diff options
author | 2023-10-10 11:40:56 +0000 | |
---|---|---|
committer | 2023-10-10 11:40:56 +0000 | |
commit | e02cda008591317b1625707ff8e115a4841aa889 (patch) | |
tree | aee302e3cf8b59ec2d32ec481be3d1afddfc8968 /contrib/plugins/cache.c | |
parent | cc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff) |
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback
design to work with QEMU and rust-vmm vhost-user backend without require any
changes.
Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>
Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'contrib/plugins/cache.c')
-rw-r--r-- | contrib/plugins/cache.c | 860 |
1 files changed, 860 insertions, 0 deletions
diff --git a/contrib/plugins/cache.c b/contrib/plugins/cache.c new file mode 100644 index 000000000..b9226e7c4 --- /dev/null +++ b/contrib/plugins/cache.c @@ -0,0 +1,860 @@ +/* + * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com> + * + * License: GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ + +#include <inttypes.h> +#include <stdio.h> +#include <glib.h> + +#include <qemu-plugin.h> + +#define STRTOLL(x) g_ascii_strtoll(x, NULL, 10) + +QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; + +static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; + +static GHashTable *miss_ht; + +static GMutex hashtable_lock; +static GRand *rng; + +static int limit; +static bool sys; + +enum EvictionPolicy { + LRU, + FIFO, + RAND, +}; + +enum EvictionPolicy policy; + +/* + * A CacheSet is a set of cache blocks. A memory block that maps to a set can be + * put in any of the blocks inside the set. The number of block per set is + * called the associativity (assoc). + * + * Each block contains the the stored tag and a valid bit. Since this is not + * a functional simulator, the data itself is not stored. We only identify + * whether a block is in the cache or not by searching for its tag. + * + * In order to search for memory data in the cache, the set identifier and tag + * are extracted from the address and the set is probed to see whether a tag + * match occur. + * + * An address is logically divided into three portions: The block offset, + * the set number, and the tag. + * + * The set number is used to identify the set in which the block may exist. + * The tag is compared against all the tags of a set to search for a match. If a + * match is found, then the access is a hit. + * + * The CacheSet also contains bookkeaping information about eviction details. + */ + +typedef struct { + uint64_t tag; + bool valid; +} CacheBlock; + +typedef struct { + CacheBlock *blocks; + uint64_t *lru_priorities; + uint64_t lru_gen_counter; + GQueue *fifo_queue; +} CacheSet; + +typedef struct { + CacheSet *sets; + int num_sets; + int cachesize; + int assoc; + int blksize_shift; + uint64_t set_mask; + uint64_t tag_mask; + uint64_t accesses; + uint64_t misses; +} Cache; + +typedef struct { + char *disas_str; + const char *symbol; + uint64_t addr; + uint64_t l1_dmisses; + uint64_t l1_imisses; + uint64_t l2_misses; +} InsnData; + +void (*update_hit)(Cache *cache, int set, int blk); +void (*update_miss)(Cache *cache, int set, int blk); + +void (*metadata_init)(Cache *cache); +void (*metadata_destroy)(Cache *cache); + +static int cores; +static Cache **l1_dcaches, **l1_icaches; + +static bool use_l2; +static Cache **l2_ucaches; + +static GMutex *l1_dcache_locks; +static GMutex *l1_icache_locks; +static GMutex *l2_ucache_locks; + +static uint64_t l1_dmem_accesses; +static uint64_t l1_imem_accesses; +static uint64_t l1_imisses; +static uint64_t l1_dmisses; + +static uint64_t l2_mem_accesses; +static uint64_t l2_misses; + +static int pow_of_two(int num) +{ + g_assert((num & (num - 1)) == 0); + int ret = 0; + while (num /= 2) { + ret++; + } + return ret; +} + +/* + * LRU evection policy: For each set, a generation counter is maintained + * alongside a priority array. + * + * On each set access, the generation counter is incremented. + * + * On a cache hit: The hit-block is assigned the current generation counter, + * indicating that it is the most recently used block. + * + * On a cache miss: The block with the least priority is searched and replaced + * with the newly-cached block, of which the priority is set to the current + * generation number. + */ + +static void lru_priorities_init(Cache *cache) +{ + int i; + + for (i = 0; i < cache->num_sets; i++) { + cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc); + cache->sets[i].lru_gen_counter = 0; + } +} + +static void lru_update_blk(Cache *cache, int set_idx, int blk_idx) +{ + CacheSet *set = &cache->sets[set_idx]; + set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter; + set->lru_gen_counter++; +} + +static int lru_get_lru_block(Cache *cache, int set_idx) +{ + int i, min_idx, min_priority; + + min_priority = cache->sets[set_idx].lru_priorities[0]; + min_idx = 0; + + for (i = 1; i < cache->assoc; i++) { + if (cache->sets[set_idx].lru_priorities[i] < min_priority) { + min_priority = cache->sets[set_idx].lru_priorities[i]; + min_idx = i; + } + } + return min_idx; +} + +static void lru_priorities_destroy(Cache *cache) +{ + int i; + + for (i = 0; i < cache->num_sets; i++) { + g_free(cache->sets[i].lru_priorities); + } +} + +/* + * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that + * stores accesses to the cache. + * + * On a compulsory miss: The block index is enqueued to the fifo_queue to + * indicate that it's the latest cached block. + * + * On a conflict miss: The first-in block is removed from the cache and the new + * block is put in its place and enqueued to the FIFO queue. + */ + +static void fifo_init(Cache *cache) +{ + int i; + + for (i = 0; i < cache->num_sets; i++) { + cache->sets[i].fifo_queue = g_queue_new(); + } +} + +static int fifo_get_first_block(Cache *cache, int set) +{ + GQueue *q = cache->sets[set].fifo_queue; + return GPOINTER_TO_INT(g_queue_pop_tail(q)); +} + +static void fifo_update_on_miss(Cache *cache, int set, int blk_idx) +{ + GQueue *q = cache->sets[set].fifo_queue; + g_queue_push_head(q, GINT_TO_POINTER(blk_idx)); +} + +static void fifo_destroy(Cache *cache) +{ + int i; + + for (i = 0; i < cache->num_sets; i++) { + g_queue_free(cache->sets[i].fifo_queue); + } +} + +static inline uint64_t extract_tag(Cache *cache, uint64_t addr) +{ + return addr & cache->tag_mask; +} + +static inline uint64_t extract_set(Cache *cache, uint64_t addr) +{ + return (addr & cache->set_mask) >> cache->blksize_shift; +} + +static const char *cache_config_error(int blksize, int assoc, int cachesize) +{ + if (cachesize % blksize != 0) { + return "cache size must be divisible by block size"; + } else if (cachesize % (blksize * assoc) != 0) { + return "cache size must be divisible by set size (assoc * block size)"; + } else { + return NULL; + } +} + +static bool bad_cache_params(int blksize, int assoc, int cachesize) +{ + return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0); +} + +static Cache *cache_init(int blksize, int assoc, int cachesize) +{ + Cache *cache; + int i; + uint64_t blk_mask; + + /* + * This function shall not be called directly, and hence expects suitable + * parameters. + */ + g_assert(!bad_cache_params(blksize, assoc, cachesize)); + + cache = g_new(Cache, 1); + cache->assoc = assoc; + cache->cachesize = cachesize; + cache->num_sets = cachesize / (blksize * assoc); + cache->sets = g_new(CacheSet, cache->num_sets); + cache->blksize_shift = pow_of_two(blksize); + cache->accesses = 0; + cache->misses = 0; + + for (i = 0; i < cache->num_sets; i++) { + cache->sets[i].blocks = g_new0(CacheBlock, assoc); + } + + blk_mask = blksize - 1; + cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift); + cache->tag_mask = ~(cache->set_mask | blk_mask); + + if (metadata_init) { + metadata_init(cache); + } + + return cache; +} + +static Cache **caches_init(int blksize, int assoc, int cachesize) +{ + Cache **caches; + int i; + + if (bad_cache_params(blksize, assoc, cachesize)) { + return NULL; + } + + caches = g_new(Cache *, cores); + + for (i = 0; i < cores; i++) { + caches[i] = cache_init(blksize, assoc, cachesize); + } + + return caches; +} + +static int get_invalid_block(Cache *cache, uint64_t set) +{ + int i; + + for (i = 0; i < cache->assoc; i++) { + if (!cache->sets[set].blocks[i].valid) { + return i; + } + } + + return -1; +} + +static int get_replaced_block(Cache *cache, int set) +{ + switch (policy) { + case RAND: + return g_rand_int_range(rng, 0, cache->assoc); + case LRU: + return lru_get_lru_block(cache, set); + case FIFO: + return fifo_get_first_block(cache, set); + default: + g_assert_not_reached(); + } +} + +static int in_cache(Cache *cache, uint64_t addr) +{ + int i; + uint64_t tag, set; + + tag = extract_tag(cache, addr); + set = extract_set(cache, addr); + + for (i = 0; i < cache->assoc; i++) { + if (cache->sets[set].blocks[i].tag == tag && + cache->sets[set].blocks[i].valid) { + return i; + } + } + + return -1; +} + +/** + * access_cache(): Simulate a cache access + * @cache: The cache under simulation + * @addr: The address of the requested memory location + * + * Returns true if the requsted data is hit in the cache and false when missed. + * The cache is updated on miss for the next access. + */ +static bool access_cache(Cache *cache, uint64_t addr) +{ + int hit_blk, replaced_blk; + uint64_t tag, set; + + tag = extract_tag(cache, addr); + set = extract_set(cache, addr); + + hit_blk = in_cache(cache, addr); + if (hit_blk != -1) { + if (update_hit) { + update_hit(cache, set, hit_blk); + } + return true; + } + + replaced_blk = get_invalid_block(cache, set); + + if (replaced_blk == -1) { + replaced_blk = get_replaced_block(cache, set); + } + + if (update_miss) { + update_miss(cache, set, replaced_blk); + } + + cache->sets[set].blocks[replaced_blk].tag = tag; + cache->sets[set].blocks[replaced_blk].valid = true; + + return false; +} + +static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info, + uint64_t vaddr, void *userdata) +{ + uint64_t effective_addr; + struct qemu_plugin_hwaddr *hwaddr; + int cache_idx; + InsnData *insn; + bool hit_in_l1; + + hwaddr = qemu_plugin_get_hwaddr(info, vaddr); + if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) { + return; + } + + effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr; + cache_idx = vcpu_index % cores; + + g_mutex_lock(&l1_dcache_locks[cache_idx]); + hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr); + if (!hit_in_l1) { + insn = (InsnData *) userdata; + __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST); + l1_dcaches[cache_idx]->misses++; + } + l1_dcaches[cache_idx]->accesses++; + g_mutex_unlock(&l1_dcache_locks[cache_idx]); + + if (hit_in_l1 || !use_l2) { + /* No need to access L2 */ + return; + } + + g_mutex_lock(&l2_ucache_locks[cache_idx]); + if (!access_cache(l2_ucaches[cache_idx], effective_addr)) { + insn = (InsnData *) userdata; + __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); + l2_ucaches[cache_idx]->misses++; + } + l2_ucaches[cache_idx]->accesses++; + g_mutex_unlock(&l2_ucache_locks[cache_idx]); +} + +static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata) +{ + uint64_t insn_addr; + InsnData *insn; + int cache_idx; + bool hit_in_l1; + + insn_addr = ((InsnData *) userdata)->addr; + + cache_idx = vcpu_index % cores; + g_mutex_lock(&l1_icache_locks[cache_idx]); + hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr); + if (!hit_in_l1) { + insn = (InsnData *) userdata; + __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST); + l1_icaches[cache_idx]->misses++; + } + l1_icaches[cache_idx]->accesses++; + g_mutex_unlock(&l1_icache_locks[cache_idx]); + + if (hit_in_l1 || !use_l2) { + /* No need to access L2 */ + return; + } + + g_mutex_lock(&l2_ucache_locks[cache_idx]); + if (!access_cache(l2_ucaches[cache_idx], insn_addr)) { + insn = (InsnData *) userdata; + __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); + l2_ucaches[cache_idx]->misses++; + } + l2_ucaches[cache_idx]->accesses++; + g_mutex_unlock(&l2_ucache_locks[cache_idx]); +} + +static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) +{ + size_t n_insns; + size_t i; + InsnData *data; + + n_insns = qemu_plugin_tb_n_insns(tb); + for (i = 0; i < n_insns; i++) { + struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); + uint64_t effective_addr; + + if (sys) { + effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn); + } else { + effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn); + } + + /* + * Instructions might get translated multiple times, we do not create + * new entries for those instructions. Instead, we fetch the same + * entry from the hash table and register it for the callback again. + */ + g_mutex_lock(&hashtable_lock); + data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr)); + if (data == NULL) { + data = g_new0(InsnData, 1); + data->disas_str = qemu_plugin_insn_disas(insn); + data->symbol = qemu_plugin_insn_symbol(insn); + data->addr = effective_addr; + g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr), + (gpointer) data); + } + g_mutex_unlock(&hashtable_lock); + + qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access, + QEMU_PLUGIN_CB_NO_REGS, + rw, data); + + qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec, + QEMU_PLUGIN_CB_NO_REGS, data); + } +} + +static void insn_free(gpointer data) +{ + InsnData *insn = (InsnData *) data; + g_free(insn->disas_str); + g_free(insn); +} + +static void cache_free(Cache *cache) +{ + for (int i = 0; i < cache->num_sets; i++) { + g_free(cache->sets[i].blocks); + } + + if (metadata_destroy) { + metadata_destroy(cache); + } + + g_free(cache->sets); + g_free(cache); +} + +static void caches_free(Cache **caches) +{ + int i; + + for (i = 0; i < cores; i++) { + cache_free(caches[i]); + } +} + +static void append_stats_line(GString *line, uint64_t l1_daccess, + uint64_t l1_dmisses, uint64_t l1_iaccess, + uint64_t l1_imisses, uint64_t l2_access, + uint64_t l2_misses) +{ + double l1_dmiss_rate, l1_imiss_rate, l2_miss_rate; + + l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0; + l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0; + + g_string_append_printf(line, "%-14lu %-12lu %9.4lf%% %-14lu %-12lu" + " %9.4lf%%", + l1_daccess, + l1_dmisses, + l1_daccess ? l1_dmiss_rate : 0.0, + l1_iaccess, + l1_imisses, + l1_iaccess ? l1_imiss_rate : 0.0); + + if (use_l2) { + l2_miss_rate = ((double) l2_misses) / (l2_access) * 100.0; + g_string_append_printf(line, " %-12lu %-11lu %10.4lf%%", + l2_access, + l2_misses, + l2_access ? l2_miss_rate : 0.0); + } + + g_string_append(line, "\n"); +} + +static void sum_stats(void) +{ + int i; + + g_assert(cores > 1); + for (i = 0; i < cores; i++) { + l1_imisses += l1_icaches[i]->misses; + l1_dmisses += l1_dcaches[i]->misses; + l1_imem_accesses += l1_icaches[i]->accesses; + l1_dmem_accesses += l1_dcaches[i]->accesses; + + if (use_l2) { + l2_misses += l2_ucaches[i]->misses; + l2_mem_accesses += l2_ucaches[i]->accesses; + } + } +} + +static int dcmp(gconstpointer a, gconstpointer b) +{ + InsnData *insn_a = (InsnData *) a; + InsnData *insn_b = (InsnData *) b; + + return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1; +} + +static int icmp(gconstpointer a, gconstpointer b) +{ + InsnData *insn_a = (InsnData *) a; + InsnData *insn_b = (InsnData *) b; + + return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1; +} + +static int l2_cmp(gconstpointer a, gconstpointer b) +{ + InsnData *insn_a = (InsnData *) a; + InsnData *insn_b = (InsnData *) b; + + return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1; +} + +static void log_stats(void) +{ + int i; + Cache *icache, *dcache, *l2_cache; + + g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses," + " dmiss rate, insn accesses," + " insn misses, imiss rate"); + + if (use_l2) { + g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate"); + } + + g_string_append(rep, "\n"); + + for (i = 0; i < cores; i++) { + g_string_append_printf(rep, "%-8d", i); + dcache = l1_dcaches[i]; + icache = l1_icaches[i]; + l2_cache = use_l2 ? l2_ucaches[i] : NULL; + append_stats_line(rep, dcache->accesses, dcache->misses, + icache->accesses, icache->misses, + l2_cache ? l2_cache->accesses : 0, + l2_cache ? l2_cache->misses : 0); + } + + if (cores > 1) { + sum_stats(); + g_string_append_printf(rep, "%-8s", "sum"); + append_stats_line(rep, l1_dmem_accesses, l1_dmisses, + l1_imem_accesses, l1_imisses, + l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0); + } + + g_string_append(rep, "\n"); + qemu_plugin_outs(rep->str); +} + +static void log_top_insns(void) +{ + int i; + GList *curr, *miss_insns; + InsnData *insn; + + miss_insns = g_hash_table_get_values(miss_ht); + miss_insns = g_list_sort(miss_insns, dcmp); + g_autoptr(GString) rep = g_string_new(""); + g_string_append_printf(rep, "%s", "address, data misses, instruction\n"); + + for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { + insn = (InsnData *) curr->data; + g_string_append_printf(rep, "0x%" PRIx64, insn->addr); + if (insn->symbol) { + g_string_append_printf(rep, " (%s)", insn->symbol); + } + g_string_append_printf(rep, ", %ld, %s\n", insn->l1_dmisses, + insn->disas_str); + } + + miss_insns = g_list_sort(miss_insns, icmp); + g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n"); + + for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { + insn = (InsnData *) curr->data; + g_string_append_printf(rep, "0x%" PRIx64, insn->addr); + if (insn->symbol) { + g_string_append_printf(rep, " (%s)", insn->symbol); + } + g_string_append_printf(rep, ", %ld, %s\n", insn->l1_imisses, + insn->disas_str); + } + + if (!use_l2) { + goto finish; + } + + miss_insns = g_list_sort(miss_insns, l2_cmp); + g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n"); + + for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { + insn = (InsnData *) curr->data; + g_string_append_printf(rep, "0x%" PRIx64, insn->addr); + if (insn->symbol) { + g_string_append_printf(rep, " (%s)", insn->symbol); + } + g_string_append_printf(rep, ", %ld, %s\n", insn->l2_misses, + insn->disas_str); + } + +finish: + qemu_plugin_outs(rep->str); + g_list_free(miss_insns); +} + +static void plugin_exit(qemu_plugin_id_t id, void *p) +{ + log_stats(); + log_top_insns(); + + caches_free(l1_dcaches); + caches_free(l1_icaches); + + g_free(l1_dcache_locks); + g_free(l1_icache_locks); + + if (use_l2) { + caches_free(l2_ucaches); + g_free(l2_ucache_locks); + } + + g_hash_table_destroy(miss_ht); +} + +static void policy_init(void) +{ + switch (policy) { + case LRU: + update_hit = lru_update_blk; + update_miss = lru_update_blk; + metadata_init = lru_priorities_init; + metadata_destroy = lru_priorities_destroy; + break; + case FIFO: + update_miss = fifo_update_on_miss; + metadata_init = fifo_init; + metadata_destroy = fifo_destroy; + break; + case RAND: + rng = g_rand_new(); + break; + default: + g_assert_not_reached(); + } +} + +QEMU_PLUGIN_EXPORT +int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, + int argc, char **argv) +{ + int i; + int l1_iassoc, l1_iblksize, l1_icachesize; + int l1_dassoc, l1_dblksize, l1_dcachesize; + int l2_assoc, l2_blksize, l2_cachesize; + + limit = 32; + sys = info->system_emulation; + + l1_dassoc = 8; + l1_dblksize = 64; + l1_dcachesize = l1_dblksize * l1_dassoc * 32; + + l1_iassoc = 8; + l1_iblksize = 64; + l1_icachesize = l1_iblksize * l1_iassoc * 32; + + l2_assoc = 16; + l2_blksize = 64; + l2_cachesize = l2_assoc * l2_blksize * 2048; + + policy = LRU; + + cores = sys ? qemu_plugin_n_vcpus() : 1; + + for (i = 0; i < argc; i++) { + char *opt = argv[i]; + g_autofree char **tokens = g_strsplit(opt, "=", 2); + + if (g_strcmp0(tokens[0], "iblksize") == 0) { + l1_iblksize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "iassoc") == 0) { + l1_iassoc = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "icachesize") == 0) { + l1_icachesize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "dblksize") == 0) { + l1_dblksize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "dassoc") == 0) { + l1_dassoc = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "dcachesize") == 0) { + l1_dcachesize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "limit") == 0) { + limit = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "cores") == 0) { + cores = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) { + use_l2 = true; + l2_cachesize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "l2blksize") == 0) { + use_l2 = true; + l2_blksize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "l2assoc") == 0) { + use_l2 = true; + l2_assoc = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "l2") == 0) { + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) { + fprintf(stderr, "boolean argument parsing failed: %s\n", opt); + return -1; + } + } else if (g_strcmp0(tokens[0], "evict") == 0) { + if (g_strcmp0(tokens[1], "rand") == 0) { + policy = RAND; + } else if (g_strcmp0(tokens[1], "lru") == 0) { + policy = LRU; + } else if (g_strcmp0(tokens[1], "fifo") == 0) { + policy = FIFO; + } else { + fprintf(stderr, "invalid eviction policy: %s\n", opt); + return -1; + } + } else { + fprintf(stderr, "option parsing failed: %s\n", opt); + return -1; + } + } + + policy_init(); + + l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize); + if (!l1_dcaches) { + const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize); + fprintf(stderr, "dcache cannot be constructed from given parameters\n"); + fprintf(stderr, "%s\n", err); + return -1; + } + + l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize); + if (!l1_icaches) { + const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize); + fprintf(stderr, "icache cannot be constructed from given parameters\n"); + fprintf(stderr, "%s\n", err); + return -1; + } + + l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL; + if (!l2_ucaches && use_l2) { + const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize); + fprintf(stderr, "L2 cache cannot be constructed from given parameters\n"); + fprintf(stderr, "%s\n", err); + return -1; + } + + l1_dcache_locks = g_new0(GMutex, cores); + l1_icache_locks = g_new0(GMutex, cores); + l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL; + + qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); + qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); + + miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free); + + return 0; +} |