diff options
author | Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> | 2023-10-10 11:40:56 +0000 |
---|---|---|
committer | Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> | 2023-10-10 11:40:56 +0000 |
commit | e02cda008591317b1625707ff8e115a4841aa889 (patch) | |
tree | aee302e3cf8b59ec2d32ec481be3d1afddfc8968 /hw/arm/boot.c | |
parent | cc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff) |
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback
design to work with QEMU and rust-vmm vhost-user backend without require any
changes.
Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>
Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'hw/arm/boot.c')
-rw-r--r-- | hw/arm/boot.c | 1351 |
1 files changed, 1351 insertions, 0 deletions
diff --git a/hw/arm/boot.c b/hw/arm/boot.c new file mode 100644 index 000000000..74ad397b1 --- /dev/null +++ b/hw/arm/boot.c @@ -0,0 +1,1351 @@ +/* + * ARM kernel loader. + * + * Copyright (c) 2006-2007 CodeSourcery. + * Written by Paul Brook + * + * This code is licensed under the GPL. + */ + +#include "qemu/osdep.h" +#include "qemu-common.h" +#include "qemu/datadir.h" +#include "qemu/error-report.h" +#include "qapi/error.h" +#include <libfdt.h> +#include "hw/arm/boot.h" +#include "hw/arm/linux-boot-if.h" +#include "sysemu/kvm.h" +#include "sysemu/sysemu.h" +#include "sysemu/numa.h" +#include "hw/boards.h" +#include "sysemu/reset.h" +#include "hw/loader.h" +#include "elf.h" +#include "sysemu/device_tree.h" +#include "qemu/config-file.h" +#include "qemu/option.h" +#include "qemu/units.h" + +/* Kernel boot protocol is specified in the kernel docs + * Documentation/arm/Booting and Documentation/arm64/booting.txt + * They have different preferred image load offsets from system RAM base. + */ +#define KERNEL_ARGS_ADDR 0x100 +#define KERNEL_NOLOAD_ADDR 0x02000000 +#define KERNEL_LOAD_ADDR 0x00010000 +#define KERNEL64_LOAD_ADDR 0x00080000 + +#define ARM64_TEXT_OFFSET_OFFSET 8 +#define ARM64_MAGIC_OFFSET 56 + +#define BOOTLOADER_MAX_SIZE (4 * KiB) + +AddressSpace *arm_boot_address_space(ARMCPU *cpu, + const struct arm_boot_info *info) +{ + /* Return the address space to use for bootloader reads and writes. + * We prefer the secure address space if the CPU has it and we're + * going to boot the guest into it. + */ + int asidx; + CPUState *cs = CPU(cpu); + + if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) { + asidx = ARMASIdx_S; + } else { + asidx = ARMASIdx_NS; + } + + return cpu_get_address_space(cs, asidx); +} + +typedef enum { + FIXUP_NONE = 0, /* do nothing */ + FIXUP_TERMINATOR, /* end of insns */ + FIXUP_BOARDID, /* overwrite with board ID number */ + FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */ + FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */ + FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */ + FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */ + FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */ + FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ + FIXUP_BOOTREG, /* overwrite with boot register address */ + FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ + FIXUP_MAX, +} FixupType; + +typedef struct ARMInsnFixup { + uint32_t insn; + FixupType fixup; +} ARMInsnFixup; + +static const ARMInsnFixup bootloader_aarch64[] = { + { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ + { 0xaa1f03e1 }, /* mov x1, xzr */ + { 0xaa1f03e2 }, /* mov x2, xzr */ + { 0xaa1f03e3 }, /* mov x3, xzr */ + { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ + { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ + { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */ + { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */ + { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */ + { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */ + { 0, FIXUP_TERMINATOR } +}; + +/* A very small bootloader: call the board-setup code (if needed), + * set r0-r2, then jump to the kernel. + * If we're not calling boot setup code then we don't copy across + * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. + */ + +static const ARMInsnFixup bootloader[] = { + { 0xe28fe004 }, /* add lr, pc, #4 */ + { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ + { 0, FIXUP_BOARD_SETUP }, +#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 + { 0xe3a00000 }, /* mov r0, #0 */ + { 0xe59f1004 }, /* ldr r1, [pc, #4] */ + { 0xe59f2004 }, /* ldr r2, [pc, #4] */ + { 0xe59ff004 }, /* ldr pc, [pc, #4] */ + { 0, FIXUP_BOARDID }, + { 0, FIXUP_ARGPTR_LO }, + { 0, FIXUP_ENTRYPOINT_LO }, + { 0, FIXUP_TERMINATOR } +}; + +/* Handling for secondary CPU boot in a multicore system. + * Unlike the uniprocessor/primary CPU boot, this is platform + * dependent. The default code here is based on the secondary + * CPU boot protocol used on realview/vexpress boards, with + * some parameterisation to increase its flexibility. + * QEMU platform models for which this code is not appropriate + * should override write_secondary_boot and secondary_cpu_reset_hook + * instead. + * + * This code enables the interrupt controllers for the secondary + * CPUs and then puts all the secondary CPUs into a loop waiting + * for an interprocessor interrupt and polling a configurable + * location for the kernel secondary CPU entry point. + */ +#define DSB_INSN 0xf57ff04f +#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ + +static const ARMInsnFixup smpboot[] = { + { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ + { 0xe59f0028 }, /* ldr r0, bootreg_addr */ + { 0xe3a01001 }, /* mov r1, #1 */ + { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ + { 0xe3a010ff }, /* mov r1, #0xff */ + { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ + { 0, FIXUP_DSB }, /* dsb */ + { 0xe320f003 }, /* wfi */ + { 0xe5901000 }, /* ldr r1, [r0] */ + { 0xe1110001 }, /* tst r1, r1 */ + { 0x0afffffb }, /* beq <wfi> */ + { 0xe12fff11 }, /* bx r1 */ + { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ + { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ + { 0, FIXUP_TERMINATOR } +}; + +static void write_bootloader(const char *name, hwaddr addr, + const ARMInsnFixup *insns, uint32_t *fixupcontext, + AddressSpace *as) +{ + /* Fix up the specified bootloader fragment and write it into + * guest memory using rom_add_blob_fixed(). fixupcontext is + * an array giving the values to write in for the fixup types + * which write a value into the code array. + */ + int i, len; + uint32_t *code; + + len = 0; + while (insns[len].fixup != FIXUP_TERMINATOR) { + len++; + } + + code = g_new0(uint32_t, len); + + for (i = 0; i < len; i++) { + uint32_t insn = insns[i].insn; + FixupType fixup = insns[i].fixup; + + switch (fixup) { + case FIXUP_NONE: + break; + case FIXUP_BOARDID: + case FIXUP_BOARD_SETUP: + case FIXUP_ARGPTR_LO: + case FIXUP_ARGPTR_HI: + case FIXUP_ENTRYPOINT_LO: + case FIXUP_ENTRYPOINT_HI: + case FIXUP_GIC_CPU_IF: + case FIXUP_BOOTREG: + case FIXUP_DSB: + insn = fixupcontext[fixup]; + break; + default: + abort(); + } + code[i] = tswap32(insn); + } + + assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE); + + rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as); + + g_free(code); +} + +static void default_write_secondary(ARMCPU *cpu, + const struct arm_boot_info *info) +{ + uint32_t fixupcontext[FIXUP_MAX]; + AddressSpace *as = arm_boot_address_space(cpu, info); + + fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; + fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; + if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { + fixupcontext[FIXUP_DSB] = DSB_INSN; + } else { + fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; + } + + write_bootloader("smpboot", info->smp_loader_start, + smpboot, fixupcontext, as); +} + +void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu, + const struct arm_boot_info *info, + hwaddr mvbar_addr) +{ + AddressSpace *as = arm_boot_address_space(cpu, info); + int n; + uint32_t mvbar_blob[] = { + /* mvbar_addr: secure monitor vectors + * Default unimplemented and unused vectors to spin. Makes it + * easier to debug (as opposed to the CPU running away). + */ + 0xeafffffe, /* (spin) */ + 0xeafffffe, /* (spin) */ + 0xe1b0f00e, /* movs pc, lr ;SMC exception return */ + 0xeafffffe, /* (spin) */ + 0xeafffffe, /* (spin) */ + 0xeafffffe, /* (spin) */ + 0xeafffffe, /* (spin) */ + 0xeafffffe, /* (spin) */ + }; + uint32_t board_setup_blob[] = { + /* board setup addr */ + 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */ + 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */ + 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */ + 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */ + 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */ + 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */ + 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */ + 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */ + 0xe1a0100e, /* mov r1, lr ;save LR across SMC */ + 0xe1600070, /* smc #0 ;call monitor to flush SCR */ + 0xe1a0f001, /* mov pc, r1 ;return */ + }; + + /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */ + assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100); + + /* check that these blobs don't overlap */ + assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr) + || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr)); + + for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) { + mvbar_blob[n] = tswap32(mvbar_blob[n]); + } + rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob), + mvbar_addr, as); + + for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) { + board_setup_blob[n] = tswap32(board_setup_blob[n]); + } + rom_add_blob_fixed_as("board-setup", board_setup_blob, + sizeof(board_setup_blob), info->board_setup_addr, as); +} + +static void default_reset_secondary(ARMCPU *cpu, + const struct arm_boot_info *info) +{ + AddressSpace *as = arm_boot_address_space(cpu, info); + CPUState *cs = CPU(cpu); + + address_space_stl_notdirty(as, info->smp_bootreg_addr, + 0, MEMTXATTRS_UNSPECIFIED, NULL); + cpu_set_pc(cs, info->smp_loader_start); +} + +static inline bool have_dtb(const struct arm_boot_info *info) +{ + return info->dtb_filename || info->get_dtb; +} + +#define WRITE_WORD(p, value) do { \ + address_space_stl_notdirty(as, p, value, \ + MEMTXATTRS_UNSPECIFIED, NULL); \ + p += 4; \ +} while (0) + +static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as) +{ + int initrd_size = info->initrd_size; + hwaddr base = info->loader_start; + hwaddr p; + + p = base + KERNEL_ARGS_ADDR; + /* ATAG_CORE */ + WRITE_WORD(p, 5); + WRITE_WORD(p, 0x54410001); + WRITE_WORD(p, 1); + WRITE_WORD(p, 0x1000); + WRITE_WORD(p, 0); + /* ATAG_MEM */ + /* TODO: handle multiple chips on one ATAG list */ + WRITE_WORD(p, 4); + WRITE_WORD(p, 0x54410002); + WRITE_WORD(p, info->ram_size); + WRITE_WORD(p, info->loader_start); + if (initrd_size) { + /* ATAG_INITRD2 */ + WRITE_WORD(p, 4); + WRITE_WORD(p, 0x54420005); + WRITE_WORD(p, info->initrd_start); + WRITE_WORD(p, initrd_size); + } + if (info->kernel_cmdline && *info->kernel_cmdline) { + /* ATAG_CMDLINE */ + int cmdline_size; + + cmdline_size = strlen(info->kernel_cmdline); + address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED, + info->kernel_cmdline, cmdline_size + 1); + cmdline_size = (cmdline_size >> 2) + 1; + WRITE_WORD(p, cmdline_size + 2); + WRITE_WORD(p, 0x54410009); + p += cmdline_size * 4; + } + if (info->atag_board) { + /* ATAG_BOARD */ + int atag_board_len; + uint8_t atag_board_buf[0x1000]; + + atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; + WRITE_WORD(p, (atag_board_len + 8) >> 2); + WRITE_WORD(p, 0x414f4d50); + address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, + atag_board_buf, atag_board_len); + p += atag_board_len; + } + /* ATAG_END */ + WRITE_WORD(p, 0); + WRITE_WORD(p, 0); +} + +static void set_kernel_args_old(const struct arm_boot_info *info, + AddressSpace *as) +{ + hwaddr p; + const char *s; + int initrd_size = info->initrd_size; + hwaddr base = info->loader_start; + + /* see linux/include/asm-arm/setup.h */ + p = base + KERNEL_ARGS_ADDR; + /* page_size */ + WRITE_WORD(p, 4096); + /* nr_pages */ + WRITE_WORD(p, info->ram_size / 4096); + /* ramdisk_size */ + WRITE_WORD(p, 0); +#define FLAG_READONLY 1 +#define FLAG_RDLOAD 4 +#define FLAG_RDPROMPT 8 + /* flags */ + WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); + /* rootdev */ + WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ + /* video_num_cols */ + WRITE_WORD(p, 0); + /* video_num_rows */ + WRITE_WORD(p, 0); + /* video_x */ + WRITE_WORD(p, 0); + /* video_y */ + WRITE_WORD(p, 0); + /* memc_control_reg */ + WRITE_WORD(p, 0); + /* unsigned char sounddefault */ + /* unsigned char adfsdrives */ + /* unsigned char bytes_per_char_h */ + /* unsigned char bytes_per_char_v */ + WRITE_WORD(p, 0); + /* pages_in_bank[4] */ + WRITE_WORD(p, 0); + WRITE_WORD(p, 0); + WRITE_WORD(p, 0); + WRITE_WORD(p, 0); + /* pages_in_vram */ + WRITE_WORD(p, 0); + /* initrd_start */ + if (initrd_size) { + WRITE_WORD(p, info->initrd_start); + } else { + WRITE_WORD(p, 0); + } + /* initrd_size */ + WRITE_WORD(p, initrd_size); + /* rd_start */ + WRITE_WORD(p, 0); + /* system_rev */ + WRITE_WORD(p, 0); + /* system_serial_low */ + WRITE_WORD(p, 0); + /* system_serial_high */ + WRITE_WORD(p, 0); + /* mem_fclk_21285 */ + WRITE_WORD(p, 0); + /* zero unused fields */ + while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { + WRITE_WORD(p, 0); + } + s = info->kernel_cmdline; + if (s) { + address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1); + } else { + WRITE_WORD(p, 0); + } +} + +static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base, + uint32_t scells, hwaddr mem_len, + int numa_node_id) +{ + char *nodename; + int ret; + + nodename = g_strdup_printf("/memory@%" PRIx64, mem_base); + qemu_fdt_add_subnode(fdt, nodename); + qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); + ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base, + scells, mem_len); + if (ret < 0) { + goto out; + } + + /* only set the NUMA ID if it is specified */ + if (numa_node_id >= 0) { + ret = qemu_fdt_setprop_cell(fdt, nodename, + "numa-node-id", numa_node_id); + } +out: + g_free(nodename); + return ret; +} + +static void fdt_add_psci_node(void *fdt) +{ + uint32_t cpu_suspend_fn; + uint32_t cpu_off_fn; + uint32_t cpu_on_fn; + uint32_t migrate_fn; + ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); + const char *psci_method; + int64_t psci_conduit; + int rc; + + psci_conduit = object_property_get_int(OBJECT(armcpu), + "psci-conduit", + &error_abort); + switch (psci_conduit) { + case QEMU_PSCI_CONDUIT_DISABLED: + return; + case QEMU_PSCI_CONDUIT_HVC: + psci_method = "hvc"; + break; + case QEMU_PSCI_CONDUIT_SMC: + psci_method = "smc"; + break; + default: + g_assert_not_reached(); + } + + /* + * If /psci node is present in provided DTB, assume that no fixup + * is necessary and all PSCI configuration should be taken as-is + */ + rc = fdt_path_offset(fdt, "/psci"); + if (rc >= 0) { + return; + } + + qemu_fdt_add_subnode(fdt, "/psci"); + if (armcpu->psci_version == 2) { + const char comp[] = "arm,psci-0.2\0arm,psci"; + qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); + + cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; + if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { + cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; + cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; + migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; + } else { + cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; + cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; + migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; + } + } else { + qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); + + cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; + cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; + cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; + migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; + } + + /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer + * to the instruction that should be used to invoke PSCI functions. + * However, the device tree binding uses 'method' instead, so that is + * what we should use here. + */ + qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method); + + qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); + qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); + qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); + qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); +} + +int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo, + hwaddr addr_limit, AddressSpace *as, MachineState *ms) +{ + void *fdt = NULL; + int size, rc, n = 0; + uint32_t acells, scells; + unsigned int i; + hwaddr mem_base, mem_len; + char **node_path; + Error *err = NULL; + + if (binfo->dtb_filename) { + char *filename; + filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); + if (!filename) { + fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); + goto fail; + } + + fdt = load_device_tree(filename, &size); + if (!fdt) { + fprintf(stderr, "Couldn't open dtb file %s\n", filename); + g_free(filename); + goto fail; + } + g_free(filename); + } else { + fdt = binfo->get_dtb(binfo, &size); + if (!fdt) { + fprintf(stderr, "Board was unable to create a dtb blob\n"); + goto fail; + } + } + + if (addr_limit > addr && size > (addr_limit - addr)) { + /* Installing the device tree blob at addr would exceed addr_limit. + * Whether this constitutes failure is up to the caller to decide, + * so just return 0 as size, i.e., no error. + */ + g_free(fdt); + return 0; + } + + acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells", + NULL, &error_fatal); + scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells", + NULL, &error_fatal); + if (acells == 0 || scells == 0) { + fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); + goto fail; + } + + if (scells < 2 && binfo->ram_size >= 4 * GiB) { + /* This is user error so deserves a friendlier error message + * than the failure of setprop_sized_cells would provide + */ + fprintf(stderr, "qemu: dtb file not compatible with " + "RAM size > 4GB\n"); + goto fail; + } + + /* nop all root nodes matching /memory or /memory@unit-address */ + node_path = qemu_fdt_node_unit_path(fdt, "memory", &err); + if (err) { + error_report_err(err); + goto fail; + } + while (node_path[n]) { + if (g_str_has_prefix(node_path[n], "/memory")) { + qemu_fdt_nop_node(fdt, node_path[n]); + } + n++; + } + g_strfreev(node_path); + + /* + * We drop all the memory nodes which correspond to empty NUMA nodes + * from the device tree, because the Linux NUMA binding document + * states they should not be generated. Linux will get the NUMA node + * IDs of the empty NUMA nodes from the distance map if they are needed. + * This means QEMU users may be obliged to provide command lines which + * configure distance maps when the empty NUMA node IDs are needed and + * Linux's default distance map isn't sufficient. + */ + if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) { + mem_base = binfo->loader_start; + for (i = 0; i < ms->numa_state->num_nodes; i++) { + mem_len = ms->numa_state->nodes[i].node_mem; + if (!mem_len) { + continue; + } + + rc = fdt_add_memory_node(fdt, acells, mem_base, + scells, mem_len, i); + if (rc < 0) { + fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", + mem_base); + goto fail; + } + + mem_base += mem_len; + } + } else { + rc = fdt_add_memory_node(fdt, acells, binfo->loader_start, + scells, binfo->ram_size, -1); + if (rc < 0) { + fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", + binfo->loader_start); + goto fail; + } + } + + rc = fdt_path_offset(fdt, "/chosen"); + if (rc < 0) { + qemu_fdt_add_subnode(fdt, "/chosen"); + } + + if (ms->kernel_cmdline && *ms->kernel_cmdline) { + rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", + ms->kernel_cmdline); + if (rc < 0) { + fprintf(stderr, "couldn't set /chosen/bootargs\n"); + goto fail; + } + } + + if (binfo->initrd_size) { + rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", + binfo->initrd_start); + if (rc < 0) { + fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); + goto fail; + } + + rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", + binfo->initrd_start + binfo->initrd_size); + if (rc < 0) { + fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); + goto fail; + } + } + + fdt_add_psci_node(fdt); + + if (binfo->modify_dtb) { + binfo->modify_dtb(binfo, fdt); + } + + qemu_fdt_dumpdtb(fdt, size); + + /* Put the DTB into the memory map as a ROM image: this will ensure + * the DTB is copied again upon reset, even if addr points into RAM. + */ + rom_add_blob_fixed_as("dtb", fdt, size, addr, as); + + g_free(fdt); + + return size; + +fail: + g_free(fdt); + return -1; +} + +static void do_cpu_reset(void *opaque) +{ + ARMCPU *cpu = opaque; + CPUState *cs = CPU(cpu); + CPUARMState *env = &cpu->env; + const struct arm_boot_info *info = env->boot_info; + + cpu_reset(cs); + if (info) { + if (!info->is_linux) { + int i; + /* Jump to the entry point. */ + uint64_t entry = info->entry; + + switch (info->endianness) { + case ARM_ENDIANNESS_LE: + env->cp15.sctlr_el[1] &= ~SCTLR_E0E; + for (i = 1; i < 4; ++i) { + env->cp15.sctlr_el[i] &= ~SCTLR_EE; + } + env->uncached_cpsr &= ~CPSR_E; + break; + case ARM_ENDIANNESS_BE8: + env->cp15.sctlr_el[1] |= SCTLR_E0E; + for (i = 1; i < 4; ++i) { + env->cp15.sctlr_el[i] |= SCTLR_EE; + } + env->uncached_cpsr |= CPSR_E; + break; + case ARM_ENDIANNESS_BE32: + env->cp15.sctlr_el[1] |= SCTLR_B; + break; + case ARM_ENDIANNESS_UNKNOWN: + break; /* Board's decision */ + default: + g_assert_not_reached(); + } + + cpu_set_pc(cs, entry); + } else { + /* If we are booting Linux then we need to check whether we are + * booting into secure or non-secure state and adjust the state + * accordingly. Out of reset, ARM is defined to be in secure state + * (SCR.NS = 0), we change that here if non-secure boot has been + * requested. + */ + if (arm_feature(env, ARM_FEATURE_EL3)) { + /* AArch64 is defined to come out of reset into EL3 if enabled. + * If we are booting Linux then we need to adjust our EL as + * Linux expects us to be in EL2 or EL1. AArch32 resets into + * SVC, which Linux expects, so no privilege/exception level to + * adjust. + */ + if (env->aarch64) { + env->cp15.scr_el3 |= SCR_RW; + if (arm_feature(env, ARM_FEATURE_EL2)) { + env->cp15.hcr_el2 |= HCR_RW; + env->pstate = PSTATE_MODE_EL2h; + } else { + env->pstate = PSTATE_MODE_EL1h; + } + if (cpu_isar_feature(aa64_pauth, cpu)) { + env->cp15.scr_el3 |= SCR_API | SCR_APK; + } + if (cpu_isar_feature(aa64_mte, cpu)) { + env->cp15.scr_el3 |= SCR_ATA; + } + if (cpu_isar_feature(aa64_sve, cpu)) { + env->cp15.cptr_el[3] |= CPTR_EZ; + } + /* AArch64 kernels never boot in secure mode */ + assert(!info->secure_boot); + /* This hook is only supported for AArch32 currently: + * bootloader_aarch64[] will not call the hook, and + * the code above has already dropped us into EL2 or EL1. + */ + assert(!info->secure_board_setup); + } + + if (arm_feature(env, ARM_FEATURE_EL2)) { + /* If we have EL2 then Linux expects the HVC insn to work */ + env->cp15.scr_el3 |= SCR_HCE; + } + + /* Set to non-secure if not a secure boot */ + if (!info->secure_boot && + (cs != first_cpu || !info->secure_board_setup)) { + /* Linux expects non-secure state */ + env->cp15.scr_el3 |= SCR_NS; + /* Set NSACR.{CP11,CP10} so NS can access the FPU */ + env->cp15.nsacr |= 3 << 10; + } + } + + if (!env->aarch64 && !info->secure_boot && + arm_feature(env, ARM_FEATURE_EL2)) { + /* + * This is an AArch32 boot not to Secure state, and + * we have Hyp mode available, so boot the kernel into + * Hyp mode. This is not how the CPU comes out of reset, + * so we need to manually put it there. + */ + cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw); + } + + if (cs == first_cpu) { + AddressSpace *as = arm_boot_address_space(cpu, info); + + cpu_set_pc(cs, info->loader_start); + + if (!have_dtb(info)) { + if (old_param) { + set_kernel_args_old(info, as); + } else { + set_kernel_args(info, as); + } + } + } else { + info->secondary_cpu_reset_hook(cpu, info); + } + } + arm_rebuild_hflags(env); + } +} + +/** + * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified + * by key. + * @fw_cfg: The firmware config instance to store the data in. + * @size_key: The firmware config key to store the size of the loaded + * data under, with fw_cfg_add_i32(). + * @data_key: The firmware config key to store the loaded data under, + * with fw_cfg_add_bytes(). + * @image_name: The name of the image file to load. If it is NULL, the + * function returns without doing anything. + * @try_decompress: Whether the image should be decompressed (gunzipped) before + * adding it to fw_cfg. If decompression fails, the image is + * loaded as-is. + * + * In case of failure, the function prints an error message to stderr and the + * process exits with status 1. + */ +static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, + uint16_t data_key, const char *image_name, + bool try_decompress) +{ + size_t size = -1; + uint8_t *data; + + if (image_name == NULL) { + return; + } + + if (try_decompress) { + size = load_image_gzipped_buffer(image_name, + LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); + } + + if (size == (size_t)-1) { + gchar *contents; + gsize length; + + if (!g_file_get_contents(image_name, &contents, &length, NULL)) { + error_report("failed to load \"%s\"", image_name); + exit(1); + } + size = length; + data = (uint8_t *)contents; + } + + fw_cfg_add_i32(fw_cfg, size_key, size); + fw_cfg_add_bytes(fw_cfg, data_key, data, size); +} + +static int do_arm_linux_init(Object *obj, void *opaque) +{ + if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { + ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); + ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); + struct arm_boot_info *info = opaque; + + if (albifc->arm_linux_init) { + albifc->arm_linux_init(albif, info->secure_boot); + } + } + return 0; +} + +static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, + uint64_t *lowaddr, uint64_t *highaddr, + int elf_machine, AddressSpace *as) +{ + bool elf_is64; + union { + Elf32_Ehdr h32; + Elf64_Ehdr h64; + } elf_header; + int data_swab = 0; + bool big_endian; + int64_t ret = -1; + Error *err = NULL; + + + load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err); + if (err) { + error_free(err); + return ret; + } + + if (elf_is64) { + big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB; + info->endianness = big_endian ? ARM_ENDIANNESS_BE8 + : ARM_ENDIANNESS_LE; + } else { + big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB; + if (big_endian) { + if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) { + info->endianness = ARM_ENDIANNESS_BE8; + } else { + info->endianness = ARM_ENDIANNESS_BE32; + /* In BE32, the CPU has a different view of the per-byte + * address map than the rest of the system. BE32 ELF files + * are organised such that they can be programmed through + * the CPU's per-word byte-reversed view of the world. QEMU + * however loads ELF files independently of the CPU. So + * tell the ELF loader to byte reverse the data for us. + */ + data_swab = 2; + } + } else { + info->endianness = ARM_ENDIANNESS_LE; + } + } + + ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL, + pentry, lowaddr, highaddr, NULL, big_endian, elf_machine, + 1, data_swab, as); + if (ret <= 0) { + /* The header loaded but the image didn't */ + exit(1); + } + + return ret; +} + +static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base, + hwaddr *entry, AddressSpace *as) +{ + hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR; + uint64_t kernel_size = 0; + uint8_t *buffer; + int size; + + /* On aarch64, it's the bootloader's job to uncompress the kernel. */ + size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES, + &buffer); + + if (size < 0) { + gsize len; + + /* Load as raw file otherwise */ + if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) { + return -1; + } + size = len; + } + + /* check the arm64 magic header value -- very old kernels may not have it */ + if (size > ARM64_MAGIC_OFFSET + 4 && + memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) { + uint64_t hdrvals[2]; + + /* The arm64 Image header has text_offset and image_size fields at 8 and + * 16 bytes into the Image header, respectively. The text_offset field + * is only valid if the image_size is non-zero. + */ + memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals)); + + kernel_size = le64_to_cpu(hdrvals[1]); + + if (kernel_size != 0) { + kernel_load_offset = le64_to_cpu(hdrvals[0]); + + /* + * We write our startup "bootloader" at the very bottom of RAM, + * so that bit can't be used for the image. Luckily the Image + * format specification is that the image requests only an offset + * from a 2MB boundary, not an absolute load address. So if the + * image requests an offset that might mean it overlaps with the + * bootloader, we can just load it starting at 2MB+offset rather + * than 0MB + offset. + */ + if (kernel_load_offset < BOOTLOADER_MAX_SIZE) { + kernel_load_offset += 2 * MiB; + } + } + } + + /* + * Kernels before v3.17 don't populate the image_size field, and + * raw images have no header. For those our best guess at the size + * is the size of the Image file itself. + */ + if (kernel_size == 0) { + kernel_size = size; + } + + *entry = mem_base + kernel_load_offset; + rom_add_blob_fixed_as(filename, buffer, size, *entry, as); + + g_free(buffer); + + return kernel_size; +} + +static void arm_setup_direct_kernel_boot(ARMCPU *cpu, + struct arm_boot_info *info) +{ + /* Set up for a direct boot of a kernel image file. */ + CPUState *cs; + AddressSpace *as = arm_boot_address_space(cpu, info); + int kernel_size; + int initrd_size; + int is_linux = 0; + uint64_t elf_entry; + /* Addresses of first byte used and first byte not used by the image */ + uint64_t image_low_addr = 0, image_high_addr = 0; + int elf_machine; + hwaddr entry; + static const ARMInsnFixup *primary_loader; + uint64_t ram_end = info->loader_start + info->ram_size; + + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { + primary_loader = bootloader_aarch64; + elf_machine = EM_AARCH64; + } else { + primary_loader = bootloader; + if (!info->write_board_setup) { + primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; + } + elf_machine = EM_ARM; + } + + if (!info->secondary_cpu_reset_hook) { + info->secondary_cpu_reset_hook = default_reset_secondary; + } + if (!info->write_secondary_boot) { + info->write_secondary_boot = default_write_secondary; + } + + if (info->nb_cpus == 0) + info->nb_cpus = 1; + + /* Assume that raw images are linux kernels, and ELF images are not. */ + kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr, + &image_high_addr, elf_machine, as); + if (kernel_size > 0 && have_dtb(info)) { + /* + * If there is still some room left at the base of RAM, try and put + * the DTB there like we do for images loaded with -bios or -pflash. + */ + if (image_low_addr > info->loader_start + || image_high_addr < info->loader_start) { + /* + * Set image_low_addr as address limit for arm_load_dtb if it may be + * pointing into RAM, otherwise pass '0' (no limit) + */ + if (image_low_addr < info->loader_start) { + image_low_addr = 0; + } + info->dtb_start = info->loader_start; + info->dtb_limit = image_low_addr; + } + } + entry = elf_entry; + if (kernel_size < 0) { + uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR; + kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr, + &is_linux, NULL, NULL, as); + if (kernel_size >= 0) { + image_low_addr = loadaddr; + image_high_addr = image_low_addr + kernel_size; + } + } + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { + kernel_size = load_aarch64_image(info->kernel_filename, + info->loader_start, &entry, as); + is_linux = 1; + if (kernel_size >= 0) { + image_low_addr = entry; + image_high_addr = image_low_addr + kernel_size; + } + } else if (kernel_size < 0) { + /* 32-bit ARM */ + entry = info->loader_start + KERNEL_LOAD_ADDR; + kernel_size = load_image_targphys_as(info->kernel_filename, entry, + ram_end - KERNEL_LOAD_ADDR, as); + is_linux = 1; + if (kernel_size >= 0) { + image_low_addr = entry; + image_high_addr = image_low_addr + kernel_size; + } + } + if (kernel_size < 0) { + error_report("could not load kernel '%s'", info->kernel_filename); + exit(1); + } + + if (kernel_size > info->ram_size) { + error_report("kernel '%s' is too large to fit in RAM " + "(kernel size %d, RAM size %" PRId64 ")", + info->kernel_filename, kernel_size, info->ram_size); + exit(1); + } + + info->entry = entry; + + /* + * We want to put the initrd far enough into RAM that when the + * kernel is uncompressed it will not clobber the initrd. However + * on boards without much RAM we must ensure that we still leave + * enough room for a decent sized initrd, and on boards with large + * amounts of RAM we must avoid the initrd being so far up in RAM + * that it is outside lowmem and inaccessible to the kernel. + * So for boards with less than 256MB of RAM we put the initrd + * halfway into RAM, and for boards with 256MB of RAM or more we put + * the initrd at 128MB. + * We also refuse to put the initrd somewhere that will definitely + * overlay the kernel we just loaded, though for kernel formats which + * don't tell us their exact size (eg self-decompressing 32-bit kernels) + * we might still make a bad choice here. + */ + info->initrd_start = info->loader_start + + MIN(info->ram_size / 2, 128 * MiB); + if (image_high_addr) { + info->initrd_start = MAX(info->initrd_start, image_high_addr); + } + info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start); + + if (is_linux) { + uint32_t fixupcontext[FIXUP_MAX]; + + if (info->initrd_filename) { + + if (info->initrd_start >= ram_end) { + error_report("not enough space after kernel to load initrd"); + exit(1); + } + + initrd_size = load_ramdisk_as(info->initrd_filename, + info->initrd_start, + ram_end - info->initrd_start, as); + if (initrd_size < 0) { + initrd_size = load_image_targphys_as(info->initrd_filename, + info->initrd_start, + ram_end - + info->initrd_start, + as); + } + if (initrd_size < 0) { + error_report("could not load initrd '%s'", + info->initrd_filename); + exit(1); + } + if (info->initrd_start + initrd_size > ram_end) { + error_report("could not load initrd '%s': " + "too big to fit into RAM after the kernel", + info->initrd_filename); + exit(1); + } + } else { + initrd_size = 0; + } + info->initrd_size = initrd_size; + + fixupcontext[FIXUP_BOARDID] = info->board_id; + fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; + + /* + * for device tree boot, we pass the DTB directly in r2. Otherwise + * we point to the kernel args. + */ + if (have_dtb(info)) { + hwaddr align; + + if (elf_machine == EM_AARCH64) { + /* + * Some AArch64 kernels on early bootup map the fdt region as + * + * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] + * + * Let's play safe and prealign it to 2MB to give us some space. + */ + align = 2 * MiB; + } else { + /* + * Some 32bit kernels will trash anything in the 4K page the + * initrd ends in, so make sure the DTB isn't caught up in that. + */ + align = 4 * KiB; + } + + /* Place the DTB after the initrd in memory with alignment. */ + info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, + align); + if (info->dtb_start >= ram_end) { + error_report("Not enough space for DTB after kernel/initrd"); + exit(1); + } + fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start; + fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32; + } else { + fixupcontext[FIXUP_ARGPTR_LO] = + info->loader_start + KERNEL_ARGS_ADDR; + fixupcontext[FIXUP_ARGPTR_HI] = + (info->loader_start + KERNEL_ARGS_ADDR) >> 32; + if (info->ram_size >= 4 * GiB) { + error_report("RAM size must be less than 4GB to boot" + " Linux kernel using ATAGS (try passing a device tree" + " using -dtb)"); + exit(1); + } + } + fixupcontext[FIXUP_ENTRYPOINT_LO] = entry; + fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32; + + write_bootloader("bootloader", info->loader_start, + primary_loader, fixupcontext, as); + + if (info->nb_cpus > 1) { + info->write_secondary_boot(cpu, info); + } + if (info->write_board_setup) { + info->write_board_setup(cpu, info); + } + + /* + * Notify devices which need to fake up firmware initialization + * that we're doing a direct kernel boot. + */ + object_child_foreach_recursive(object_get_root(), + do_arm_linux_init, info); + } + info->is_linux = is_linux; + + for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { + ARM_CPU(cs)->env.boot_info = info; + } +} + +static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info) +{ + /* Set up for booting firmware (which might load a kernel via fw_cfg) */ + + if (have_dtb(info)) { + /* + * If we have a device tree blob, but no kernel to supply it to (or + * the kernel is supposed to be loaded by the bootloader), copy the + * DTB to the base of RAM for the bootloader to pick up. + */ + info->dtb_start = info->loader_start; + } + + if (info->kernel_filename) { + FWCfgState *fw_cfg; + bool try_decompressing_kernel; + + fw_cfg = fw_cfg_find(); + + if (!fw_cfg) { + error_report("This machine type does not support loading both " + "a guest firmware/BIOS image and a guest kernel at " + "the same time. You should change your QEMU command " + "line to specify one or the other, but not both."); + exit(1); + } + + try_decompressing_kernel = arm_feature(&cpu->env, + ARM_FEATURE_AARCH64); + + /* + * Expose the kernel, the command line, and the initrd in fw_cfg. + * We don't process them here at all, it's all left to the + * firmware. + */ + load_image_to_fw_cfg(fw_cfg, + FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, + info->kernel_filename, + try_decompressing_kernel); + load_image_to_fw_cfg(fw_cfg, + FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, + info->initrd_filename, false); + + if (info->kernel_cmdline) { + fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, + strlen(info->kernel_cmdline) + 1); + fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, + info->kernel_cmdline); + } + } + + /* + * We will start from address 0 (typically a boot ROM image) in the + * same way as hardware. Leave env->boot_info NULL, so that + * do_cpu_reset() knows it does not need to alter the PC on reset. + */ +} + +void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info) +{ + CPUState *cs; + AddressSpace *as = arm_boot_address_space(cpu, info); + + /* + * CPU objects (unlike devices) are not automatically reset on system + * reset, so we must always register a handler to do so. If we're + * actually loading a kernel, the handler is also responsible for + * arranging that we start it correctly. + */ + for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { + qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); + } + + /* + * The board code is not supposed to set secure_board_setup unless + * running its code in secure mode is actually possible, and KVM + * doesn't support secure. + */ + assert(!(info->secure_board_setup && kvm_enabled())); + info->kernel_filename = ms->kernel_filename; + info->kernel_cmdline = ms->kernel_cmdline; + info->initrd_filename = ms->initrd_filename; + info->dtb_filename = ms->dtb; + info->dtb_limit = 0; + + /* Load the kernel. */ + if (!info->kernel_filename || info->firmware_loaded) { + arm_setup_firmware_boot(cpu, info); + } else { + arm_setup_direct_kernel_boot(cpu, info); + } + + if (!info->skip_dtb_autoload && have_dtb(info)) { + if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { + exit(1); + } + } +} + +static const TypeInfo arm_linux_boot_if_info = { + .name = TYPE_ARM_LINUX_BOOT_IF, + .parent = TYPE_INTERFACE, + .class_size = sizeof(ARMLinuxBootIfClass), +}; + +static void arm_linux_boot_register_types(void) +{ + type_register_static(&arm_linux_boot_if_info); +} + +type_init(arm_linux_boot_register_types) |