aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/plugins/cache.c
diff options
context:
space:
mode:
authorTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
committerTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
commite02cda008591317b1625707ff8e115a4841aa889 (patch)
treeaee302e3cf8b59ec2d32ec481be3d1afddfc8968 /contrib/plugins/cache.c
parentcc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff)
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback design to work with QEMU and rust-vmm vhost-user backend without require any changes. Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'contrib/plugins/cache.c')
-rw-r--r--contrib/plugins/cache.c860
1 files changed, 860 insertions, 0 deletions
diff --git a/contrib/plugins/cache.c b/contrib/plugins/cache.c
new file mode 100644
index 000000000..b9226e7c4
--- /dev/null
+++ b/contrib/plugins/cache.c
@@ -0,0 +1,860 @@
+/*
+ * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
+ *
+ * License: GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ */
+
+#include <inttypes.h>
+#include <stdio.h>
+#include <glib.h>
+
+#include <qemu-plugin.h>
+
+#define STRTOLL(x) g_ascii_strtoll(x, NULL, 10)
+
+QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
+
+static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
+
+static GHashTable *miss_ht;
+
+static GMutex hashtable_lock;
+static GRand *rng;
+
+static int limit;
+static bool sys;
+
+enum EvictionPolicy {
+ LRU,
+ FIFO,
+ RAND,
+};
+
+enum EvictionPolicy policy;
+
+/*
+ * A CacheSet is a set of cache blocks. A memory block that maps to a set can be
+ * put in any of the blocks inside the set. The number of block per set is
+ * called the associativity (assoc).
+ *
+ * Each block contains the the stored tag and a valid bit. Since this is not
+ * a functional simulator, the data itself is not stored. We only identify
+ * whether a block is in the cache or not by searching for its tag.
+ *
+ * In order to search for memory data in the cache, the set identifier and tag
+ * are extracted from the address and the set is probed to see whether a tag
+ * match occur.
+ *
+ * An address is logically divided into three portions: The block offset,
+ * the set number, and the tag.
+ *
+ * The set number is used to identify the set in which the block may exist.
+ * The tag is compared against all the tags of a set to search for a match. If a
+ * match is found, then the access is a hit.
+ *
+ * The CacheSet also contains bookkeaping information about eviction details.
+ */
+
+typedef struct {
+ uint64_t tag;
+ bool valid;
+} CacheBlock;
+
+typedef struct {
+ CacheBlock *blocks;
+ uint64_t *lru_priorities;
+ uint64_t lru_gen_counter;
+ GQueue *fifo_queue;
+} CacheSet;
+
+typedef struct {
+ CacheSet *sets;
+ int num_sets;
+ int cachesize;
+ int assoc;
+ int blksize_shift;
+ uint64_t set_mask;
+ uint64_t tag_mask;
+ uint64_t accesses;
+ uint64_t misses;
+} Cache;
+
+typedef struct {
+ char *disas_str;
+ const char *symbol;
+ uint64_t addr;
+ uint64_t l1_dmisses;
+ uint64_t l1_imisses;
+ uint64_t l2_misses;
+} InsnData;
+
+void (*update_hit)(Cache *cache, int set, int blk);
+void (*update_miss)(Cache *cache, int set, int blk);
+
+void (*metadata_init)(Cache *cache);
+void (*metadata_destroy)(Cache *cache);
+
+static int cores;
+static Cache **l1_dcaches, **l1_icaches;
+
+static bool use_l2;
+static Cache **l2_ucaches;
+
+static GMutex *l1_dcache_locks;
+static GMutex *l1_icache_locks;
+static GMutex *l2_ucache_locks;
+
+static uint64_t l1_dmem_accesses;
+static uint64_t l1_imem_accesses;
+static uint64_t l1_imisses;
+static uint64_t l1_dmisses;
+
+static uint64_t l2_mem_accesses;
+static uint64_t l2_misses;
+
+static int pow_of_two(int num)
+{
+ g_assert((num & (num - 1)) == 0);
+ int ret = 0;
+ while (num /= 2) {
+ ret++;
+ }
+ return ret;
+}
+
+/*
+ * LRU evection policy: For each set, a generation counter is maintained
+ * alongside a priority array.
+ *
+ * On each set access, the generation counter is incremented.
+ *
+ * On a cache hit: The hit-block is assigned the current generation counter,
+ * indicating that it is the most recently used block.
+ *
+ * On a cache miss: The block with the least priority is searched and replaced
+ * with the newly-cached block, of which the priority is set to the current
+ * generation number.
+ */
+
+static void lru_priorities_init(Cache *cache)
+{
+ int i;
+
+ for (i = 0; i < cache->num_sets; i++) {
+ cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc);
+ cache->sets[i].lru_gen_counter = 0;
+ }
+}
+
+static void lru_update_blk(Cache *cache, int set_idx, int blk_idx)
+{
+ CacheSet *set = &cache->sets[set_idx];
+ set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter;
+ set->lru_gen_counter++;
+}
+
+static int lru_get_lru_block(Cache *cache, int set_idx)
+{
+ int i, min_idx, min_priority;
+
+ min_priority = cache->sets[set_idx].lru_priorities[0];
+ min_idx = 0;
+
+ for (i = 1; i < cache->assoc; i++) {
+ if (cache->sets[set_idx].lru_priorities[i] < min_priority) {
+ min_priority = cache->sets[set_idx].lru_priorities[i];
+ min_idx = i;
+ }
+ }
+ return min_idx;
+}
+
+static void lru_priorities_destroy(Cache *cache)
+{
+ int i;
+
+ for (i = 0; i < cache->num_sets; i++) {
+ g_free(cache->sets[i].lru_priorities);
+ }
+}
+
+/*
+ * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that
+ * stores accesses to the cache.
+ *
+ * On a compulsory miss: The block index is enqueued to the fifo_queue to
+ * indicate that it's the latest cached block.
+ *
+ * On a conflict miss: The first-in block is removed from the cache and the new
+ * block is put in its place and enqueued to the FIFO queue.
+ */
+
+static void fifo_init(Cache *cache)
+{
+ int i;
+
+ for (i = 0; i < cache->num_sets; i++) {
+ cache->sets[i].fifo_queue = g_queue_new();
+ }
+}
+
+static int fifo_get_first_block(Cache *cache, int set)
+{
+ GQueue *q = cache->sets[set].fifo_queue;
+ return GPOINTER_TO_INT(g_queue_pop_tail(q));
+}
+
+static void fifo_update_on_miss(Cache *cache, int set, int blk_idx)
+{
+ GQueue *q = cache->sets[set].fifo_queue;
+ g_queue_push_head(q, GINT_TO_POINTER(blk_idx));
+}
+
+static void fifo_destroy(Cache *cache)
+{
+ int i;
+
+ for (i = 0; i < cache->num_sets; i++) {
+ g_queue_free(cache->sets[i].fifo_queue);
+ }
+}
+
+static inline uint64_t extract_tag(Cache *cache, uint64_t addr)
+{
+ return addr & cache->tag_mask;
+}
+
+static inline uint64_t extract_set(Cache *cache, uint64_t addr)
+{
+ return (addr & cache->set_mask) >> cache->blksize_shift;
+}
+
+static const char *cache_config_error(int blksize, int assoc, int cachesize)
+{
+ if (cachesize % blksize != 0) {
+ return "cache size must be divisible by block size";
+ } else if (cachesize % (blksize * assoc) != 0) {
+ return "cache size must be divisible by set size (assoc * block size)";
+ } else {
+ return NULL;
+ }
+}
+
+static bool bad_cache_params(int blksize, int assoc, int cachesize)
+{
+ return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0);
+}
+
+static Cache *cache_init(int blksize, int assoc, int cachesize)
+{
+ Cache *cache;
+ int i;
+ uint64_t blk_mask;
+
+ /*
+ * This function shall not be called directly, and hence expects suitable
+ * parameters.
+ */
+ g_assert(!bad_cache_params(blksize, assoc, cachesize));
+
+ cache = g_new(Cache, 1);
+ cache->assoc = assoc;
+ cache->cachesize = cachesize;
+ cache->num_sets = cachesize / (blksize * assoc);
+ cache->sets = g_new(CacheSet, cache->num_sets);
+ cache->blksize_shift = pow_of_two(blksize);
+ cache->accesses = 0;
+ cache->misses = 0;
+
+ for (i = 0; i < cache->num_sets; i++) {
+ cache->sets[i].blocks = g_new0(CacheBlock, assoc);
+ }
+
+ blk_mask = blksize - 1;
+ cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift);
+ cache->tag_mask = ~(cache->set_mask | blk_mask);
+
+ if (metadata_init) {
+ metadata_init(cache);
+ }
+
+ return cache;
+}
+
+static Cache **caches_init(int blksize, int assoc, int cachesize)
+{
+ Cache **caches;
+ int i;
+
+ if (bad_cache_params(blksize, assoc, cachesize)) {
+ return NULL;
+ }
+
+ caches = g_new(Cache *, cores);
+
+ for (i = 0; i < cores; i++) {
+ caches[i] = cache_init(blksize, assoc, cachesize);
+ }
+
+ return caches;
+}
+
+static int get_invalid_block(Cache *cache, uint64_t set)
+{
+ int i;
+
+ for (i = 0; i < cache->assoc; i++) {
+ if (!cache->sets[set].blocks[i].valid) {
+ return i;
+ }
+ }
+
+ return -1;
+}
+
+static int get_replaced_block(Cache *cache, int set)
+{
+ switch (policy) {
+ case RAND:
+ return g_rand_int_range(rng, 0, cache->assoc);
+ case LRU:
+ return lru_get_lru_block(cache, set);
+ case FIFO:
+ return fifo_get_first_block(cache, set);
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static int in_cache(Cache *cache, uint64_t addr)
+{
+ int i;
+ uint64_t tag, set;
+
+ tag = extract_tag(cache, addr);
+ set = extract_set(cache, addr);
+
+ for (i = 0; i < cache->assoc; i++) {
+ if (cache->sets[set].blocks[i].tag == tag &&
+ cache->sets[set].blocks[i].valid) {
+ return i;
+ }
+ }
+
+ return -1;
+}
+
+/**
+ * access_cache(): Simulate a cache access
+ * @cache: The cache under simulation
+ * @addr: The address of the requested memory location
+ *
+ * Returns true if the requsted data is hit in the cache and false when missed.
+ * The cache is updated on miss for the next access.
+ */
+static bool access_cache(Cache *cache, uint64_t addr)
+{
+ int hit_blk, replaced_blk;
+ uint64_t tag, set;
+
+ tag = extract_tag(cache, addr);
+ set = extract_set(cache, addr);
+
+ hit_blk = in_cache(cache, addr);
+ if (hit_blk != -1) {
+ if (update_hit) {
+ update_hit(cache, set, hit_blk);
+ }
+ return true;
+ }
+
+ replaced_blk = get_invalid_block(cache, set);
+
+ if (replaced_blk == -1) {
+ replaced_blk = get_replaced_block(cache, set);
+ }
+
+ if (update_miss) {
+ update_miss(cache, set, replaced_blk);
+ }
+
+ cache->sets[set].blocks[replaced_blk].tag = tag;
+ cache->sets[set].blocks[replaced_blk].valid = true;
+
+ return false;
+}
+
+static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info,
+ uint64_t vaddr, void *userdata)
+{
+ uint64_t effective_addr;
+ struct qemu_plugin_hwaddr *hwaddr;
+ int cache_idx;
+ InsnData *insn;
+ bool hit_in_l1;
+
+ hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
+ if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
+ return;
+ }
+
+ effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr;
+ cache_idx = vcpu_index % cores;
+
+ g_mutex_lock(&l1_dcache_locks[cache_idx]);
+ hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr);
+ if (!hit_in_l1) {
+ insn = (InsnData *) userdata;
+ __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST);
+ l1_dcaches[cache_idx]->misses++;
+ }
+ l1_dcaches[cache_idx]->accesses++;
+ g_mutex_unlock(&l1_dcache_locks[cache_idx]);
+
+ if (hit_in_l1 || !use_l2) {
+ /* No need to access L2 */
+ return;
+ }
+
+ g_mutex_lock(&l2_ucache_locks[cache_idx]);
+ if (!access_cache(l2_ucaches[cache_idx], effective_addr)) {
+ insn = (InsnData *) userdata;
+ __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
+ l2_ucaches[cache_idx]->misses++;
+ }
+ l2_ucaches[cache_idx]->accesses++;
+ g_mutex_unlock(&l2_ucache_locks[cache_idx]);
+}
+
+static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata)
+{
+ uint64_t insn_addr;
+ InsnData *insn;
+ int cache_idx;
+ bool hit_in_l1;
+
+ insn_addr = ((InsnData *) userdata)->addr;
+
+ cache_idx = vcpu_index % cores;
+ g_mutex_lock(&l1_icache_locks[cache_idx]);
+ hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr);
+ if (!hit_in_l1) {
+ insn = (InsnData *) userdata;
+ __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST);
+ l1_icaches[cache_idx]->misses++;
+ }
+ l1_icaches[cache_idx]->accesses++;
+ g_mutex_unlock(&l1_icache_locks[cache_idx]);
+
+ if (hit_in_l1 || !use_l2) {
+ /* No need to access L2 */
+ return;
+ }
+
+ g_mutex_lock(&l2_ucache_locks[cache_idx]);
+ if (!access_cache(l2_ucaches[cache_idx], insn_addr)) {
+ insn = (InsnData *) userdata;
+ __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
+ l2_ucaches[cache_idx]->misses++;
+ }
+ l2_ucaches[cache_idx]->accesses++;
+ g_mutex_unlock(&l2_ucache_locks[cache_idx]);
+}
+
+static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
+{
+ size_t n_insns;
+ size_t i;
+ InsnData *data;
+
+ n_insns = qemu_plugin_tb_n_insns(tb);
+ for (i = 0; i < n_insns; i++) {
+ struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
+ uint64_t effective_addr;
+
+ if (sys) {
+ effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn);
+ } else {
+ effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn);
+ }
+
+ /*
+ * Instructions might get translated multiple times, we do not create
+ * new entries for those instructions. Instead, we fetch the same
+ * entry from the hash table and register it for the callback again.
+ */
+ g_mutex_lock(&hashtable_lock);
+ data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr));
+ if (data == NULL) {
+ data = g_new0(InsnData, 1);
+ data->disas_str = qemu_plugin_insn_disas(insn);
+ data->symbol = qemu_plugin_insn_symbol(insn);
+ data->addr = effective_addr;
+ g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr),
+ (gpointer) data);
+ }
+ g_mutex_unlock(&hashtable_lock);
+
+ qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access,
+ QEMU_PLUGIN_CB_NO_REGS,
+ rw, data);
+
+ qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec,
+ QEMU_PLUGIN_CB_NO_REGS, data);
+ }
+}
+
+static void insn_free(gpointer data)
+{
+ InsnData *insn = (InsnData *) data;
+ g_free(insn->disas_str);
+ g_free(insn);
+}
+
+static void cache_free(Cache *cache)
+{
+ for (int i = 0; i < cache->num_sets; i++) {
+ g_free(cache->sets[i].blocks);
+ }
+
+ if (metadata_destroy) {
+ metadata_destroy(cache);
+ }
+
+ g_free(cache->sets);
+ g_free(cache);
+}
+
+static void caches_free(Cache **caches)
+{
+ int i;
+
+ for (i = 0; i < cores; i++) {
+ cache_free(caches[i]);
+ }
+}
+
+static void append_stats_line(GString *line, uint64_t l1_daccess,
+ uint64_t l1_dmisses, uint64_t l1_iaccess,
+ uint64_t l1_imisses, uint64_t l2_access,
+ uint64_t l2_misses)
+{
+ double l1_dmiss_rate, l1_imiss_rate, l2_miss_rate;
+
+ l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0;
+ l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0;
+
+ g_string_append_printf(line, "%-14lu %-12lu %9.4lf%% %-14lu %-12lu"
+ " %9.4lf%%",
+ l1_daccess,
+ l1_dmisses,
+ l1_daccess ? l1_dmiss_rate : 0.0,
+ l1_iaccess,
+ l1_imisses,
+ l1_iaccess ? l1_imiss_rate : 0.0);
+
+ if (use_l2) {
+ l2_miss_rate = ((double) l2_misses) / (l2_access) * 100.0;
+ g_string_append_printf(line, " %-12lu %-11lu %10.4lf%%",
+ l2_access,
+ l2_misses,
+ l2_access ? l2_miss_rate : 0.0);
+ }
+
+ g_string_append(line, "\n");
+}
+
+static void sum_stats(void)
+{
+ int i;
+
+ g_assert(cores > 1);
+ for (i = 0; i < cores; i++) {
+ l1_imisses += l1_icaches[i]->misses;
+ l1_dmisses += l1_dcaches[i]->misses;
+ l1_imem_accesses += l1_icaches[i]->accesses;
+ l1_dmem_accesses += l1_dcaches[i]->accesses;
+
+ if (use_l2) {
+ l2_misses += l2_ucaches[i]->misses;
+ l2_mem_accesses += l2_ucaches[i]->accesses;
+ }
+ }
+}
+
+static int dcmp(gconstpointer a, gconstpointer b)
+{
+ InsnData *insn_a = (InsnData *) a;
+ InsnData *insn_b = (InsnData *) b;
+
+ return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1;
+}
+
+static int icmp(gconstpointer a, gconstpointer b)
+{
+ InsnData *insn_a = (InsnData *) a;
+ InsnData *insn_b = (InsnData *) b;
+
+ return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1;
+}
+
+static int l2_cmp(gconstpointer a, gconstpointer b)
+{
+ InsnData *insn_a = (InsnData *) a;
+ InsnData *insn_b = (InsnData *) b;
+
+ return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1;
+}
+
+static void log_stats(void)
+{
+ int i;
+ Cache *icache, *dcache, *l2_cache;
+
+ g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses,"
+ " dmiss rate, insn accesses,"
+ " insn misses, imiss rate");
+
+ if (use_l2) {
+ g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate");
+ }
+
+ g_string_append(rep, "\n");
+
+ for (i = 0; i < cores; i++) {
+ g_string_append_printf(rep, "%-8d", i);
+ dcache = l1_dcaches[i];
+ icache = l1_icaches[i];
+ l2_cache = use_l2 ? l2_ucaches[i] : NULL;
+ append_stats_line(rep, dcache->accesses, dcache->misses,
+ icache->accesses, icache->misses,
+ l2_cache ? l2_cache->accesses : 0,
+ l2_cache ? l2_cache->misses : 0);
+ }
+
+ if (cores > 1) {
+ sum_stats();
+ g_string_append_printf(rep, "%-8s", "sum");
+ append_stats_line(rep, l1_dmem_accesses, l1_dmisses,
+ l1_imem_accesses, l1_imisses,
+ l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0);
+ }
+
+ g_string_append(rep, "\n");
+ qemu_plugin_outs(rep->str);
+}
+
+static void log_top_insns(void)
+{
+ int i;
+ GList *curr, *miss_insns;
+ InsnData *insn;
+
+ miss_insns = g_hash_table_get_values(miss_ht);
+ miss_insns = g_list_sort(miss_insns, dcmp);
+ g_autoptr(GString) rep = g_string_new("");
+ g_string_append_printf(rep, "%s", "address, data misses, instruction\n");
+
+ for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
+ insn = (InsnData *) curr->data;
+ g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
+ if (insn->symbol) {
+ g_string_append_printf(rep, " (%s)", insn->symbol);
+ }
+ g_string_append_printf(rep, ", %ld, %s\n", insn->l1_dmisses,
+ insn->disas_str);
+ }
+
+ miss_insns = g_list_sort(miss_insns, icmp);
+ g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n");
+
+ for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
+ insn = (InsnData *) curr->data;
+ g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
+ if (insn->symbol) {
+ g_string_append_printf(rep, " (%s)", insn->symbol);
+ }
+ g_string_append_printf(rep, ", %ld, %s\n", insn->l1_imisses,
+ insn->disas_str);
+ }
+
+ if (!use_l2) {
+ goto finish;
+ }
+
+ miss_insns = g_list_sort(miss_insns, l2_cmp);
+ g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n");
+
+ for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
+ insn = (InsnData *) curr->data;
+ g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
+ if (insn->symbol) {
+ g_string_append_printf(rep, " (%s)", insn->symbol);
+ }
+ g_string_append_printf(rep, ", %ld, %s\n", insn->l2_misses,
+ insn->disas_str);
+ }
+
+finish:
+ qemu_plugin_outs(rep->str);
+ g_list_free(miss_insns);
+}
+
+static void plugin_exit(qemu_plugin_id_t id, void *p)
+{
+ log_stats();
+ log_top_insns();
+
+ caches_free(l1_dcaches);
+ caches_free(l1_icaches);
+
+ g_free(l1_dcache_locks);
+ g_free(l1_icache_locks);
+
+ if (use_l2) {
+ caches_free(l2_ucaches);
+ g_free(l2_ucache_locks);
+ }
+
+ g_hash_table_destroy(miss_ht);
+}
+
+static void policy_init(void)
+{
+ switch (policy) {
+ case LRU:
+ update_hit = lru_update_blk;
+ update_miss = lru_update_blk;
+ metadata_init = lru_priorities_init;
+ metadata_destroy = lru_priorities_destroy;
+ break;
+ case FIFO:
+ update_miss = fifo_update_on_miss;
+ metadata_init = fifo_init;
+ metadata_destroy = fifo_destroy;
+ break;
+ case RAND:
+ rng = g_rand_new();
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+QEMU_PLUGIN_EXPORT
+int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
+ int argc, char **argv)
+{
+ int i;
+ int l1_iassoc, l1_iblksize, l1_icachesize;
+ int l1_dassoc, l1_dblksize, l1_dcachesize;
+ int l2_assoc, l2_blksize, l2_cachesize;
+
+ limit = 32;
+ sys = info->system_emulation;
+
+ l1_dassoc = 8;
+ l1_dblksize = 64;
+ l1_dcachesize = l1_dblksize * l1_dassoc * 32;
+
+ l1_iassoc = 8;
+ l1_iblksize = 64;
+ l1_icachesize = l1_iblksize * l1_iassoc * 32;
+
+ l2_assoc = 16;
+ l2_blksize = 64;
+ l2_cachesize = l2_assoc * l2_blksize * 2048;
+
+ policy = LRU;
+
+ cores = sys ? qemu_plugin_n_vcpus() : 1;
+
+ for (i = 0; i < argc; i++) {
+ char *opt = argv[i];
+ g_autofree char **tokens = g_strsplit(opt, "=", 2);
+
+ if (g_strcmp0(tokens[0], "iblksize") == 0) {
+ l1_iblksize = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "iassoc") == 0) {
+ l1_iassoc = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "icachesize") == 0) {
+ l1_icachesize = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "dblksize") == 0) {
+ l1_dblksize = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "dassoc") == 0) {
+ l1_dassoc = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "dcachesize") == 0) {
+ l1_dcachesize = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "limit") == 0) {
+ limit = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "cores") == 0) {
+ cores = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) {
+ use_l2 = true;
+ l2_cachesize = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "l2blksize") == 0) {
+ use_l2 = true;
+ l2_blksize = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "l2assoc") == 0) {
+ use_l2 = true;
+ l2_assoc = STRTOLL(tokens[1]);
+ } else if (g_strcmp0(tokens[0], "l2") == 0) {
+ if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) {
+ fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
+ return -1;
+ }
+ } else if (g_strcmp0(tokens[0], "evict") == 0) {
+ if (g_strcmp0(tokens[1], "rand") == 0) {
+ policy = RAND;
+ } else if (g_strcmp0(tokens[1], "lru") == 0) {
+ policy = LRU;
+ } else if (g_strcmp0(tokens[1], "fifo") == 0) {
+ policy = FIFO;
+ } else {
+ fprintf(stderr, "invalid eviction policy: %s\n", opt);
+ return -1;
+ }
+ } else {
+ fprintf(stderr, "option parsing failed: %s\n", opt);
+ return -1;
+ }
+ }
+
+ policy_init();
+
+ l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize);
+ if (!l1_dcaches) {
+ const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize);
+ fprintf(stderr, "dcache cannot be constructed from given parameters\n");
+ fprintf(stderr, "%s\n", err);
+ return -1;
+ }
+
+ l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize);
+ if (!l1_icaches) {
+ const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize);
+ fprintf(stderr, "icache cannot be constructed from given parameters\n");
+ fprintf(stderr, "%s\n", err);
+ return -1;
+ }
+
+ l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL;
+ if (!l2_ucaches && use_l2) {
+ const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize);
+ fprintf(stderr, "L2 cache cannot be constructed from given parameters\n");
+ fprintf(stderr, "%s\n", err);
+ return -1;
+ }
+
+ l1_dcache_locks = g_new0(GMutex, cores);
+ l1_icache_locks = g_new0(GMutex, cores);
+ l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL;
+
+ qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
+ qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
+
+ miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free);
+
+ return 0;
+}