('Z3_mk_forall', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, PATTERN), _in(UINT), _in_array(4, SORT), _in_array(4, SYMBOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_forall(Z3_context c, unsigned weight,
                               unsigned num_patterns, Z3_pattern const patterns[],
                               unsigned num_decls, Z3_sort const sorts[],
                               Z3_symbol const decl_names[],
                               Z3_ast body);

    /**
       \brief Create an exists formula. Similar to #Z3_mk_forall.

       \sa Z3_mk_pattern
       \sa Z3_mk_bound
       \sa Z3_mk_forall
       \sa Z3_mk_quantifier

       def_API('Z3_mk_exists', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, PATTERN), _in(UINT), _in_array(4, SORT), _in_array(4, SYMBOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_exists(Z3_context c, unsigned weight,
                               unsigned num_patterns, Z3_pattern const patterns[],
                               unsigned num_decls, Z3_sort const sorts[],
                               Z3_symbol const decl_names[],
                               Z3_ast body);

    /**
       \brief Create a quantifier - universal or existential, with pattern hints.
       See the documentation for #Z3_mk_forall for an explanation of the parameters.

       \param c logical context.
       \param is_forall flag to indicate if this is a universal or existential quantifier.
       \param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param num_decls number of variables to be bound.
       \param sorts array of sorts of the bound variables.
       \param decl_names names of the bound variables.
       \param body the body of the quantifier.

       \sa Z3_mk_pattern
       \sa Z3_mk_bound
       \sa Z3_mk_forall
       \sa Z3_mk_exists

       def_API('Z3_mk_quantifier', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(UINT), _in_array(3, PATTERN), _in(UINT), _in_array(5, SORT), _in_array(5, SYMBOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_quantifier(
        Z3_context c,
        bool is_forall,
        unsigned weight,
        unsigned num_patterns, Z3_pattern const patterns[],
        unsigned num_decls, Z3_sort const sorts[],
        Z3_symbol const decl_names[],
        Z3_ast body);


    /**
       \brief Create a quantifier - universal or existential, with pattern hints, no patterns, and attributes

       \param c logical context.
       \param is_forall flag to indicate if this is a universal or existential quantifier.
       \param quantifier_id identifier to identify quantifier
       \param skolem_id identifier to identify skolem constants introduced by quantifier.
       \param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param num_no_patterns number of no_patterns.
       \param no_patterns array containing subexpressions to be excluded from inferred patterns.
       \param num_decls number of variables to be bound.
       \param sorts array of sorts of the bound variables.
       \param decl_names names of the bound variables.
       \param body the body of the quantifier.

       \sa Z3_mk_pattern
       \sa Z3_mk_bound
       \sa Z3_mk_forall
       \sa Z3_mk_exists

       def_API('Z3_mk_quantifier_ex', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(5, PATTERN), _in(UINT), _in_array(7, AST), _in(UINT), _in_array(9, SORT), _in_array(9, SYMBOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_quantifier_ex(
        Z3_context c,
        bool is_forall,
        unsigned weight,
        Z3_symbol quantifier_id,
        Z3_symbol skolem_id,
        unsigned num_patterns, Z3_pattern const patterns[],
        unsigned num_no_patterns, Z3_ast const no_patterns[],
        unsigned num_decls, Z3_sort const sorts[],
        Z3_symbol const decl_names[],
        Z3_ast body);

    /**
       \brief Create a universal quantifier using a list of constants that
       will form the set of bound variables.

       \param c logical context.
       \param weight quantifiers are associated with weights indicating the importance of using
              the quantifier during instantiation. By default, pass the weight 0.
       \param num_bound number of constants to be abstracted into bound variables.
       \param bound array of constants to be abstracted into bound variables.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param body the body of the quantifier.

       \sa Z3_mk_pattern
       \sa Z3_mk_exists_const

       def_API('Z3_mk_forall_const', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, APP), _in(UINT), _in_array(4, PATTERN), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_forall_const(
        Z3_context c,
        unsigned weight,
        unsigned num_bound,
        Z3_app const bound[],
        unsigned num_patterns,
        Z3_pattern const patterns[],
        Z3_ast body
        );

    /**
       \brief Similar to #Z3_mk_forall_const.

       \brief Create an existential quantifier using a list of constants that
       will form the set of bound variables.

       \param c logical context.
       \param weight quantifiers are associated with weights indicating the importance of using
              the quantifier during instantiation. By default, pass the weight 0.
       \param num_bound number of constants to be abstracted into bound variables.
       \param bound array of constants to be abstracted into bound variables.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param body the body of the quantifier.

       \sa Z3_mk_pattern
       \sa Z3_mk_forall_const

       def_API('Z3_mk_exists_const', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, APP), _in(UINT), _in_array(4, PATTERN), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_exists_const(
        Z3_context c,
        unsigned weight,
        unsigned num_bound,
        Z3_app const bound[],
        unsigned num_patterns,
        Z3_pattern const patterns[],
        Z3_ast body
        );

    /**
       \brief Create a universal or existential quantifier using a list of
       constants that will form the set of bound variables.

       def_API('Z3_mk_quantifier_const', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(UINT), _in_array(3, APP), _in(UINT), _in_array(5, PATTERN), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_quantifier_const(
        Z3_context c,
        bool is_forall,
        unsigned weight,
        unsigned num_bound,  Z3_app const bound[],
        unsigned num_patterns, Z3_pattern const patterns[],
        Z3_ast body
        );

    /**
       \brief Create a universal or existential quantifier using a list of
       constants that will form the set of bound variables.

       def_API('Z3_mk_quantifier_const_ex', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(5, APP), _in(UINT), _in_array(7, PATTERN), _in(UINT), _in_array(9, AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_quantifier_const_ex(
        Z3_context c,
        bool is_forall,
        unsigned weight,
        Z3_symbol quantifier_id,
        Z3_symbol skolem_id,
        unsigned num_bound,  Z3_app const bound[],
        unsigned num_patterns, Z3_pattern const patterns[],
        unsigned num_no_patterns, Z3_ast const no_patterns[],
        Z3_ast body
        );

    /**
       \brief Create a lambda expression. It takes an expression \c body that contains bound variables
       of the same sorts as the sorts listed in the array \c sorts. The bound variables are de-Bruijn indices created
       using #Z3_mk_bound. The array \c decl_names contains the names that the quantified formula uses for the
       bound variables. Z3 applies the convention that the last element in the \c decl_names and \c sorts array
       refers to the variable with index 0, the second to last element of \c decl_names and \c sorts refers
       to the variable with index 1, etc.
       The sort of the resulting expression is \c (Array sorts range) where \c range is the sort of \c body.
       For example, if the lambda binds two variables of sort \c Int and \c Bool, and the \c body has sort \c Real, 
       the sort of the expression is \c (Array Int Bool Real).

       \param c logical context
       \param num_decls number of variables to be bound.
       \param sorts the sorts of the bound variables.
       \param decl_names names of the bound variables
       \param body the body of the lambda expression.       

       \sa Z3_mk_bound
       \sa Z3_mk_forall
       \sa Z3_mk_lambda_const

       def_API('Z3_mk_lambda', AST, (_in(CONTEXT), _in(UINT), _in_array(1, SORT), _in_array(1, SYMBOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_lambda(Z3_context c, 
                               unsigned num_decls, Z3_sort const sorts[],
                               Z3_symbol const decl_names[],
                               Z3_ast body);

    /**
       \brief Create a lambda expression using a list of constants that form the set
       of bound variables

       \param c logical context.
       \param num_bound number of constants to be abstracted into bound variables.
       \param bound array of constants to be abstracted into bound variables.
       \param body the body of the lambda expression.

       \sa Z3_mk_bound
       \sa Z3_mk_forall
       \sa Z3_mk_lambda

       def_API('Z3_mk_lambda_const', AST, (_in(CONTEXT), _in(UINT), _in_array(1, APP), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c, 
                                     unsigned num_bound, Z3_app const bound[],
                                     Z3_ast body);


    /*@}*/

    /** @name Accessors */
    /*@{*/
    /**
       \brief Return \c Z3_INT_SYMBOL if the symbol was constructed
       using #Z3_mk_int_symbol, and \c Z3_STRING_SYMBOL if the symbol
       was constructed using #Z3_mk_string_symbol.

       def_API('Z3_get_symbol_kind', UINT, (_in(CONTEXT), _in(SYMBOL)))
    */
    Z3_symbol_kind Z3_API Z3_get_symbol_kind(Z3_context c, Z3_symbol s);

    /**
       \brief Return the symbol int value.

       \pre Z3_get_symbol_kind(s) == Z3_INT_SYMBOL

       \sa Z3_mk_int_symbol

       def_API('Z3_get_symbol_int', INT, (_in(CONTEXT), _in(SYMBOL)))
    */
    int Z3_API Z3_get_symbol_int(Z3_context c, Z3_symbol s);

    /**
       \brief Return the symbol name.

       \pre Z3_get_symbol_kind(s) == Z3_STRING_SYMBOL

       \warning The returned buffer is statically allocated by Z3. It will
       be automatically deallocated when #Z3_del_context is invoked.
       So, the buffer is invalidated in the next call to \c Z3_get_symbol_string.

       \sa Z3_mk_string_symbol

       def_API('Z3_get_symbol_string', STRING, (_in(CONTEXT), _in(SYMBOL)))
    */
    Z3_string Z3_API Z3_get_symbol_string(Z3_context c, Z3_symbol s);

    /**
       \brief Return the sort name as a symbol.

       def_API('Z3_get_sort_name', SYMBOL, (_in(CONTEXT), _in(SORT)))
    */
    Z3_symbol Z3_API Z3_get_sort_name(Z3_context c, Z3_sort d);

    /**
        \brief Return a unique identifier for \c s.

        def_API('Z3_get_sort_id', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_sort_id(Z3_context c, Z3_sort s);

    /**
       \brief Convert a \c Z3_sort into \c Z3_ast. This is just type casting.

       def_API('Z3_sort_to_ast', AST, (_in(CONTEXT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_sort_to_ast(Z3_context c, Z3_sort s);

    /**
       \brief compare sorts.

       def_API('Z3_is_eq_sort', BOOL, (_in(CONTEXT), _in(SORT), _in(SORT)))
    */
    bool Z3_API Z3_is_eq_sort(Z3_context c, Z3_sort s1, Z3_sort s2);

    /**
       \brief Return the sort kind (e.g., array, tuple, int, bool, etc).

       \sa Z3_sort_kind

       def_API('Z3_get_sort_kind', UINT, (_in(CONTEXT), _in(SORT)))
    */
    Z3_sort_kind Z3_API Z3_get_sort_kind(Z3_context c, Z3_sort t);

    /**
       \brief Return the size of the given bit-vector sort.

       \pre Z3_get_sort_kind(c, t) == Z3_BV_SORT

       \sa Z3_mk_bv_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_bv_sort_size', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_bv_sort_size(Z3_context c, Z3_sort t);

    /**
        \brief Store the size of the sort in \c r. Return \c false if the call failed.
        That is, Z3_get_sort_kind(s) == Z3_FINITE_DOMAIN_SORT

        def_API('Z3_get_finite_domain_sort_size', BOOL, (_in(CONTEXT), _in(SORT), _out(UINT64)))
    */
    Z3_bool_opt Z3_API Z3_get_finite_domain_sort_size(Z3_context c, Z3_sort s, uint64_t* r);

    /**
       \brief Return the domain of the given array sort.
       In the case of a multi-dimensional array, this function returns the sort of the first dimension.

       \pre Z3_get_sort_kind(c, t) == Z3_ARRAY_SORT

       \sa Z3_mk_array_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_array_sort_domain', SORT, (_in(CONTEXT), _in(SORT)))
    */
    Z3_sort Z3_API Z3_get_array_sort_domain(Z3_context c, Z3_sort t);

    /**
       \brief Return the range of the given array sort.

       \pre Z3_get_sort_kind(c, t) == Z3_ARRAY_SORT

       \sa Z3_mk_array_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_array_sort_range', SORT, (_in(CONTEXT), _in(SORT)))
    */
    Z3_sort Z3_API Z3_get_array_sort_range(Z3_context c, Z3_sort t);

    /**
       \brief Return the constructor declaration of the given tuple
       sort.

       \pre Z3_get_sort_kind(c, t) == Z3_DATATYPE_SORT

       \sa Z3_mk_tuple_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_tuple_sort_mk_decl', FUNC_DECL, (_in(CONTEXT), _in(SORT)))
    */
    Z3_func_decl Z3_API Z3_get_tuple_sort_mk_decl(Z3_context c, Z3_sort t);

    /**
       \brief Return the number of fields of the given tuple sort.

       \pre Z3_get_sort_kind(c, t) == Z3_DATATYPE_SORT

       \sa Z3_mk_tuple_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_tuple_sort_num_fields', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_tuple_sort_num_fields(Z3_context c, Z3_sort t);

    /**
       \brief Return the i-th field declaration (i.e., projection function declaration)
       of the given tuple sort.

       \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
       \pre i < Z3_get_tuple_sort_num_fields(c, t)

       \sa Z3_mk_tuple_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_tuple_sort_field_decl', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_tuple_sort_field_decl(Z3_context c, Z3_sort t, unsigned i);

    /**
        \brief Return number of constructors for datatype.

        \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT

        \sa Z3_get_datatype_sort_constructor
        \sa Z3_get_datatype_sort_recognizer
        \sa Z3_get_datatype_sort_constructor_accessor

        def_API('Z3_get_datatype_sort_num_constructors', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_datatype_sort_num_constructors(
        Z3_context c, Z3_sort t);

    /**
        \brief Return idx'th constructor.

        \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
        \pre idx < Z3_get_datatype_sort_num_constructors(c, t)

        \sa Z3_get_datatype_sort_num_constructors
        \sa Z3_get_datatype_sort_recognizer
        \sa Z3_get_datatype_sort_constructor_accessor

        def_API('Z3_get_datatype_sort_constructor', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_datatype_sort_constructor(
        Z3_context c, Z3_sort t, unsigned idx);

    /**
        \brief Return idx'th recognizer.

        \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
        \pre idx < Z3_get_datatype_sort_num_constructors(c, t)

        \sa Z3_get_datatype_sort_num_constructors
        \sa Z3_get_datatype_sort_constructor
        \sa Z3_get_datatype_sort_constructor_accessor

        def_API('Z3_get_datatype_sort_recognizer', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_datatype_sort_recognizer(
        Z3_context c, Z3_sort t, unsigned idx);

    /**
        \brief Return idx_a'th accessor for the idx_c'th constructor.

        \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
        \pre idx_c < Z3_get_datatype_sort_num_constructors(c, t)
        \pre idx_a < Z3_get_domain_size(c, Z3_get_datatype_sort_constructor(c, idx_c))

        \sa Z3_get_datatype_sort_num_constructors
        \sa Z3_get_datatype_sort_constructor
        \sa Z3_get_datatype_sort_recognizer

        def_API('Z3_get_datatype_sort_constructor_accessor', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_datatype_sort_constructor_accessor(Z3_context c,
                                                                  Z3_sort t,
                                                                  unsigned idx_c,
                                                                  unsigned idx_a);

    /**
       \brief Update record field with a value.

       This corresponds to the 'with' construct in OCaml.
       It has the effect of updating a record field with a given value.
       The remaining fields are left unchanged. It is the record
       equivalent of an array store (see \sa Z3_mk_store).
       If the datatype has more than one constructor, then the update function
       behaves as identity if there is a miss-match between the accessor and
       constructor. For example ((_ update-field car) nil 1) is nil,
       while ((_ update-field car) (cons 2 nil) 1) is (cons 1 nil).


       \pre Z3_get_sort_kind(Z3_get_sort(c, t)) == Z3_get_domain(c, field_access, 1) == Z3_DATATYPE_SORT
       \pre Z3_get_sort(c, value) == Z3_get_range(c, field_access)


       def_API('Z3_datatype_update_field', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_datatype_update_field(Z3_context c, Z3_func_decl field_access,
                                           Z3_ast t, Z3_ast value);

    /**
        \brief Return arity of relation.

        \pre Z3_get_sort_kind(s) == Z3_RELATION_SORT

        \sa Z3_get_relation_column

        def_API('Z3_get_relation_arity', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_relation_arity(Z3_context c, Z3_sort s);

    /**
        \brief Return sort at i'th column of relation sort.

        \pre Z3_get_sort_kind(c, s) == Z3_RELATION_SORT
        \pre col < Z3_get_relation_arity(c, s)

        \sa Z3_get_relation_arity

        def_API('Z3_get_relation_column', SORT, (_in(CONTEXT), _in(SORT), _in(UINT)))
    */
    Z3_sort Z3_API Z3_get_relation_column(Z3_context c, Z3_sort s, unsigned col);

    /**
       \brief Pseudo-Boolean relations.

       Encode p1 + p2 + ... + pn <= k

       def_API('Z3_mk_atmost', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in(UINT)))
    */
    Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args,
                               Z3_ast const args[], unsigned k);

    /**
       \brief Pseudo-Boolean relations.

       Encode p1 + p2 + ... + pn >= k

       def_API('Z3_mk_atleast', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in(UINT)))
    */
    Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args,
                                Z3_ast const args[], unsigned k);

    /**
       \brief Pseudo-Boolean relations.

       Encode k1*p1 + k2*p2 + ... + kn*pn <= k

       def_API('Z3_mk_pble', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in_array(1,INT), _in(INT)))
    */
    Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args,
                             Z3_ast const args[], int const coeffs[],
                             int k);

    /**
       \brief Pseudo-Boolean relations.

       Encode k1*p1 + k2*p2 + ... + kn*pn >= k

       def_API('Z3_mk_pbge', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in_array(1,INT), _in(INT)))
    */
    Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args,
                             Z3_ast const args[], int const coeffs[],
                             int k);

    /**
       \brief Pseudo-Boolean relations.

       Encode k1*p1 + k2*p2 + ... + kn*pn = k

       def_API('Z3_mk_pbeq', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in_array(1,INT), _in(INT)))
    */
    Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args,
                             Z3_ast const args[], int const coeffs[],
                             int k);

    /**
       \brief Convert a \c Z3_func_decl into \c Z3_ast. This is just type casting.

       def_API('Z3_func_decl_to_ast', AST, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_ast Z3_API Z3_func_decl_to_ast(Z3_context c, Z3_func_decl f);

    /**
       \brief Compare terms.

       def_API('Z3_is_eq_func_decl', BOOL, (_in(CONTEXT), _in(FUNC_DECL), _in(FUNC_DECL)))
    */
    bool Z3_API Z3_is_eq_func_decl(Z3_context c, Z3_func_decl f1, Z3_func_decl f2);

    /**
        \brief Return a unique identifier for \c f.

        def_API('Z3_get_func_decl_id', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    unsigned Z3_API Z3_get_func_decl_id(Z3_context c, Z3_func_decl f);

    /**
       \brief Return the constant declaration name as a symbol.

       def_API('Z3_get_decl_name', SYMBOL, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_symbol Z3_API Z3_get_decl_name(Z3_context c, Z3_func_decl d);

    /**
       \brief Return declaration kind corresponding to declaration.

       def_API('Z3_get_decl_kind', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_decl_kind Z3_API Z3_get_decl_kind(Z3_context c, Z3_func_decl d);

    /**
       \brief Return the number of parameters of the given declaration.

       \sa Z3_get_arity

       def_API('Z3_get_domain_size', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    unsigned Z3_API Z3_get_domain_size(Z3_context c, Z3_func_decl d);

    /**
       \brief Alias for \c Z3_get_domain_size.

       \sa Z3_get_domain_size

       def_API('Z3_get_arity', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    unsigned Z3_API Z3_get_arity(Z3_context c, Z3_func_decl d);

    /**
       \brief Return the sort of the i-th parameter of the given function declaration.

       \pre i < Z3_get_domain_size(d)

       \sa Z3_get_domain_size

       def_API('Z3_get_domain', SORT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_sort Z3_API Z3_get_domain(Z3_context c, Z3_func_decl d, unsigned i);

    /**
       \brief Return the range of the given declaration.

       If \c d is a constant (i.e., has zero arguments), then this
       function returns the sort of the constant.

       def_API('Z3_get_range', SORT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_sort Z3_API Z3_get_range(Z3_context c, Z3_func_decl d);

    /**
       \brief Return the number of parameters associated with a declaration.

       def_API('Z3_get_decl_num_parameters', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    unsigned Z3_API Z3_get_decl_num_parameters(Z3_context c, Z3_func_decl d);

    /**
       \brief Return the parameter type associated with a declaration.

       \param c the context
       \param d the function declaration
       \param idx is the index of the named parameter it should be between 0 and the number of parameters.

       def_API('Z3_get_decl_parameter_kind', UINT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_parameter_kind Z3_API Z3_get_decl_parameter_kind(Z3_context c, Z3_func_decl d, unsigned idx);

    /**
       \brief Return the integer value associated with an integer parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_INT

       def_API('Z3_get_decl_int_parameter', INT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    int Z3_API Z3_get_decl_int_parameter(Z3_context c, Z3_func_decl d, unsigned idx);

    /**
       \brief Return the double value associated with an double parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_DOUBLE

       def_API('Z3_get_decl_double_parameter', DOUBLE, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    double Z3_API Z3_get_decl_double_parameter(Z3_context c, Z3_func_decl d, unsigned idx);

    /**
       \brief Return the double value associated with an double parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_SYMBOL

       def_API('Z3_get_decl_symbol_parameter', SYMBOL, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_symbol Z3_API Z3_get_decl_symbol_parameter(Z3_context c, Z3_func_decl d, unsigned idx);

    /**
       \brief Return the sort value associated with a sort parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_SORT

       def_API('Z3_get_decl_sort_parameter', SORT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_sort Z3_API Z3_get_decl_sort_parameter(Z3_context c, Z3_func_decl d, unsigned idx);

    /**
       \brief Return the expression value associated with an expression parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_AST

       def_API('Z3_get_decl_ast_parameter', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_decl_ast_parameter(Z3_context c, Z3_func_decl d, unsigned idx);

    /**
       \brief Return the expression value associated with an expression parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_FUNC_DECL

       def_API('Z3_get_decl_func_decl_parameter', FUNC_DECL, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_decl_func_decl_parameter(Z3_context c, Z3_func_decl d, unsigned idx);

    /**
       \brief Return the rational value, as a string, associated with a rational parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_RATIONAL

       def_API('Z3_get_decl_rational_parameter', STRING, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_string Z3_API Z3_get_decl_rational_parameter(Z3_context c, Z3_func_decl d, unsigned idx);

    /**
       \brief Convert a \c Z3_app into \c Z3_ast. This is just type casting.

       def_API('Z3_app_to_ast', AST, (_in(CONTEXT), _in(APP)))
    */
    Z3_ast Z3_API Z3_app_to_ast(Z3_context c, Z3_app a);

    /**
       \brief Return the declaration of a constant or function application.

       def_API('Z3_get_app_decl', FUNC_DECL, (_in(CONTEXT), _in(APP)))
    */
    Z3_func_decl Z3_API Z3_get_app_decl(Z3_context c, Z3_app a);

    /**
       \brief Return the number of argument of an application. If \c t
       is an constant, then the number of arguments is 0.

       def_API('Z3_get_app_num_args', UINT, (_in(CONTEXT), _in(APP)))
    */
    unsigned Z3_API Z3_get_app_num_args(Z3_context c, Z3_app a);

    /**
       \brief Return the i-th argument of the given application.

       \pre i < Z3_get_app_num_args(c, a)

       def_API('Z3_get_app_arg', AST, (_in(CONTEXT), _in(APP), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_app_arg(Z3_context c, Z3_app a, unsigned i);

    /**
       \brief Compare terms.

       def_API('Z3_is_eq_ast', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    bool Z3_API Z3_is_eq_ast(Z3_context c, Z3_ast t1, Z3_ast t2);

    /**
        \brief Return a unique identifier for \c t.
        The identifier is unique up to structural equality. Thus, two ast nodes
        created by the same context and having the same children and same function symbols
        have the same identifiers. Ast nodes created in the same context, but having
        different children or different functions have different identifiers.
        Variables and quantifiers are also assigned different identifiers according to
        their structure.

        def_API('Z3_get_ast_id', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_ast_id(Z3_context c, Z3_ast t);

    /**
       \brief Return a hash code for the given AST.
       The hash code is structural. You can use Z3_get_ast_id interchangeably with
       this function.

       def_API('Z3_get_ast_hash', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_ast_hash(Z3_context c, Z3_ast a);

    /**
       \brief Return the sort of an AST node.

       The AST node must be a constant, application, numeral, bound variable, or quantifier.

       def_API('Z3_get_sort', SORT, (_in(CONTEXT), _in(AST)))
    */
    Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a);

    /**
       \brief Return true if the given expression \c t is well sorted.

       def_API('Z3_is_well_sorted', BOOL, (_in(CONTEXT), _in(AST)))
    */
    bool Z3_API Z3_is_well_sorted(Z3_context c, Z3_ast t);

    /**
       \brief Return \c Z3_L_TRUE if \c a is true, \c Z3_L_FALSE if it is false, and \c Z3_L_UNDEF otherwise.

       def_API('Z3_get_bool_value', INT, (_in(CONTEXT), _in(AST)))
    */
    Z3_lbool Z3_API Z3_get_bool_value(Z3_context c, Z3_ast a);

    /**
       \brief Return the kind of the given AST.

       def_API('Z3_get_ast_kind', UINT, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast_kind Z3_API Z3_get_ast_kind(Z3_context c, Z3_ast a);

    /**
      def_API('Z3_is_app', BOOL, (_in(CONTEXT), _in(AST)))
    */
    bool Z3_API Z3_is_app(Z3_context c, Z3_ast a);

    /**
      def_API('Z3_is_numeral_ast', BOOL, (_in(CONTEXT), _in(AST)))
    */
    bool Z3_API Z3_is_numeral_ast(Z3_context c, Z3_ast a);

    /**
       \brief Return true if the given AST is a real algebraic number.

       def_API('Z3_is_algebraic_number', BOOL, (_in(CONTEXT), _in(AST)))
    */
    bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a);

    /**
       \brief Convert an \c ast into an \c APP_AST. This is just type casting.

       \pre \code Z3_get_ast_kind(c, a) == \c Z3_APP_AST \endcode

       def_API('Z3_to_app', APP, (_in(CONTEXT), _in(AST)))
    */
    Z3_app Z3_API Z3_to_app(Z3_context c, Z3_ast a);

    /**
       \brief Convert an AST into a FUNC_DECL_AST. This is just type casting.

       \pre \code Z3_get_ast_kind(c, a) == Z3_FUNC_DECL_AST \endcode

       def_API('Z3_to_func_decl', FUNC_DECL, (_in(CONTEXT), _in(AST)))
    */
    Z3_func_decl Z3_API Z3_to_func_decl(Z3_context c, Z3_ast a);

    /**
       \brief Return numeral value, as a string of a numeric constant term

       \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST

       def_API('Z3_get_numeral_string', STRING, (_in(CONTEXT), _in(AST)))
    */
    Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a);

    /**
       \brief Return numeral as a string in decimal notation.
       The result has at most \c precision decimal places.

       \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST || Z3_is_algebraic_number(c, a)

       def_API('Z3_get_numeral_decimal_string', STRING, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision);

    /**
       \brief Return numeral as a double.

       \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST || Z3_is_algebraic_number(c, a)

       def_API('Z3_get_numeral_double', DOUBLE, (_in(CONTEXT), _in(AST)))
    */
    double Z3_API Z3_get_numeral_double(Z3_context c, Z3_ast a);

    /**
       \brief Return the numerator (as a numeral AST) of a numeral AST of sort Real.

       \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST

       def_API('Z3_get_numerator', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a);

    /**
       \brief Return the denominator (as a numeral AST) of a numeral AST of sort Real.

       \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST

       def_API('Z3_get_denominator', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a);

    /**
       \brief Return numeral value, as a pair of 64 bit numbers if the representation fits.

       \param c logical context.
       \param a term.
       \param num numerator.
       \param den denominator.

       Return \c true if the numeral value fits in 64 bit numerals, \c false otherwise.

       \pre Z3_get_ast_kind(a) == Z3_NUMERAL_AST

       def_API('Z3_get_numeral_small', BOOL, (_in(CONTEXT), _in(AST), _out(INT64), _out(INT64)))
    */
    bool Z3_API Z3_get_numeral_small(Z3_context c, Z3_ast a, int64_t* num, int64_t* den);

    /**
       \brief Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit in a machine int. Return \c true if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST

       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_int', BOOL, (_in(CONTEXT), _in(AST), _out(INT)))
    */
    bool Z3_API Z3_get_numeral_int(Z3_context c, Z3_ast v, int* i);

    /**
       \brief Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit in a machine unsigned int. Return \c true if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST

       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_uint', BOOL, (_in(CONTEXT), _in(AST), _out(UINT)))
    */
    bool Z3_API Z3_get_numeral_uint(Z3_context c, Z3_ast v, unsigned* u);

    /**
       \brief Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit in a machine \c uint64_t int. Return \c true if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST

       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_uint64', BOOL, (_in(CONTEXT), _in(AST), _out(UINT64)))
    */
    bool Z3_API Z3_get_numeral_uint64(Z3_context c, Z3_ast v, uint64_t* u);

    /**
       \brief Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit in a machine \c int64_t int. Return \c true if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST

       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_int64', BOOL, (_in(CONTEXT), _in(AST), _out(INT64)))
    */
    bool Z3_API Z3_get_numeral_int64(Z3_context c, Z3_ast v, int64_t* i);

    /**
       \brief Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit as a rational number as machine \c int64_t int. Return \c true if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST

       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_rational_int64', BOOL, (_in(CONTEXT), _in(AST), _out(INT64), _out(INT64)))
    */
    bool Z3_API Z3_get_numeral_rational_int64(Z3_context c, Z3_ast v, int64_t* num, int64_t* den);

    /**
       \brief Return a lower bound for the given real algebraic number.
       The interval isolating the number is smaller than 1/10^precision.
       The result is a numeral AST of sort Real.

       \pre Z3_is_algebraic_number(c, a)

       def_API('Z3_get_algebraic_number_lower', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_algebraic_number_lower(Z3_context c, Z3_ast a, unsigned precision);

    /**
       \brief Return a upper bound for the given real algebraic number.
       The interval isolating the number is smaller than 1/10^precision.
       The result is a numeral AST of sort Real.

       \pre Z3_is_algebraic_number(c, a)

       def_API('Z3_get_algebraic_number_upper', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision);

    /**
       \brief Convert a Z3_pattern into Z3_ast. This is just type casting.

       def_API('Z3_pattern_to_ast', AST, (_in(CONTEXT), _in(PATTERN)))
    */
    Z3_ast Z3_API Z3_pattern_to_ast(Z3_context c, Z3_pattern p);

    /**
        \brief Return number of terms in pattern.

        def_API('Z3_get_pattern_num_terms', UINT, (_in(CONTEXT), _in(PATTERN)))
    */
    unsigned Z3_API Z3_get_pattern_num_terms(Z3_context c, Z3_pattern p);

    /**
       \brief Return i'th ast in pattern.

       def_API('Z3_get_pattern', AST, (_in(CONTEXT), _in(PATTERN), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_pattern(Z3_context c, Z3_pattern p, unsigned idx);

    /**
       \brief Return index of de-Bruijn bound variable.

       \pre Z3_get_ast_kind(a) == Z3_VAR_AST

       def_API('Z3_get_index_value', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_index_value(Z3_context c, Z3_ast a);

    /**
       \brief Determine if an ast is a universal quantifier.

       def_API('Z3_is_quantifier_forall', BOOL, (_in(CONTEXT), _in(AST)))
    */
    bool Z3_API Z3_is_quantifier_forall(Z3_context c, Z3_ast a);

    /**
       \brief Determine if ast is an existential quantifier.


       def_API('Z3_is_quantifier_exists', BOOL, (_in(CONTEXT), _in(AST)))
    */
    bool Z3_API Z3_is_quantifier_exists(Z3_context c, Z3_ast a);

    /**
       \brief Determine if ast is a lambda expression.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_is_lambda', BOOL, (_in(CONTEXT), _in(AST)))
    */
    bool Z3_API Z3_is_lambda(Z3_context c, Z3_ast a);

    /**
       \brief Obtain weight of quantifier.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_weight', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_quantifier_weight(Z3_context c, Z3_ast a);

    /**
       \brief Return number of patterns used in quantifier.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_num_patterns', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_quantifier_num_patterns(Z3_context c, Z3_ast a);

    /**
       \brief Return i'th pattern.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_pattern_ast', PATTERN, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_pattern Z3_API Z3_get_quantifier_pattern_ast(Z3_context c, Z3_ast a, unsigned i);

    /**
       \brief Return number of no_patterns used in quantifier.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_num_no_patterns', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_quantifier_num_no_patterns(Z3_context c, Z3_ast a);

    /**
       \brief Return i'th no_pattern.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_no_pattern_ast', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_quantifier_no_pattern_ast(Z3_context c, Z3_ast a, unsigned i);

    /**
       \brief Return number of bound variables of quantifier.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_num_bound', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_quantifier_num_bound(Z3_context c, Z3_ast a);

    /**
       \brief Return symbol of the i'th bound variable.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_bound_name', SYMBOL, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_symbol Z3_API Z3_get_quantifier_bound_name(Z3_context c, Z3_ast a, unsigned i);

    /**
       \brief Return sort of the i'th bound variable.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_bound_sort', SORT, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_sort Z3_API Z3_get_quantifier_bound_sort(Z3_context c, Z3_ast a, unsigned i);

    /**
       \brief Return body of quantifier.

       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_body', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_get_quantifier_body(Z3_context c, Z3_ast a);

    /**
        \brief Interface to simplifier.

        Provides an interface to the AST simplifier used by Z3.
        It returns an AST object which is equal to the argument.
        The returned AST is simplified using algebraic simplification rules,
        such as constant propagation (propagating true/false over logical connectives).

        \sa Z3_simplify_ex

        def_API('Z3_simplify', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_simplify(Z3_context c, Z3_ast a);

    /**
        \brief Interface to simplifier.

        Provides an interface to the AST simplifier used by Z3.
        This procedure is similar to #Z3_simplify, but the behavior of the simplifier
        can be configured using the given parameter set.

        \sa Z3_simplify
        \sa Z3_simplify_get_help
        \sa Z3_simplify_get_param_descrs

        def_API('Z3_simplify_ex', AST, (_in(CONTEXT), _in(AST), _in(PARAMS)))
    */
    Z3_ast Z3_API Z3_simplify_ex(Z3_context c, Z3_ast a, Z3_params p);

    /**
       \brief Return a string describing all available parameters.

        \sa Z3_simplify_ex
        \sa Z3_simplify_get_param_descrs

       def_API('Z3_simplify_get_help', STRING, (_in(CONTEXT),))
    */
    Z3_string Z3_API Z3_simplify_get_help(Z3_context c);

    /**
       \brief Return the parameter description set for the simplify procedure.

        \sa Z3_simplify_ex
        \sa Z3_simplify_get_help

       def_API('Z3_simplify_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT),))
    */
    Z3_param_descrs Z3_API Z3_simplify_get_param_descrs(Z3_context c);
    /*@}*/

    /** @name Modifiers */
    /*@{*/
    /**
       \brief Update the arguments of term \c a using the arguments \c args.
       The number of arguments \c num_args should coincide
       with the number of arguments to \c a.
       If \c a is a quantifier, then num_args has to be 1.

       def_API('Z3_update_term', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_update_term(Z3_context c, Z3_ast a, unsigned num_args, Z3_ast const args[]);

    /**
       \brief Substitute every occurrence of \ccode{from[i]} in \c a with \ccode{to[i]}, for \c i smaller than \c num_exprs.
       The result is the new AST. The arrays \c from and \c to must have size \c num_exprs.
       For every \c i smaller than \c num_exprs, we must have that sort of \ccode{from[i]} must be equal to sort of \ccode{to[i]}.

       def_API('Z3_substitute', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_substitute(Z3_context c,
                                Z3_ast a,
                                unsigned num_exprs,
                                Z3_ast const from[],
                                Z3_ast const to[]);

    /**
       \brief Substitute the free variables in \c a with the expressions in \c to.
       For every \c i smaller than \c num_exprs, the variable with de-Bruijn index \c i is replaced with term \ccode{to[i]}.

       def_API('Z3_substitute_vars', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_substitute_vars(Z3_context c,
                                     Z3_ast a,
                                     unsigned num_exprs,
                                     Z3_ast const to[]);

    /**
       \brief Translate/Copy the AST \c a from context \c source to context \c target.
       AST \c a must have been created using context \c source.
       \pre source != target

       def_API('Z3_translate', AST, (_in(CONTEXT), _in(AST), _in(CONTEXT)))
    */
    Z3_ast Z3_API Z3_translate(Z3_context source, Z3_ast a, Z3_context target);
    /*@}*/

    /** @name Models */
    /*@{*/

    /**
       \brief Create a fresh model object. It has reference count 0.

       def_API('Z3_mk_model', MODEL, (_in(CONTEXT),))
    */
    Z3_model Z3_API Z3_mk_model(Z3_context c);

    /**
       \brief Increment the reference counter of the given model.

       def_API('Z3_model_inc_ref', VOID, (_in(CONTEXT), _in(MODEL)))
    */
    void Z3_API Z3_model_inc_ref(Z3_context c, Z3_model m);

    /**
       \brief Decrement the reference counter of the given model.

       def_API('Z3_model_dec_ref', VOID, (_in(CONTEXT), _in(MODEL)))
    */
    void Z3_API Z3_model_dec_ref(Z3_context c, Z3_model m);

    /**
       \brief Evaluate the AST node \c t in the given model.
       Return \c true if succeeded, and store the result in \c v.

       If \c model_completion is \c true, then Z3 will assign an interpretation for any constant or function that does
       not have an interpretation in \c m. These constants and functions were essentially don't cares.

       If \c model_completion is \c false, then Z3 will not assign interpretations to constants for functions that do
       not have interpretations in \c m. Evaluation behaves as the identify function in this case.

       The evaluation may fail for the following reasons:

       - \c t contains a quantifier.

       - the model \c m is partial, that is, it doesn't have a complete interpretation for uninterpreted functions.
       That is, the option \ccode{MODEL_PARTIAL=true} was used.

       - \c t is type incorrect.

       - \c Z3_interrupt was invoked during evaluation.

       def_API('Z3_model_eval', BOOL, (_in(CONTEXT), _in(MODEL), _in(AST), _in(BOOL), _out(AST)))
    */
    Z3_bool_opt Z3_API Z3_model_eval(Z3_context c, Z3_model m, Z3_ast t, bool model_completion, Z3_ast * v);

    /**
       \brief Return the interpretation (i.e., assignment) of constant \c a in the model \c m.
       Return \c NULL, if the model does not assign an interpretation for \c a.
       That should be interpreted as: the value of \c a does not matter.

       \pre Z3_get_arity(c, a) == 0

       def_API('Z3_model_get_const_interp', AST, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
    */
    Z3_ast_opt Z3_API Z3_model_get_const_interp(Z3_context c, Z3_model m, Z3_func_decl a);

    /**
       \brief Test if there exists an interpretation (i.e., assignment) for \c a in the model \c m.

       def_API('Z3_model_has_interp', BOOL, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
    */
    bool Z3_API Z3_model_has_interp(Z3_context c, Z3_model m, Z3_func_decl a);

    /**
       \brief Return the interpretation of the function \c f in the model \c m.
       Return \c NULL, if the model does not assign an interpretation for \c f.
       That should be interpreted as: the \c f does not matter.

       \pre Z3_get_arity(c, f) > 0

       \remark Reference counting must be used to manage Z3_func_interp objects, even when the Z3_context was
       created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_model_get_func_interp', FUNC_INTERP, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
    */
    Z3_func_interp_opt Z3_API Z3_model_get_func_interp(Z3_context c, Z3_model m, Z3_func_decl f);

    /**
       \brief Return the number of constants assigned by the given model.

       \sa Z3_model_get_const_decl

       def_API('Z3_model_get_num_consts', UINT, (_in(CONTEXT), _in(MODEL)))
    */
    unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m);

    /**
       \brief Return the i-th constant in the given model.

       \pre i < Z3_model_get_num_consts(c, m)

       \sa Z3_model_eval

       def_API('Z3_model_get_const_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_model_get_const_decl(Z3_context c, Z3_model m, unsigned i);

    /**
       \brief Return the number of function interpretations in the given model.

       A function interpretation is represented as a finite map and an 'else' value.
       Each entry in the finite map represents the value of a function given a set of arguments.

       def_API('Z3_model_get_num_funcs', UINT, (_in(CONTEXT), _in(MODEL)))
    */
    unsigned Z3_API Z3_model_get_num_funcs(Z3_context c, Z3_model m);

    /**
       \brief Return the declaration of the i-th function in the given model.

       \pre i < Z3_model_get_num_funcs(c, m)

       \sa Z3_model_get_num_funcs

       def_API('Z3_model_get_func_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_model_get_func_decl(Z3_context c, Z3_model m, unsigned i);

    /**
       \brief Return the number of uninterpreted sorts that \c m assigns an interpretation to.

       Z3 also provides an interpretation for uninterpreted sorts used in a formula.
       The interpretation for a sort \c s is a finite set of distinct values. We say this finite set is
       the "universe" of \c s.

       \sa Z3_model_get_sort
       \sa Z3_model_get_sort_universe

       def_API('Z3_model_get_num_sorts', UINT, (_in(CONTEXT), _in(MODEL)))
    */
    unsigned Z3_API Z3_model_get_num_sorts(Z3_context c, Z3_model m);

    /**
       \brief Return a uninterpreted sort that \c m assigns an interpretation.

       \pre i < Z3_model_get_num_sorts(c, m)

       \sa Z3_model_get_num_sorts
       \sa Z3_model_get_sort_universe

       def_API('Z3_model_get_sort', SORT, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    Z3_sort Z3_API Z3_model_get_sort(Z3_context c, Z3_model m, unsigned i);

    /**
       \brief Return the finite set of distinct values that represent the interpretation for sort \c s.

       \sa Z3_model_get_num_sorts
       \sa Z3_model_get_sort

       def_API('Z3_model_get_sort_universe', AST_VECTOR, (_in(CONTEXT), _in(MODEL), _in(SORT)))
    */
    Z3_ast_vector Z3_API Z3_model_get_sort_universe(Z3_context c, Z3_model m, Z3_sort s);

    /**
       \brief translate model from context \c c to context \c dst.

       def_API('Z3_model_translate', MODEL, (_in(CONTEXT), _in(MODEL), _in(CONTEXT)))
    */
    Z3_model Z3_API Z3_model_translate(Z3_context c, Z3_model m, Z3_context dst);

    /**
       \brief The \ccode{(_ as-array f)} AST node is a construct for assigning interpretations for arrays in Z3.
       It is the array such that forall indices \c i we have that \ccode{(select (_ as-array f) i)} is equal to \ccode{(f i)}.
       This procedure returns \c true if the \c a is an \c as-array AST node.

       Z3 current solvers have minimal support for \c as_array nodes.

       \sa Z3_get_as_array_func_decl

       def_API('Z3_is_as_array', BOOL, (_in(CONTEXT), _in(AST)))
    */
    bool Z3_API Z3_is_as_array(Z3_context c, Z3_ast a);

    /**
       \brief Return the function declaration \c f associated with a \ccode{(_ as_array f)} node.

       \sa Z3_is_as_array

       def_API('Z3_get_as_array_func_decl', FUNC_DECL, (_in(CONTEXT), _in(AST)))
    */
    Z3_func_decl Z3_API Z3_get_as_array_func_decl(Z3_context c, Z3_ast a);

    /**
       \brief Create a fresh func_interp object, add it to a model for a specified function.
       It has reference count 0.

       \param c context
       \param m model
       \param f function declaration
       \param default_value default value for function interpretation

       def_API('Z3_add_func_interp', FUNC_INTERP, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL), _in(AST)))
    */
    Z3_func_interp Z3_API Z3_add_func_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast default_value);

    /**
       \brief Add a constant interpretation.

       def_API('Z3_add_const_interp', VOID, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL), _in(AST)))
     */
    void Z3_API Z3_add_const_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast a);

    /**
       \brief Increment the reference counter of the given Z3_func_interp object.

       def_API('Z3_func_interp_inc_ref', VOID, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    void Z3_API Z3_func_interp_inc_ref(Z3_context c, Z3_func_interp f);

    /**
       \brief Decrement the reference counter of the given Z3_func_interp object.

       def_API('Z3_func_interp_dec_ref', VOID, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    void Z3_API Z3_func_interp_dec_ref(Z3_context c, Z3_func_interp f);

    /**
       \brief Return the number of entries in the given function interpretation.

       A function interpretation is represented as a finite map and an 'else' value.
       Each entry in the finite map represents the value of a function given a set of arguments.
       This procedure return the number of element in the finite map of \c f.

       def_API('Z3_func_interp_get_num_entries', UINT, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    unsigned Z3_API Z3_func_interp_get_num_entries(Z3_context c, Z3_func_interp f);

    /**
       \brief Return a "point" of the given function interpretation. It represents the
       value of \c f in a particular point.

       \pre i < Z3_func_interp_get_num_entries(c, f)

       \sa Z3_func_interp_get_num_entries

       def_API('Z3_func_interp_get_entry', FUNC_ENTRY, (_in(CONTEXT), _in(FUNC_INTERP), _in(UINT)))
    */
    Z3_func_entry Z3_API Z3_func_interp_get_entry(Z3_context c, Z3_func_interp f, unsigned i);

    /**
       \brief Return the 'else' value of the given function interpretation.

       A function interpretation is represented as a finite map and an 'else' value.
       This procedure returns the 'else' value.

       def_API('Z3_func_interp_get_else', AST, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    Z3_ast Z3_API Z3_func_interp_get_else(Z3_context c, Z3_func_interp f);

    /**
       \brief Return the 'else' value of the given function interpretation.

       A function interpretation is represented as a finite map and an 'else' value.
       This procedure can be used to update the 'else' value.

       def_API('Z3_func_interp_set_else', VOID, (_in(CONTEXT), _in(FUNC_INTERP), _in(AST)))
    */
    void Z3_API Z3_func_interp_set_else(Z3_context c, Z3_func_interp f, Z3_ast else_value);

    /**
       \brief Return the arity (number of arguments) of the given function interpretation.

       def_API('Z3_func_interp_get_arity', UINT, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    unsigned Z3_API Z3_func_interp_get_arity(Z3_context c, Z3_func_interp f);

    /**
       \brief add a function entry to a function interpretation.

       \param c logical context
       \param fi a function interpretation to be updated.
       \param args list of arguments. They should be constant values (such as integers) and be of the same types as the domain of the function.
       \param value value of the function when the parameters match args.

       It is assumed that entries added to a function cover disjoint arguments.
       If an two entries are added with the same arguments, only the second insertion survives and the
       first inserted entry is removed.

       def_API('Z3_func_interp_add_entry', VOID, (_in(CONTEXT), _in(FUNC_INTERP), _in(AST_VECTOR), _in(AST)))
     */
    void Z3_API Z3_func_interp_add_entry(Z3_context c, Z3_func_interp fi, Z3_ast_vector args, Z3_ast value);

    /**
       \brief Increment the reference counter of the given Z3_func_entry object.

       def_API('Z3_func_entry_inc_ref', VOID, (_in(CONTEXT), _in(FUNC_ENTRY)))
    */
    void Z3_API Z3_func_entry_inc_ref(Z3_context c, Z3_func_entry e);

    /**
       \brief Decrement the reference counter of the given Z3_func_entry object.

       def_API('Z3_func_entry_dec_ref', VOID, (_in(CONTEXT), _in(FUNC_ENTRY)))
    */
    void Z3_API Z3_func_entry_dec_ref(Z3_context c, Z3_func_entry e);

    /**
       \brief Return the value of this point.

       A Z3_func_entry object represents an element in the finite map used to encode
       a function interpretation.

       \sa Z3_func_interp_get_entry

       def_API('Z3_func_entry_get_value', AST, (_in(CONTEXT), _in(FUNC_ENTRY)))
    */
    Z3_ast Z3_API Z3_func_entry_get_value(Z3_context c, Z3_func_entry e);

    /**
       \brief Return the number of arguments in a Z3_func_entry object.

       \sa Z3_func_interp_get_entry

       def_API('Z3_func_entry_get_num_args', UINT, (_in(CONTEXT), _in(FUNC_ENTRY)))
    */
    unsigned Z3_API Z3_func_entry_get_num_args(Z3_context c, Z3_func_entry e);

    /**
       \brief Return an argument of a Z3_func_entry object.

       \pre i < Z3_func_entry_get_num_args(c, e)

       \sa Z3_func_interp_get_entry

       def_API('Z3_func_entry_get_arg', AST, (_in(CONTEXT), _in(FUNC_ENTRY), _in(UINT)))
    */
    Z3_ast Z3_API Z3_func_entry_get_arg(Z3_context c, Z3_func_entry e, unsigned i);
    /*@}*/

    /** @name Interaction logging */
    /*@{*/
    /**
       \brief Log interaction to a file.

       extra_API('Z3_open_log', INT, (_in(STRING),))
    */
    bool Z3_API Z3_open_log(Z3_string filename);

    /**
       \brief Append user-defined string to interaction log.

       The interaction log is opened using Z3_open_log.
       It contains the formulas that are checked using Z3.
       You can use this command to append comments, for instance.

       extra_API('Z3_append_log', VOID, (_in(STRING),))
    */
    void Z3_API Z3_append_log(Z3_string string);

    /**
       \brief Close interaction log.

       extra_API('Z3_close_log', VOID, ())
    */
    void Z3_API Z3_close_log(void);

    /**
       \brief Enable/disable printing warning messages to the console.

       Warnings are printed after passing \c true, warning messages are
       suppressed after calling this method with \c false.

       def_API('Z3_toggle_warning_messages', VOID, (_in(BOOL),))
    */
    void Z3_API Z3_toggle_warning_messages(bool enabled);
    /*@}*/

    /** @name String conversion */
    /*@{*/
    /**
       \brief Select mode for the format used for pretty-printing AST nodes.

       The default mode for pretty printing AST nodes is to produce
       SMT-LIB style output where common subexpressions are printed
       at each occurrence. The mode is called Z3_PRINT_SMTLIB_FULL.
       To print shared common subexpressions only once,
       use the Z3_PRINT_LOW_LEVEL mode.
       To print in way that conforms to SMT-LIB standards and uses let
       expressions to share common sub-expressions use Z3_PRINT_SMTLIB2_COMPLIANT.

       \sa Z3_ast_to_string
       \sa Z3_pattern_to_string
       \sa Z3_func_decl_to_string

       def_API('Z3_set_ast_print_mode', VOID, (_in(CONTEXT), _in(PRINT_MODE)))
    */
    void Z3_API Z3_set_ast_print_mode(Z3_context c, Z3_ast_print_mode mode);

    /**
       \brief Convert the given AST node into a string.

       \warning The result buffer is statically allocated by Z3. It will
       be automatically deallocated when #Z3_del_context is invoked.
       So, the buffer is invalidated in the next call to \c Z3_ast_to_string.

       \sa Z3_pattern_to_string
       \sa Z3_sort_to_string

       def_API('Z3_ast_to_string', STRING, (_in(CONTEXT), _in(AST)))
    */
    Z3_string Z3_API Z3_ast_to_string(Z3_context c, Z3_ast a);

    /**
      def_API('Z3_pattern_to_string', STRING, (_in(CONTEXT), _in(PATTERN)))
    */
    Z3_string Z3_API Z3_pattern_to_string(Z3_context c, Z3_pattern p);

    /**
      def_API('Z3_sort_to_string', STRING, (_in(CONTEXT), _in(SORT)))
    */
    Z3_string Z3_API Z3_sort_to_string(Z3_context c, Z3_sort s);

    /**
      def_API('Z3_func_decl_to_string', STRING, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_string Z3_API Z3_func_decl_to_string(Z3_context c, Z3_func_decl d);

    /**
       \brief Convert the given model into a string.

       \warning The result buffer is statically allocated by Z3. It will
       be automatically deallocated when #Z3_del_context is invoked.
       So, the buffer is invalidated in the next call to \c Z3_model_to_string.

       def_API('Z3_model_to_string', STRING, (_in(CONTEXT), _in(MODEL)))
    */
    Z3_string Z3_API Z3_model_to_string(Z3_context c, Z3_model m);

    /**
       \brief Convert the given benchmark into SMT-LIB formatted string.

       \warning The result buffer is statically allocated by Z3. It will
       be automatically deallocated when #Z3_del_context is invoked.
       So, the buffer is invalidated in the next call to \c Z3_benchmark_to_smtlib_string.

       \param c - context.
       \param name - name of benchmark. The argument is optional.
       \param logic - the benchmark logic.
       \param status - the status string (sat, unsat, or unknown)
       \param attributes - other attributes, such as source, difficulty or category.
       \param num_assumptions - number of assumptions.
       \param assumptions - auxiliary assumptions.
       \param formula - formula to be checked for consistency in conjunction with assumptions.

       def_API('Z3_benchmark_to_smtlib_string', STRING, (_in(CONTEXT), _in(STRING), _in(STRING), _in(STRING), _in(STRING), _in(UINT), _in_array(5, AST), _in(AST)))
    */
    Z3_string Z3_API Z3_benchmark_to_smtlib_string(Z3_context c,
                                                   Z3_string name,
                                                   Z3_string logic,
                                                   Z3_string status,
                                                   Z3_string attributes,
                                                   unsigned num_assumptions,
                                                   Z3_ast const assumptions[],
                                                   Z3_ast formula);

    /*@}*/

    /** @name Parser interface */
    /*@{*/
    /**
       \brief Parse the given string using the SMT-LIB2 parser.

       It returns a formula comprising of the conjunction of assertions in the scope
       (up to push/pop) at the end of the string.

       def_API('Z3_parse_smtlib2_string', AST_VECTOR, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
    */
    Z3_ast_vector Z3_API Z3_parse_smtlib2_string(Z3_context c,
                                          Z3_string str,
                                          unsigned num_sorts,
                                          Z3_symbol const sort_names[],
                                          Z3_sort const sorts[],
                                          unsigned num_decls,
                                          Z3_symbol const decl_names[],
                                          Z3_func_decl const decls[]);

    /**
       \brief Similar to #Z3_parse_smtlib2_string, but reads the benchmark from a file.

       def_API('Z3_parse_smtlib2_file', AST_VECTOR, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
    */
    Z3_ast_vector Z3_API Z3_parse_smtlib2_file(Z3_context c,
                                        Z3_string file_name,
                                        unsigned num_sorts,
                                        Z3_symbol const sort_names[],
                                        Z3_sort const sorts[],
                                        unsigned num_decls,
                                        Z3_symbol const decl_names[],
                                        Z3_func_decl const decls[]);


    /**
       \brief Parse and evaluate and SMT-LIB2 command sequence. The state from a previous call is saved so the next
              evaluation builds on top of the previous call.

       \returns output generated from processing commands.

       def_API('Z3_eval_smtlib2_string', STRING, (_in(CONTEXT), _in(STRING),))
    */

    Z3_string Z3_API Z3_eval_smtlib2_string(Z3_context, Z3_string str);
    
    /*@}*/

    /** @name Error Handling */
    /*@{*/
#ifndef SAFE_ERRORS
    /**
       \brief Return the error code for the last API call.

       A call to a Z3 function may return a non Z3_OK error code,
       when it is not used correctly.

       \sa Z3_set_error_handler

       def_API('Z3_get_error_code', UINT, (_in(CONTEXT), ))
    */
    Z3_error_code Z3_API Z3_get_error_code(Z3_context c);

    /**
       \brief Register a Z3 error handler.

       A call to a Z3 function may return a non Z3_OK error code, when
       it is not used correctly.  An error handler can be registered
       and will be called in this case.  To disable the use of the
       error handler, simply register with \c h=NULL.

       \warning Log files, created using #Z3_open_log, may be potentially incomplete/incorrect if error handlers are used.

       \sa Z3_get_error_code
    */
    void Z3_API Z3_set_error_handler(Z3_context c, Z3_error_handler h);
#endif

    /**
       \brief Set an error.

       def_API('Z3_set_error', VOID, (_in(CONTEXT), _in(ERROR_CODE)))
    */
    void Z3_API Z3_set_error(Z3_context c, Z3_error_code e);

    /**
       \brief Return a string describing the given error code.

       def_API('Z3_get_error_msg', STRING, (_in(CONTEXT), _in(ERROR_CODE)))
    */
    Z3_string Z3_API Z3_get_error_msg(Z3_context c, Z3_error_code err);

    /*@}*/

    /** @name Miscellaneous */
    /*@{*/

    /**
       \brief Return Z3 version number information.

       def_API('Z3_get_version', VOID, (_out(UINT), _out(UINT), _out(UINT), _out(UINT)))
    */
    void Z3_API Z3_get_version(unsigned * major, unsigned * minor, unsigned * build_number, unsigned * revision_number);

    /**
        \brief Return a string that fully describes the version of Z3 in use.

        def_API('Z3_get_full_version', STRING, ())
    */
    Z3_string Z3_API Z3_get_full_version(void);

    /**
       \brief Enable tracing messages tagged as \c tag when Z3 is compiled in debug mode.
       It is a NOOP otherwise

       def_API('Z3_enable_trace', VOID, (_in(STRING),))
    */
    void Z3_API Z3_enable_trace(Z3_string tag);

    /**
       \brief Disable tracing messages tagged as \c tag when Z3 is compiled in debug mode.
       It is a NOOP otherwise

       def_API('Z3_disable_trace', VOID, (_in(STRING),))
    */
    void Z3_API Z3_disable_trace(Z3_string tag);

    /**
       \brief Reset all allocated resources.

       Use this facility on out-of memory errors.
       It allows discharging the previous state and resuming afresh.
       Any pointers previously returned by the API
       become invalid.

       def_API('Z3_reset_memory', VOID, ())
    */
    void Z3_API Z3_reset_memory(void);

    /**
       \brief Destroy all allocated resources.

       Any pointers previously returned by the API become invalid.
       Can be used for memory leak detection.

       def_API('Z3_finalize_memory', VOID, ())
    */
    void Z3_API Z3_finalize_memory(void);
    /*@}*/

    /** @name Goals */
    /*@{*/
    /**
       \brief Create a goal (aka problem). A goal is essentially a set
       of formulas, that can be solved and/or transformed using
       tactics and solvers.

       If models == true, then model generation is enabled for the new goal.

       If unsat_cores == true, then unsat core generation is enabled for the new goal.

       If proofs == true, then proof generation is enabled for the new goal. Remark, the
       Z3 context c must have been created with proof generation support.

       \remark Reference counting must be used to manage goals, even when the Z3_context was
       created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_goal', GOAL, (_in(CONTEXT), _in(BOOL), _in(BOOL), _in(BOOL)))
    */
    Z3_goal Z3_API Z3_mk_goal(Z3_context c, bool models, bool unsat_cores, bool proofs);

    /**
       \brief Increment the reference counter of the given goal.

       def_API('Z3_goal_inc_ref', VOID, (_in(CONTEXT), _in(GOAL)))
    */
    void Z3_API Z3_goal_inc_ref(Z3_context c, Z3_goal g);

    /**
       \brief Decrement the reference counter of the given goal.

       def_API('Z3_goal_dec_ref', VOID, (_in(CONTEXT), _in(GOAL)))
    */
    void Z3_API Z3_goal_dec_ref(Z3_context c, Z3_goal g);

    /**
       \brief Return the "precision" of the given goal. Goals can be transformed using over and under approximations.
       A under approximation is applied when the objective is to find a model for a given goal.
       An over approximation is applied when the objective is to find a proof for a given goal.

       def_API('Z3_goal_precision', UINT, (_in(CONTEXT), _in(GOAL)))
    */
    Z3_goal_prec Z3_API Z3_goal_precision(Z3_context c, Z3_goal g);

    /**
       \brief Add a new formula \c a to the given goal.
        The formula is split according to the following procedure that is applied
        until a fixed-point:
           Conjunctions are split into separate formulas.
           Negations are distributed over disjunctions, resulting in separate formulas.
        If the goal is \c false, adding new formulas is a no-op.
        If the formula \c a is \c true, then nothing is added.
        If the formula \c a is \c false, then the entire goal is replaced by the formula \c false.

       def_API('Z3_goal_assert', VOID, (_in(CONTEXT), _in(GOAL), _in(AST)))
    */
    void Z3_API Z3_goal_assert(Z3_context c, Z3_goal g, Z3_ast a);

    /**
       \brief Return true if the given goal contains the formula \c false.

       def_API('Z3_goal_inconsistent', BOOL, (_in(CONTEXT), _in(GOAL)))
    */
    bool Z3_API Z3_goal_inconsistent(Z3_context c, Z3_goal g);

    /**
       \brief Return the depth of the given goal. It tracks how many transformations were applied to it.

       def_API('Z3_goal_depth', UINT, (_in(CONTEXT), _in(GOAL)))
    */
    unsigned Z3_API Z3_goal_depth(Z3_context c, Z3_goal g);

    /**
       \brief Erase all formulas from the given goal.

       def_API('Z3_goal_reset', VOID, (_in(CONTEXT), _in(GOAL)))
    */
    void Z3_API Z3_goal_reset(Z3_context c, Z3_goal g);

    /**
       \brief Return the number of formulas in the given goal.

       def_API('Z3_goal_size', UINT, (_in(CONTEXT), _in(GOAL)))
    */
    unsigned Z3_API Z3_goal_size(Z3_context c, Z3_goal g);

    /**
       \brief Return a formula from the given goal.

       \pre idx < Z3_goal_size(c, g)

       def_API('Z3_goal_formula', AST, (_in(CONTEXT), _in(GOAL), _in(UINT)))
    */
    Z3_ast Z3_API Z3_goal_formula(Z3_context c, Z3_goal g, unsigned idx);

    /**
       \brief Return the number of formulas, subformulas and terms in the given goal.

       def_API('Z3_goal_num_exprs', UINT, (_in(CONTEXT), _in(GOAL)))
    */
    unsigned Z3_API Z3_goal_num_exprs(Z3_context c, Z3_goal g);

    /**
       \brief Return true if the goal is empty, and it is precise or the product of a under approximation.

       def_API('Z3_goal_is_decided_sat', BOOL, (_in(CONTEXT), _in(GOAL)))
    */
    bool Z3_API Z3_goal_is_decided_sat(Z3_context c, Z3_goal g);

    /**
       \brief Return true if the goal contains false, and it is precise or the product of an over approximation.

       def_API('Z3_goal_is_decided_unsat', BOOL, (_in(CONTEXT), _in(GOAL)))
    */
    bool Z3_API Z3_goal_is_decided_unsat(Z3_context c, Z3_goal g);

    /**
       \brief Copy a goal \c g from the context \c source to the context \c target.

       def_API('Z3_goal_translate', GOAL, (_in(CONTEXT), _in(GOAL), _in(CONTEXT)))
    */
    Z3_goal Z3_API Z3_goal_translate(Z3_context source, Z3_goal g, Z3_context target);

    /**
       \brief Convert a model of the formulas of a goal to a model of an original goal.
       The model may be null, in which case the returned model is valid if the goal was
       established satisfiable.

       def_API('Z3_goal_convert_model', MODEL, (_in(CONTEXT), _in(GOAL), _in(MODEL)))
    */
    Z3_model Z3_API Z3_goal_convert_model(Z3_context c, Z3_goal g, Z3_model m);

    /**
       \brief Convert a goal into a string.

       def_API('Z3_goal_to_string', STRING, (_in(CONTEXT), _in(GOAL)))
    */
    Z3_string Z3_API Z3_goal_to_string(Z3_context c, Z3_goal g);

    /**
       \brief Convert a goal into a DIMACS formatted string.
       The goal must be in CNF. You can convert a goal to CNF
       by applying the tseitin-cnf tactic. Bit-vectors are not automatically
       converted to Booleans either, so if the caller intends to
       preserve satisfiability, it should apply bit-blasting tactics.
       Quantifiers and theory atoms will not be encoded.

       def_API('Z3_goal_to_dimacs_string', STRING, (_in(CONTEXT), _in(GOAL)))
    */
    Z3_string Z3_API Z3_goal_to_dimacs_string(Z3_context c, Z3_goal g);

    /*@}*/

    /** @name Tactics and Probes */
    /*@{*/
    /**
       \brief Return a tactic associated with the given name.
       The complete list of tactics may be obtained using the procedures #Z3_get_num_tactics and #Z3_get_tactic_name.
       It may also be obtained using the command \ccode{(help-tactic)} in the SMT 2.0 front-end.

       Tactics are the basic building block for creating custom solvers for specific problem domains.

       def_API('Z3_mk_tactic', TACTIC, (_in(CONTEXT), _in(STRING)))
    */
    Z3_tactic Z3_API Z3_mk_tactic(Z3_context c, Z3_string name);

    /**
       \brief Increment the reference counter of the given tactic.

       def_API('Z3_tactic_inc_ref', VOID, (_in(CONTEXT), _in(TACTIC)))
    */
    void Z3_API Z3_tactic_inc_ref(Z3_context c, Z3_tactic t);

    /**
       \brief Decrement the reference counter of the given tactic.

       def_API('Z3_tactic_dec_ref', VOID, (_in(CONTEXT), _in(TACTIC)))
    */
    void Z3_API Z3_tactic_dec_ref(Z3_context c, Z3_tactic g);

    /**
       \brief Return a probe associated with the given name.
       The complete list of probes may be obtained using the procedures #Z3_get_num_probes and #Z3_get_probe_name.
       It may also be obtained using the command \ccode{(help-tactic)} in the SMT 2.0 front-end.

       Probes are used to inspect a goal (aka problem) and collect information that may be used to decide
       which solver and/or preprocessing step will be used.

       def_API('Z3_mk_probe', PROBE, (_in(CONTEXT), _in(STRING)))
    */
    Z3_probe Z3_API Z3_mk_probe(Z3_context c, Z3_string name);

    /**
       \brief Increment the reference counter of the given probe.

       def_API('Z3_probe_inc_ref', VOID, (_in(CONTEXT), _in(PROBE)))
    */
    void Z3_API Z3_probe_inc_ref(Z3_context c, Z3_probe p);

    /**
       \brief Decrement the reference counter of the given probe.

       def_API('Z3_probe_dec_ref', VOID, (_in(CONTEXT), _in(PROBE)))
    */
    void Z3_API Z3_probe_dec_ref(Z3_context c, Z3_probe p);

    /**
       \brief Return a tactic that applies \c t1 to a given goal and \c t2
       to every subgoal produced by t1.

       def_API('Z3_tactic_and_then', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2);

    /**
       \brief Return a tactic that first applies \c t1 to a given goal,
       if it fails then returns the result of \c t2 applied to the given goal.

       def_API('Z3_tactic_or_else', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_or_else(Z3_context c, Z3_tactic t1, Z3_tactic t2);

    /**
       \brief Return a tactic that applies the given tactics in parallel.

       def_API('Z3_tactic_par_or', TACTIC, (_in(CONTEXT), _in(UINT), _in_array(1, TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_par_or(Z3_context c, unsigned num, Z3_tactic const ts[]);

    /**
       \brief Return a tactic that applies \c t1 to a given goal and then \c t2
       to every subgoal produced by t1. The subgoals are processed in parallel.

       def_API('Z3_tactic_par_and_then', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_par_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2);

    /**
       \brief Return a tactic that applies \c t to a given goal for \c ms milliseconds.
       If \c t does not terminate in \c ms milliseconds, then it fails.

       def_API('Z3_tactic_try_for', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(UINT)))
     */
    Z3_tactic Z3_API Z3_tactic_try_for(Z3_context c, Z3_tactic t, unsigned ms);

    /**
       \brief Return a tactic that applies \c t to a given goal is the probe \c p evaluates to true.
       If \c p evaluates to false, then the new tactic behaves like the skip tactic.

       def_API('Z3_tactic_when', TACTIC, (_in(CONTEXT), _in(PROBE), _in(TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_when(Z3_context c, Z3_probe p, Z3_tactic t);

    /**
       \brief Return a tactic that applies \c t1 to a given goal if the probe \c p evaluates to true,
       and \c t2 if \c p evaluates to false.

       def_API('Z3_tactic_cond', TACTIC, (_in(CONTEXT), _in(PROBE), _in(TACTIC), _in(TACTIC)))
     */
    Z3_tactic Z3_API Z3_tactic_cond(Z3_context c, Z3_probe p, Z3_tactic t1, Z3_tactic t2);

    /**
       \brief Return a tactic that keeps applying \c t until the goal is not modified anymore or the maximum
       number of iterations \c max is reached.

       def_API('Z3_tactic_repeat', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(UINT)))
    */
    Z3_tactic Z3_API Z3_tactic_repeat(Z3_context c, Z3_tactic t, unsigned max);

    /**
       \brief Return a tactic that just return the given goal.

       def_API('Z3_tactic_skip', TACTIC, (_in(CONTEXT),))
    */
    Z3_tactic Z3_API Z3_tactic_skip(Z3_context c);

    /**
       \brief Return a tactic that always fails.

       def_API('Z3_tactic_fail', TACTIC, (_in(CONTEXT),))
    */
    Z3_tactic Z3_API Z3_tactic_fail(Z3_context c);

    /**
       \brief Return a tactic that fails if the probe \c p evaluates to false.

       def_API('Z3_tactic_fail_if', TACTIC, (_in(CONTEXT), _in(PROBE)))
    */
    Z3_tactic Z3_API Z3_tactic_fail_if(Z3_context c, Z3_probe p);

    /**
       \brief Return a tactic that fails if the goal is not trivially satisfiable (i.e., empty) or
       trivially unsatisfiable (i.e., contains false).

       def_API('Z3_tactic_fail_if_not_decided', TACTIC, (_in(CONTEXT),))
    */
    Z3_tactic Z3_API Z3_tactic_fail_if_not_decided(Z3_context c);

    /**
       \brief Return a tactic that applies \c t using the given set of parameters.

       def_API('Z3_tactic_using_params', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(PARAMS)))
    */
    Z3_tactic Z3_API Z3_tactic_using_params(Z3_context c, Z3_tactic t, Z3_params p);

    /**
       \brief Return a probe that always evaluates to val.

       def_API('Z3_probe_const', PROBE, (_in(CONTEXT), _in(DOUBLE)))
    */
    Z3_probe Z3_API Z3_probe_const(Z3_context x, double val);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is less than the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_lt', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_lt(Z3_context x, Z3_probe p1, Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is greater than the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_gt', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_gt(Z3_context x, Z3_probe p1, Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is less than or equal to the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_le', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_le(Z3_context x, Z3_probe p1, Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is greater than or equal to the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_ge', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_ge(Z3_context x, Z3_probe p1, Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is equal to the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_eq', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_eq(Z3_context x, Z3_probe p1, Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when \c p1 and \c p2 evaluates to true.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_and', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_and(Z3_context x, Z3_probe p1, Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when \c p1 or \c p2 evaluates to true.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_or', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_or(Z3_context x, Z3_probe p1, Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when \c p does not evaluate to true.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_not', PROBE, (_in(CONTEXT), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p);

    /**
       \brief Return the number of builtin tactics available in Z3.

       def_API('Z3_get_num_tactics', UINT, (_in(CONTEXT),))
    */
    unsigned Z3_API Z3_get_num_tactics(Z3_context c);

    /**
       \brief Return the name of the idx tactic.

       \pre i < Z3_get_num_tactics(c)

       def_API('Z3_get_tactic_name', STRING, (_in(CONTEXT), _in(UINT)))
    */
    Z3_string Z3_API Z3_get_tactic_name(Z3_context c, unsigned i);

    /**
       \brief Return the number of builtin probes available in Z3.

       def_API('Z3_get_num_probes', UINT, (_in(CONTEXT),))
    */
    unsigned Z3_API Z3_get_num_probes(Z3_context c);

    /**
       \brief Return the name of the i probe.

       \pre i < Z3_get_num_probes(c)

       def_API('Z3_get_probe_name', STRING, (_in(CONTEXT), _in(UINT)))
    */
    Z3_string Z3_API Z3_get_probe_name(Z3_context c, unsigned i);

    /**
       \brief Return a string containing a description of parameters accepted by the given tactic.

       def_API('Z3_tactic_get_help', STRING, (_in(CONTEXT), _in(TACTIC)))
    */
    Z3_string Z3_API Z3_tactic_get_help(Z3_context c, Z3_tactic t);

    /**
       \brief Return the parameter description set for the given tactic object.

       def_API('Z3_tactic_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(TACTIC)))
    */
    Z3_param_descrs Z3_API Z3_tactic_get_param_descrs(Z3_context c, Z3_tactic t);

    /**
       \brief Return a string containing a description of the tactic with the given name.

       def_API('Z3_tactic_get_descr', STRING, (_in(CONTEXT), _in(STRING)))
    */
    Z3_string Z3_API Z3_tactic_get_descr(Z3_context c, Z3_string name);

    /**
       \brief Return a string containing a description of the probe with the given name.

       def_API('Z3_probe_get_descr', STRING, (_in(CONTEXT), _in(STRING)))
    */
    Z3_string Z3_API Z3_probe_get_descr(Z3_context c, Z3_string name);

    /**
       \brief Execute the probe over the goal. The probe always produce a double value.
       "Boolean" probes return 0.0 for false, and a value different from 0.0 for true.

       def_API('Z3_probe_apply', DOUBLE, (_in(CONTEXT), _in(PROBE), _in(GOAL)))
    */
    double Z3_API Z3_probe_apply(Z3_context c, Z3_probe p, Z3_goal g);

    /**
       \brief Apply tactic \c t to the goal \c g.

       def_API('Z3_tactic_apply', APPLY_RESULT, (_in(CONTEXT), _in(TACTIC), _in(GOAL)))
    */
    Z3_apply_result Z3_API Z3_tactic_apply(Z3_context c, Z3_tactic t, Z3_goal g);

    /**
       \brief Apply tactic \c t to the goal \c g using the parameter set \c p.

       def_API('Z3_tactic_apply_ex', APPLY_RESULT, (_in(CONTEXT), _in(TACTIC), _in(GOAL), _in(PARAMS)))
    */
    Z3_apply_result Z3_API Z3_tactic_apply_ex(Z3_context c, Z3_tactic t, Z3_goal g, Z3_params p);

    /**
       \brief Increment the reference counter of the given \c Z3_apply_result object.

       def_API('Z3_apply_result_inc_ref', VOID, (_in(CONTEXT), _in(APPLY_RESULT)))
    */
    void Z3_API Z3_apply_result_inc_ref(Z3_context c, Z3_apply_result r);

    /**
       \brief Decrement the reference counter of the given \c Z3_apply_result object.

       def_API('Z3_apply_result_dec_ref', VOID, (_in(CONTEXT), _in(APPLY_RESULT)))
    */
    void Z3_API Z3_apply_result_dec_ref(Z3_context c, Z3_apply_result r);

    /**
       \brief Convert the \c Z3_apply_result object returned by #Z3_tactic_apply into a string.

       def_API('Z3_apply_result_to_string', STRING, (_in(CONTEXT), _in(APPLY_RESULT)))
    */
    Z3_string Z3_API Z3_apply_result_to_string(Z3_context c, Z3_apply_result r);

    /**
       \brief Return the number of subgoals in the \c Z3_apply_result object returned by #Z3_tactic_apply.

       def_API('Z3_apply_result_get_num_subgoals', UINT, (_in(CONTEXT), _in(APPLY_RESULT)))
    */
    unsigned Z3_API Z3_apply_result_get_num_subgoals(Z3_context c, Z3_apply_result r);

    /**
       \brief Return one of the subgoals in the \c Z3_apply_result object returned by #Z3_tactic_apply.

       \pre i < Z3_apply_result_get_num_subgoals(c, r)

       def_API('Z3_apply_result_get_subgoal', GOAL, (_in(CONTEXT), _in(APPLY_RESULT), _in(UINT)))
    */
    Z3_goal Z3_API Z3_apply_result_get_subgoal(Z3_context c, Z3_apply_result r, unsigned i);

    /*@}*/

    /** @name Solvers*/
    /*@{*/
    /**
       \brief Create a new solver. This solver is a "combined solver" (see
       combined_solver module) that internally uses a non-incremental (solver1) and an
       incremental solver (solver2). This combined solver changes its behaviour based
       on how it is used and how its parameters are set.

       If the solver is used in a non incremental way (i.e. no calls to
       #Z3_solver_push() or #Z3_solver_pop(), and no calls to
       #Z3_solver_assert() or #Z3_solver_assert_and_track() after checking
       satisfiability without an intervening #Z3_solver_reset()) then solver1
       will be used. This solver will apply Z3's "default" tactic.

       The "default" tactic will attempt to probe the logic used by the
       assertions and will apply a specialized tactic if one is supported.
       Otherwise the general `(and-then simplify smt)` tactic will be used.

       If the solver is used in an incremental way then the combined solver
       will switch to using solver2 (which behaves similarly to the general
       "smt" tactic).

       Note however it is possible to set the `solver2_timeout`,
       `solver2_unknown`, and `ignore_solver1` parameters of the combined
       solver to change its behaviour.

       The function #Z3_solver_get_model retrieves a model if the
       assertions is satisfiable (i.e., the result is \c
       Z3_L_TRUE) and model construction is enabled.
       The function #Z3_solver_get_model can also be used even
       if the result is \c Z3_L_UNDEF, but the returned model
       is not guaranteed to satisfy quantified assertions.

       \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
       Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_solver', SOLVER, (_in(CONTEXT),))
    */
    Z3_solver Z3_API Z3_mk_solver(Z3_context c);

    /**
       \brief Create a new incremental solver.

       This is equivalent to applying the "smt" tactic.

       Unlike #Z3_mk_solver() this solver
         - Does not attempt to apply any logic specific tactics.
         - Does not change its behaviour based on whether it used
           incrementally/non-incrementally.

       Note that these differences can result in very different performance
       compared to #Z3_mk_solver().

       The function #Z3_solver_get_model retrieves a model if the
       assertions is satisfiable (i.e., the result is \c
       Z3_L_TRUE) and model construction is enabled.
       The function #Z3_solver_get_model can also be used even
       if the result is \c Z3_L_UNDEF, but the returned model
       is not guaranteed to satisfy quantified assertions.

       \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
       Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_simple_solver', SOLVER, (_in(CONTEXT),))
    */
    Z3_solver Z3_API Z3_mk_simple_solver(Z3_context c);

    /**
       \brief Create a new solver customized for the given logic.
       It behaves like #Z3_mk_solver if the logic is unknown or unsupported.

       \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
       Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_solver_for_logic', SOLVER, (_in(CONTEXT), _in(SYMBOL)))
    */
    Z3_solver Z3_API Z3_mk_solver_for_logic(Z3_context c, Z3_symbol logic);

    /**
       \brief Create a new solver that is implemented using the given tactic.
       The solver supports the commands #Z3_solver_push and #Z3_solver_pop, but it
       will always solve each #Z3_solver_check from scratch.

       \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
       Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_solver_from_tactic', SOLVER, (_in(CONTEXT), _in(TACTIC)))
    */
    Z3_solver Z3_API Z3_mk_solver_from_tactic(Z3_context c, Z3_tactic t);

    /**
       \brief Copy a solver \c s from the context \c source to the context \c target.

       def_API('Z3_solver_translate', SOLVER, (_in(CONTEXT), _in(SOLVER), _in(CONTEXT)))
    */
    Z3_solver Z3_API Z3_solver_translate(Z3_context source, Z3_solver s, Z3_context target);

    /**
       \brief Ad-hoc method for importing model conversion from solver.
       
       def_API('Z3_solver_import_model_converter', VOID, (_in(CONTEXT), _in(SOLVER), _in(SOLVER)))
     */
    void Z3_API Z3_solver_import_model_converter(Z3_context ctx, Z3_solver src, Z3_solver dst);

    /**
       \brief Return a string describing all solver available parameters.

       \sa Z3_solver_get_param_descrs
       \sa Z3_solver_set_params

       def_API('Z3_solver_get_help', STRING, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_string Z3_API Z3_solver_get_help(Z3_context c, Z3_solver s);

    /**
       \brief Return the parameter description set for the given solver object.

       \sa Z3_solver_get_help
       \sa Z3_solver_set_params

       def_API('Z3_solver_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_param_descrs Z3_API Z3_solver_get_param_descrs(Z3_context c, Z3_solver s);

    /**
       \brief Set the given solver using the given parameters.

       \sa Z3_solver_get_help
       \sa Z3_solver_get_param_descrs

       def_API('Z3_solver_set_params', VOID, (_in(CONTEXT), _in(SOLVER), _in(PARAMS)))
    */
    void Z3_API Z3_solver_set_params(Z3_context c, Z3_solver s, Z3_params p);

    /**
       \brief Increment the reference counter of the given solver.

       def_API('Z3_solver_inc_ref', VOID, (_in(CONTEXT), _in(SOLVER)))
    */
    void Z3_API Z3_solver_inc_ref(Z3_context c, Z3_solver s);

    /**
       \brief Decrement the reference counter of the given solver.

       def_API('Z3_solver_dec_ref', VOID, (_in(CONTEXT), _in(SOLVER)))
    */
    void Z3_API Z3_solver_dec_ref(Z3_context c, Z3_solver s);

    /**
       \brief Create a backtracking point.

       The solver contains a stack of assertions.

       \sa Z3_solver_get_num_scopes
       \sa Z3_solver_pop

       def_API('Z3_solver_push', VOID, (_in(CONTEXT), _in(SOLVER)))
    */
    void Z3_API Z3_solver_push(Z3_context c, Z3_solver s);

    /**
       \brief Backtrack \c n backtracking points.

       \sa Z3_solver_get_num_scopes
       \sa Z3_solver_push

       \pre n <= Z3_solver_get_num_scopes(c, s)

       def_API('Z3_solver_pop', VOID, (_in(CONTEXT), _in(SOLVER), _in(UINT)))
    */
    void Z3_API Z3_solver_pop(Z3_context c, Z3_solver s, unsigned n);

    /**
       \brief Remove all assertions from the solver.

       \sa Z3_solver_assert
       \sa Z3_solver_assert_and_track

       def_API('Z3_solver_reset', VOID, (_in(CONTEXT), _in(SOLVER)))
    */
    void Z3_API Z3_solver_reset(Z3_context c, Z3_solver s);

    /**
       \brief Return the number of backtracking points.

       \sa Z3_solver_push
       \sa Z3_solver_pop

       def_API('Z3_solver_get_num_scopes', UINT, (_in(CONTEXT), _in(SOLVER)))
    */
    unsigned Z3_API Z3_solver_get_num_scopes(Z3_context c, Z3_solver s);

    /**
       \brief Assert a constraint into the solver.

       The functions #Z3_solver_check and #Z3_solver_check_assumptions should be
       used to check whether the logical context is consistent or not.

       \sa Z3_solver_assert_and_track
       \sa Z3_solver_reset

       def_API('Z3_solver_assert', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST)))
    */
    void Z3_API Z3_solver_assert(Z3_context c, Z3_solver s, Z3_ast a);

    /**
       \brief Assert a constraint \c a into the solver, and track it (in the unsat) core using
       the Boolean constant \c p.

       This API is an alternative to #Z3_solver_check_assumptions for extracting unsat cores.
       Both APIs can be used in the same solver. The unsat core will contain a combination
       of the Boolean variables provided using Z3_solver_assert_and_track and the Boolean literals
       provided using #Z3_solver_check_assumptions.

       \pre \c a must be a Boolean expression
       \pre \c p must be a Boolean constant (aka variable).

       \sa Z3_solver_assert
       \sa Z3_solver_reset

       def_API('Z3_solver_assert_and_track', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST), _in(AST)))
    */
    void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p);

    /**
       \brief load solver assertions from a file.

       \sa Z3_solver_from_string
       \sa Z3_solver_to_string

       def_API('Z3_solver_from_file', VOID, (_in(CONTEXT), _in(SOLVER), _in(STRING)))
    */
    void Z3_API Z3_solver_from_file(Z3_context c, Z3_solver s, Z3_string file_name);

    /**
       \brief load solver assertions from a string.

       \sa Z3_solver_from_file
       \sa Z3_solver_to_string

       def_API('Z3_solver_from_string', VOID, (_in(CONTEXT), _in(SOLVER), _in(STRING)))
    */
    void Z3_API Z3_solver_from_string(Z3_context c, Z3_solver s, Z3_string file_name);

    /**
       \brief Return the set of asserted formulas on the solver.

       def_API('Z3_solver_get_assertions', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_ast_vector Z3_API Z3_solver_get_assertions(Z3_context c, Z3_solver s);

    /**
       \brief Return the set of units modulo model conversion.

       def_API('Z3_solver_get_units', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_ast_vector Z3_API Z3_solver_get_units(Z3_context c, Z3_solver s);


    /**
       \brief Return the set of non units in the solver state.

       def_API('Z3_solver_get_non_units', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s);

    /**
       \brief Check whether the assertions in a given solver are consistent or not.

       The function #Z3_solver_get_model retrieves a model if the
       assertions is satisfiable (i.e., the result is \c
       Z3_L_TRUE) and model construction is enabled.
       Note that if the call returns \c Z3_L_UNDEF, Z3 does not
       ensure that calls to #Z3_solver_get_model succeed and any models
       produced in this case are not guaranteed to satisfy the assertions.

       The function #Z3_solver_get_proof retrieves a proof if proof
       generation was enabled when the context was created, and the
       assertions are unsatisfiable (i.e., the result is \c Z3_L_FALSE).

       \sa Z3_solver_check_assumptions

       def_API('Z3_solver_check', INT, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_lbool Z3_API Z3_solver_check(Z3_context c, Z3_solver s);

    /**
       \brief Check whether the assertions in the given solver and
       optional assumptions are consistent or not.

       The function #Z3_solver_get_unsat_core retrieves the subset of the
       assumptions used in the unsatisfiability proof produced by Z3.

       \sa Z3_solver_check

       def_API('Z3_solver_check_assumptions', INT, (_in(CONTEXT), _in(SOLVER), _in(UINT), _in_array(2, AST)))
    */
    Z3_lbool Z3_API Z3_solver_check_assumptions(Z3_context c, Z3_solver s,
                                                unsigned num_assumptions, Z3_ast const assumptions[]);

    /**
       \brief Retrieve congruence class representatives for terms.

       The function can be used for relying on Z3 to identify equal terms under the current
       set of assumptions. The array of terms and array of class identifiers should have
       the same length. The class identifiers are numerals that are assigned to the same
       value for their corresponding terms if the current context forces the terms to be
       equal. You cannot deduce that terms corresponding to different numerals must be all different,
       (especially when using non-convex theories).
       All implied equalities are returned by this call.
       This means that two terms map to the same class identifier if and only if
       the current context implies that they are equal.

       A side-effect of the function is a satisfiability check on the assertions on the solver that is passed in.
       The function return \c Z3_L_FALSE if the current assertions are not satisfiable.

       def_API('Z3_get_implied_equalities', INT, (_in(CONTEXT), _in(SOLVER), _in(UINT), _in_array(2, AST), _out_array(2, UINT)))
    */
    Z3_lbool Z3_API Z3_get_implied_equalities(Z3_context c,
                                              Z3_solver  s,
                                              unsigned num_terms,
                                              Z3_ast const terms[],
                                              unsigned class_ids[]);

    /**
       \brief retrieve consequences from solver that determine values of the supplied function symbols.

       def_API('Z3_solver_get_consequences', INT, (_in(CONTEXT), _in(SOLVER), _in(AST_VECTOR), _in(AST_VECTOR), _in(AST_VECTOR)))
     */

    Z3_lbool Z3_API Z3_solver_get_consequences(Z3_context c,
                                               Z3_solver s,
                                               Z3_ast_vector assumptions,
                                               Z3_ast_vector variables,
                                               Z3_ast_vector consequences);


    /**
       \brief extract a next cube for a solver. The last cube is the constant \c true or \c false.
       The number of (non-constant) cubes is by default 1. For the sat solver cubing is controlled
       using parameters sat.lookahead.cube.cutoff and sat.lookahead.cube.fraction.
       
       The third argument is a vector of variables that may be used for cubing.
       The contents of the vector is only used in the first call. The initial list of variables
       is used in subsequent calls until it returns the unsatisfiable cube. 
       The vector is modified to contain a set of Autarky variables that occur in clauses that
       are affected by the (last literal in the) cube. These variables could be used by a different
       cuber (on a different solver object) for further recursive cubing. 

       The last argument is a backtracking level. It instructs the cube process to backtrack below
       the indicated level for the next cube.
       
       def_API('Z3_solver_cube', AST_VECTOR, (_in(CONTEXT), _in(SOLVER), _in(AST_VECTOR), _in(UINT)))
    */

    Z3_ast_vector Z3_API Z3_solver_cube(Z3_context c, Z3_solver s, Z3_ast_vector vars, unsigned backtrack_level);

    /**
       \brief Retrieve the model for the last #Z3_solver_check or #Z3_solver_check_assumptions

       The error handler is invoked if a model is not available because
       the commands above were not invoked for the given solver, or if the result was \c Z3_L_FALSE.

       def_API('Z3_solver_get_model', MODEL, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_model Z3_API Z3_solver_get_model(Z3_context c, Z3_solver s);

    /**
       \brief Retrieve the proof for the last #Z3_solver_check or #Z3_solver_check_assumptions

       The error handler is invoked if proof generation is not enabled,
       or if the commands above were not invoked for the given solver,
       or if the result was different from \c Z3_L_FALSE.

       def_API('Z3_solver_get_proof', AST, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_ast Z3_API Z3_solver_get_proof(Z3_context c, Z3_solver s);

    /**
       \brief Retrieve the unsat core for the last #Z3_solver_check_assumptions
       The unsat core is a subset of the assumptions \c a.

       def_API('Z3_solver_get_unsat_core', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_ast_vector Z3_API Z3_solver_get_unsat_core(Z3_context c, Z3_solver s);

    /**
       \brief Return a brief justification for an "unknown" result (i.e., \c Z3_L_UNDEF) for
       the commands #Z3_solver_check and #Z3_solver_check_assumptions

       def_API('Z3_solver_get_reason_unknown', STRING, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_string Z3_API Z3_solver_get_reason_unknown(Z3_context c, Z3_solver s);

    /**
       \brief Return statistics for the given solver.

       \remark User must use #Z3_stats_inc_ref and #Z3_stats_dec_ref to manage Z3_stats objects.

       def_API('Z3_solver_get_statistics', STATS, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_stats Z3_API Z3_solver_get_statistics(Z3_context c, Z3_solver s);

    /**
       \brief Convert a solver into a string.

       \sa Z3_solver_from_file
       \sa Z3_solver_from_string

       def_API('Z3_solver_to_string', STRING, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s);

    /*@}*/

    /** @name Statistics */
    /*@{*/

    /**
       \brief Convert a statistics into a string.

       def_API('Z3_stats_to_string', STRING, (_in(CONTEXT), _in(STATS)))
    */
    Z3_string Z3_API Z3_stats_to_string(Z3_context c, Z3_stats s);

    /**
       \brief Increment the reference counter of the given statistics object.

       def_API('Z3_stats_inc_ref', VOID, (_in(CONTEXT), _in(STATS)))
    */
    void Z3_API Z3_stats_inc_ref(Z3_context c, Z3_stats s);

    /**
       \brief Decrement the reference counter of the given statistics object.

       def_API('Z3_stats_dec_ref', VOID, (_in(CONTEXT), _in(STATS)))
    */
    void Z3_API Z3_stats_dec_ref(Z3_context c, Z3_stats s);

    /**
       \brief Return the number of statistical data in \c s.

       def_API('Z3_stats_size', UINT, (_in(CONTEXT), _in(STATS)))
    */
    unsigned Z3_API Z3_stats_size(Z3_context c, Z3_stats s);

    /**
       \brief Return the key (a string) for a particular statistical data.

       \pre idx < Z3_stats_size(c, s)

       def_API('Z3_stats_get_key', STRING, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    Z3_string Z3_API Z3_stats_get_key(Z3_context c, Z3_stats s, unsigned idx);

    /**
       \brief Return \c true if the given statistical data is a unsigned integer.

       \pre idx < Z3_stats_size(c, s)

       def_API('Z3_stats_is_uint', BOOL, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    bool Z3_API Z3_stats_is_uint(Z3_context c, Z3_stats s, unsigned idx);

    /**
       \brief Return \c true if the given statistical data is a double.

       \pre idx < Z3_stats_size(c, s)

       def_API('Z3_stats_is_double', BOOL, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    bool Z3_API Z3_stats_is_double(Z3_context c, Z3_stats s, unsigned idx);

    /**
       \brief Return the unsigned value of the given statistical data.

       \pre idx < Z3_stats_size(c, s) && Z3_stats_is_uint(c, s)

       def_API('Z3_stats_get_uint_value', UINT, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    unsigned Z3_API Z3_stats_get_uint_value(Z3_context c, Z3_stats s, unsigned idx);

    /**
       \brief Return the double value of the given statistical data.

       \pre idx < Z3_stats_size(c, s) && Z3_stats_is_double(c, s)

       def_API('Z3_stats_get_double_value', DOUBLE, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    double Z3_API Z3_stats_get_double_value(Z3_context c, Z3_stats s, unsigned idx);

    /**
    \brief Return the estimated allocated memory in bytes.

    def_API('Z3_get_estimated_alloc_size', UINT64, ())
    */
    uint64_t Z3_API Z3_get_estimated_alloc_size(void);

    /*@}*/

#ifdef __cplusplus
}
#endif // __cplusplus

/*@}*/

#endif