aboutsummaryrefslogtreecommitdiffstats

meta-agl, the Yocto layer for Automotive Grade Linux Distribution

The yocto layer 'meta-agl' provides a minimal set of software to boot system of AGL Distribution.

AGL is creating an automotive specific Linux distribution that unifies the software that has been written in a number of places already, such as GENIVI and Tizen IVI.

The AGL community appreciates feedback, ideas, suggestion, bugs and documentation just as much as code. Please join the irc conversation at the #automotive channel on irc.freenode.net and our mailing list.

For infomation for subscribing to the mailing list automotive-discussions For information about AGL Distribution, see the AGL Distribution For information abount Getting started with AGL here For information about contributing to the AGL Distro here

Layer Dependencies

URI: git://git.yoctoproject.org/poky

branch: dizzy revision: df87cb27efeaea1455f20692f9f1397c6fcab254

URI: git://git.openembedded.org/meta-openembedded

layer: meta-oe branch: dizzy revision: 9efaed99125b1c4324663d9a1b2d3319c74e7278

The Renesas R-Car Gen2 (Porter) board depends in addition on:

URI: https://gerrit.automotivelinux.org/gerrit/AGL/meta-renesas

branch: agl-1.0-bsp-1.8.0 revision: bf30de66badcac7ef82d3758aa44c116ee791a28 (or later)

Layers

There are 3 layers in top-level meta-agl.

meta-ivi-common is a layer which contains common packages to AGL Distribution and other platforms for In-Vehicle Infotainment system.

meta-agl/meta-ivi-common

meta-agl is a layer which contains AGL common and middleware packages.

meta-agl/meta-agl

meta-agl-bsp is a layer which contains required packages to boot AGL distribution on an emulated machine(QEMU).

meta-agl/meta-agl-bsp

Packagegroups

AGL package group design:

  • packagegroup-agl-core*

These are for making image agl-image-minimal which is small image just capable of allowing a device to boot.

Subsystem should maintain packagegroup-agl-core-[subsystem].bb which should hold sufficient packages to build agl-image-minimal.

  • packagegroup-agl-ivi*

These are for making image agl-image-ivi which is baseline for IVI profile of AGL distro. 'Baseline' means Service Layer and Operating System Layer defined in AGL Spec v1.0. I think this is the same as GENIVI baseline. All packages which belong to AppHMI and Application Framework should be put into meta-agl-demo.

  • packagegroup-ivi-common*

These are for picking up some packages from GENIVI/Tizen/Others. The layer of meta-ivi-common has no image to build, all packagegroups are aggregated to packagegrou-ivi-common-core' and it is included by images,agl-image-ivi.bbandagl-demo-platform.bb``.

Supported Machine

  • QEMU (x86-64) - emulated machine: qemux86-64
  • Renesas R-Car Gen2 (R-Car M2) - machine: porter

Supported Target of bitbake

  • agl-image-ivi The baseline image of AGL Distributions

  • agl-image-minimal For internal use to develop distribution (experimental)

  • agl-image-weston For internal use to develop distribution (experimental)

Supposed Directory Trees of Layers to build

  • For QEMU

    ${TOPDIR}/ meta-agl/ meta-openembedded/ poky/

  • For R-Car M2

    ${TOPDIR}/ meta-agl/ meta-openembedded/ meta-renesas/ poky/

Build a QEMU image

You can build a QEMU image using the following steps:

  1. Export TEMPLATECONF to pick up correct configuration for the build

    $ export TEMPLATECONF=/full/path/to/meta-agl/meta-agl/conf

  2. Run the following command:

    $ source poky/oe-init-build-env

  3. Build the minimal image of AGL Distribution

    $ bitbake agl-image-ivi

  4. Run the emulator

    $ PATH_TO_POKY/poky/scripts/runqemu agl-image-ivi qemux86-64

For large screen:

$ PATH_TO_POKY/poky/scripts/runqemu agl-image-ivi qemux86-64 bootparams="uvesafb.mode_option=1280x720-32"

  1. Some weston samples are available from weston terminal.

Build a R-Car M2 (porter) image

Software setup

NOTE: These instructions are based on GENIVI wiki, here. If these didn't work correctly especially around Renesas Binary Packages, please check there and updated instructions.

Getting Source Code and Build image

  1. Create a directory for working, then go to there. $ mkdir -p $HOME/ANYWHERE_YOU_WANT_TO_WORK_THERE $ cd $HOME/ANYWHERE_YOU_WANT_TO_WORK_THERE $ export AGL_TOP=pwd

  2. Get the meta data and checkout $ git clone git://git.yoctoproject.org/poky $ cd poky $ git checkout df87cb27efeaea1455f20692f9f1397c6fcab254 $ cd - $ git clone git://git.openembedded.org/meta-openembedded $ cd meta-openembedded $ git checkout 9efaed99125b1c4324663d9a1b2d3319c74e7278 $ cd - $ git clone https://gerrit.automotivelinux.org/gerrit/AGL/meta-renesas $ cd meta-renesas $ git checkout bf30de66badcac7ef82d3758aa44c116ee791a28 $ cd - $ git clone https://gerrit.automotivelinux.org/gerrit/AGL/meta-agl

Obtain and Install Renesas Graphics Drivers

  1. Download packages from Renesas

The graphics and multimedia acceleration packages for the R-Car M2 Porter board can be download directory from here.

There are 2 ZIP files can be downloaded. * Multimedia and Graphics library which require registeration and click through license > r-car_series_evaluation_software_package_for_linux-.zip * Related Linux drivers > r-car_series_evaluation_software_package_of_linux_drivers-.zip

  1. Unzip the two downloads into a temporary directory. $ cd $AGL_TOP $ mkdir binary-tmp $ cd binary-tmp $ unzip PATH_TO_DOWNLOAD/r-car_series_evaluation_software_package_for_linux-.zip $ unzip PATH_TO_DOWNLOAD/r-car_series_evaluation_software_package_of_linux_drivers-.zip

After this step there should be two files in binary-tmp: * Multimedia and Graphics library

R-Car_Series_Evaluation_Software_Package_for_Linux-.tar.gz * Related Linux drivers R-Car_Series_Evaluation_Software_Package_of_Linux_Drivers-.tar.gz

  1. Copy the graphics acceleration drivers by shell script. $ cd $AGL_TOP/meta-renesas/meta-rcar-gen2 $ ./copy_gfx_software_porter.sh ../../binary-tmp

  2. Copy the multimedia acceleration drivers by shell script. $ cd $AGL_TOP/meta-renesas/meta-rcar-gen2 $ ./copy_mm_software_lcb.sh ../../binary-tmp

Build from the Source code

You can build a R-Car2 M2 (porter) image using the following steps:

  1. Export TEMPLATECONF to pick up correct configuration for the build $ export TEMPLATECONF=$AGL_TOP/meta-renesas/meta-rcar-gen2/conf

  2. Run the following command: $ cd $AGL_TOP $ source poky/oe-init-build-env

Edit conf/bblayers.conf then remove this line. ##OEROOT##/../meta-agl-demo \

(Optional) If you want to use multimedia accelerations, confirm your conf/bblayer.conf has a entry of meta-openembedded/meta-multimedia in BBLAYERS because packagegroup-rcar-gen2-multimedia needs some extra packages there.

  1. (Optional) If you want to use multimedia accelerations, uncomment manually 4 IMAGE_INSTALL_append_porter in conf/local.conf. #IMAGE_INSTALL_append_porter = " \ # gstreamer1.0-plugins-bad-waylandsink \ # "
    #IMAGE_INSTALL_append_porter = " \
    #    gstreamer1.0-plugins-base-videorate \
    ...
    #"
    
    #IMAGE_INSTALL_append_porter = " \
    #    libegl libegl-dev libgbm-dev \
    ...
    #    "
    
    #IMAGE_INSTALL_append_porter = " \
    #    packagegroup-rcar-gen2-multimedia \
    ...
    #    "
    

Also it is needed to uncomment this, #MACHINE_FEATURES_append = " multimedia"

This multimedia enables meta-renesas's multimedia configuration. The version of GStreamer1.0 which AGL distro use, will be changed to 1.2.3 (meta-renesas prefers) from 1.4.1(meta-agl default) by this switch.

  1. Build the minimal image of AGL Distribution $ bitbake agl-image-ivi

Deployment (SDCARD)

NOTE: These instructions are based on GENIVI wiki, here.

Instructions on the host

  1. Format SD-Card and then, create single EXT3 partition on it.

  2. Mount the SD-Card, for example /media/$SDCARD_LABEL.

  3. Copy AGL root file system onto the SD-Card

  4. Go to build directory $ cd $AGL_TOP/build/tmp/deploy/images/porter
  5. Extract the root file system into the SD-Card $ sudo tar --extract --numeric-owner --preserve-permissions --preserve-order \ --totals --directory=/media/$SDCARD_LABEL --file=agl-image-ivi-porter.tar.bz2
  6. Copy kernel and DTB into the /boot of the SD-Card $ sudo cp uImage uImage-r8a7791-porter.dtb /media/$SDCARD_LABEL/boot

  7. After the copy finished, unmount SD-Card and insert it into the SD-Card slot of the porter board.

Instructions on the host

NOTE: There is details about porter board here.

NOTE: To boot weston on porter board, we need keyboard and mouse. (USB2.0 can be use for this)

Change U-Boot parameters to boot from SD card
  1. Power up the board and, using your preferred terminal emulator, stop the board's autoboot by hitting any key.

Debug serial settings are 38400 8N1. Any standard terminal emulator program can be used.

  1. Set the follow environment variables and save them => setenv bootargs_console console=ttySC6,${baudrate} => setenv bootargs_video vmalloc=384M video=HDMI-A-1:1024x768-32@60 => setenv bootcmd_sd 'ext4load mmc 0:1 0x40007fc0 boot/uImage;ext4load mmc 0:1 0x40f00000 boot/uImage-r8a7791-porter.dtb' => setenv bootcmd 'setenv bootargs ${bootargs_console} ${bootargs_video} root=/dev/mmcblk0p1 rw rootfstype=ext3;run bootcmd_sd;bootm 0x40007fc0 - 0x40f00000' => saveenv
Boot from SD card
  1. After board reset, U-Boot is started and after a countdown, ... Linux boot message should be displayed. Please wait a moment.
  2. Then weston is booted automatically, and weston-terminal appears.

  3. Have fun! :)

  4. (Optional) This is how to test and play multimedia contents with acceleration.

    1. Boot porter without mouse and keyboard, it avoid to boot weston automatically. For now, when running weston, V4L2 deosn't work correctly, so we have to stop weston first (GST plugin waylandsink also doesn't work correctly for now).

    2. Execute these instructions: $ export LD_LIBRARY_PATH="/lib:/usr/lib:/usr/local/lib:"

      # Set the mixer
      $ amixer set "LINEOUT Mixer DACL" on
      $ amixer set "DVC Out" 10
      
      $ modprobe -a mmngr mmngrbuf s3ctl uvcs_cmn vspm fdpm
      
      $ media-ctl -d /dev/media0 -r
      $ media-ctl -d /dev/media0 -l '"vsp1.2 rpf.0":1 -> "vsp1.2 uds.0":0 [1]'
      $ media-ctl -d /dev/media0 -l '"vsp1.2 uds.0":1 -> "vsp1.2 wpf.0":0 [1]'
      $ media-ctl -d /dev/media0 -l '"vsp1.2 wpf.0":1 -> "vsp1.2 lif":0 [1]'
      $ media-ctl -d /dev/media0 -V '"vsp1.2 rpf.0":0 [fmt:AYUV32/1920x1080]'
      $ media-ctl -d /dev/media0 -V '"vsp1.2 rpf.0":1 [fmt:AYUV32/1920x1080]'
      $ media-ctl -d /dev/media0 -V '"vsp1.2 uds.0":0 [fmt:AYUV32/1920x1080]'
      $ media-ctl -d /dev/media0 -V '"vsp1.2 uds.0":1 [fmt:AYUV32/640x480]'
      $ media-ctl -d /dev/media0 -V '"vsp1.2 wpf.0":0 [fmt:AYUV32/640x480]'
      $ media-ctl -d /dev/media0 -V '"vsp1.2 wpf.0":1 [fmt:ARGB32/640x480]'
      $ media-ctl -d /dev/media0 -V '"vsp1.2 lif":0 [fmt:ARGB32/640x480]'
      
      # in caes R-Car M2 (HDMI - DU1 - vspd0)
      $ modetest -M rcar-du -s 10@8:1280x720@AR24 -d -P '8@19:640x480+100+200@XR24' &
      

    After these command, Test pattern will show on display connected to porter's HDMI port.

    Then, you can play H264(MP4) movie like these, $ gst-launch-1.0 filesrc location=./sample.mp4 ! qtdemux name=d d. ! \ queue ! omxh264dec no-copy=true ! v4l2sink device=/dev/video1 \ io-mode=userptr d. ! queue ! faad ! alsasink device=hw:0,0