aboutsummaryrefslogtreecommitdiffstats
path: root/hw/arm/boot.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/arm/boot.c')
-rw-r--r--hw/arm/boot.c1351
1 files changed, 1351 insertions, 0 deletions
diff --git a/hw/arm/boot.c b/hw/arm/boot.c
new file mode 100644
index 000000000..74ad397b1
--- /dev/null
+++ b/hw/arm/boot.c
@@ -0,0 +1,1351 @@
+/*
+ * ARM kernel loader.
+ *
+ * Copyright (c) 2006-2007 CodeSourcery.
+ * Written by Paul Brook
+ *
+ * This code is licensed under the GPL.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qemu/datadir.h"
+#include "qemu/error-report.h"
+#include "qapi/error.h"
+#include <libfdt.h>
+#include "hw/arm/boot.h"
+#include "hw/arm/linux-boot-if.h"
+#include "sysemu/kvm.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/numa.h"
+#include "hw/boards.h"
+#include "sysemu/reset.h"
+#include "hw/loader.h"
+#include "elf.h"
+#include "sysemu/device_tree.h"
+#include "qemu/config-file.h"
+#include "qemu/option.h"
+#include "qemu/units.h"
+
+/* Kernel boot protocol is specified in the kernel docs
+ * Documentation/arm/Booting and Documentation/arm64/booting.txt
+ * They have different preferred image load offsets from system RAM base.
+ */
+#define KERNEL_ARGS_ADDR 0x100
+#define KERNEL_NOLOAD_ADDR 0x02000000
+#define KERNEL_LOAD_ADDR 0x00010000
+#define KERNEL64_LOAD_ADDR 0x00080000
+
+#define ARM64_TEXT_OFFSET_OFFSET 8
+#define ARM64_MAGIC_OFFSET 56
+
+#define BOOTLOADER_MAX_SIZE (4 * KiB)
+
+AddressSpace *arm_boot_address_space(ARMCPU *cpu,
+ const struct arm_boot_info *info)
+{
+ /* Return the address space to use for bootloader reads and writes.
+ * We prefer the secure address space if the CPU has it and we're
+ * going to boot the guest into it.
+ */
+ int asidx;
+ CPUState *cs = CPU(cpu);
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
+ asidx = ARMASIdx_S;
+ } else {
+ asidx = ARMASIdx_NS;
+ }
+
+ return cpu_get_address_space(cs, asidx);
+}
+
+typedef enum {
+ FIXUP_NONE = 0, /* do nothing */
+ FIXUP_TERMINATOR, /* end of insns */
+ FIXUP_BOARDID, /* overwrite with board ID number */
+ FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
+ FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
+ FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
+ FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
+ FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
+ FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
+ FIXUP_BOOTREG, /* overwrite with boot register address */
+ FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
+ FIXUP_MAX,
+} FixupType;
+
+typedef struct ARMInsnFixup {
+ uint32_t insn;
+ FixupType fixup;
+} ARMInsnFixup;
+
+static const ARMInsnFixup bootloader_aarch64[] = {
+ { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
+ { 0xaa1f03e1 }, /* mov x1, xzr */
+ { 0xaa1f03e2 }, /* mov x2, xzr */
+ { 0xaa1f03e3 }, /* mov x3, xzr */
+ { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
+ { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
+ { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
+ { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
+ { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
+ { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
+ { 0, FIXUP_TERMINATOR }
+};
+
+/* A very small bootloader: call the board-setup code (if needed),
+ * set r0-r2, then jump to the kernel.
+ * If we're not calling boot setup code then we don't copy across
+ * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
+ */
+
+static const ARMInsnFixup bootloader[] = {
+ { 0xe28fe004 }, /* add lr, pc, #4 */
+ { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
+ { 0, FIXUP_BOARD_SETUP },
+#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
+ { 0xe3a00000 }, /* mov r0, #0 */
+ { 0xe59f1004 }, /* ldr r1, [pc, #4] */
+ { 0xe59f2004 }, /* ldr r2, [pc, #4] */
+ { 0xe59ff004 }, /* ldr pc, [pc, #4] */
+ { 0, FIXUP_BOARDID },
+ { 0, FIXUP_ARGPTR_LO },
+ { 0, FIXUP_ENTRYPOINT_LO },
+ { 0, FIXUP_TERMINATOR }
+};
+
+/* Handling for secondary CPU boot in a multicore system.
+ * Unlike the uniprocessor/primary CPU boot, this is platform
+ * dependent. The default code here is based on the secondary
+ * CPU boot protocol used on realview/vexpress boards, with
+ * some parameterisation to increase its flexibility.
+ * QEMU platform models for which this code is not appropriate
+ * should override write_secondary_boot and secondary_cpu_reset_hook
+ * instead.
+ *
+ * This code enables the interrupt controllers for the secondary
+ * CPUs and then puts all the secondary CPUs into a loop waiting
+ * for an interprocessor interrupt and polling a configurable
+ * location for the kernel secondary CPU entry point.
+ */
+#define DSB_INSN 0xf57ff04f
+#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
+
+static const ARMInsnFixup smpboot[] = {
+ { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
+ { 0xe59f0028 }, /* ldr r0, bootreg_addr */
+ { 0xe3a01001 }, /* mov r1, #1 */
+ { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
+ { 0xe3a010ff }, /* mov r1, #0xff */
+ { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
+ { 0, FIXUP_DSB }, /* dsb */
+ { 0xe320f003 }, /* wfi */
+ { 0xe5901000 }, /* ldr r1, [r0] */
+ { 0xe1110001 }, /* tst r1, r1 */
+ { 0x0afffffb }, /* beq <wfi> */
+ { 0xe12fff11 }, /* bx r1 */
+ { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
+ { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
+ { 0, FIXUP_TERMINATOR }
+};
+
+static void write_bootloader(const char *name, hwaddr addr,
+ const ARMInsnFixup *insns, uint32_t *fixupcontext,
+ AddressSpace *as)
+{
+ /* Fix up the specified bootloader fragment and write it into
+ * guest memory using rom_add_blob_fixed(). fixupcontext is
+ * an array giving the values to write in for the fixup types
+ * which write a value into the code array.
+ */
+ int i, len;
+ uint32_t *code;
+
+ len = 0;
+ while (insns[len].fixup != FIXUP_TERMINATOR) {
+ len++;
+ }
+
+ code = g_new0(uint32_t, len);
+
+ for (i = 0; i < len; i++) {
+ uint32_t insn = insns[i].insn;
+ FixupType fixup = insns[i].fixup;
+
+ switch (fixup) {
+ case FIXUP_NONE:
+ break;
+ case FIXUP_BOARDID:
+ case FIXUP_BOARD_SETUP:
+ case FIXUP_ARGPTR_LO:
+ case FIXUP_ARGPTR_HI:
+ case FIXUP_ENTRYPOINT_LO:
+ case FIXUP_ENTRYPOINT_HI:
+ case FIXUP_GIC_CPU_IF:
+ case FIXUP_BOOTREG:
+ case FIXUP_DSB:
+ insn = fixupcontext[fixup];
+ break;
+ default:
+ abort();
+ }
+ code[i] = tswap32(insn);
+ }
+
+ assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
+
+ rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
+
+ g_free(code);
+}
+
+static void default_write_secondary(ARMCPU *cpu,
+ const struct arm_boot_info *info)
+{
+ uint32_t fixupcontext[FIXUP_MAX];
+ AddressSpace *as = arm_boot_address_space(cpu, info);
+
+ fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
+ fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
+ if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
+ fixupcontext[FIXUP_DSB] = DSB_INSN;
+ } else {
+ fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
+ }
+
+ write_bootloader("smpboot", info->smp_loader_start,
+ smpboot, fixupcontext, as);
+}
+
+void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
+ const struct arm_boot_info *info,
+ hwaddr mvbar_addr)
+{
+ AddressSpace *as = arm_boot_address_space(cpu, info);
+ int n;
+ uint32_t mvbar_blob[] = {
+ /* mvbar_addr: secure monitor vectors
+ * Default unimplemented and unused vectors to spin. Makes it
+ * easier to debug (as opposed to the CPU running away).
+ */
+ 0xeafffffe, /* (spin) */
+ 0xeafffffe, /* (spin) */
+ 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
+ 0xeafffffe, /* (spin) */
+ 0xeafffffe, /* (spin) */
+ 0xeafffffe, /* (spin) */
+ 0xeafffffe, /* (spin) */
+ 0xeafffffe, /* (spin) */
+ };
+ uint32_t board_setup_blob[] = {
+ /* board setup addr */
+ 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
+ 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
+ 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
+ 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
+ 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
+ 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
+ 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
+ 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
+ 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
+ 0xe1600070, /* smc #0 ;call monitor to flush SCR */
+ 0xe1a0f001, /* mov pc, r1 ;return */
+ };
+
+ /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
+ assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
+
+ /* check that these blobs don't overlap */
+ assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
+ || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
+
+ for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
+ mvbar_blob[n] = tswap32(mvbar_blob[n]);
+ }
+ rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
+ mvbar_addr, as);
+
+ for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
+ board_setup_blob[n] = tswap32(board_setup_blob[n]);
+ }
+ rom_add_blob_fixed_as("board-setup", board_setup_blob,
+ sizeof(board_setup_blob), info->board_setup_addr, as);
+}
+
+static void default_reset_secondary(ARMCPU *cpu,
+ const struct arm_boot_info *info)
+{
+ AddressSpace *as = arm_boot_address_space(cpu, info);
+ CPUState *cs = CPU(cpu);
+
+ address_space_stl_notdirty(as, info->smp_bootreg_addr,
+ 0, MEMTXATTRS_UNSPECIFIED, NULL);
+ cpu_set_pc(cs, info->smp_loader_start);
+}
+
+static inline bool have_dtb(const struct arm_boot_info *info)
+{
+ return info->dtb_filename || info->get_dtb;
+}
+
+#define WRITE_WORD(p, value) do { \
+ address_space_stl_notdirty(as, p, value, \
+ MEMTXATTRS_UNSPECIFIED, NULL); \
+ p += 4; \
+} while (0)
+
+static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
+{
+ int initrd_size = info->initrd_size;
+ hwaddr base = info->loader_start;
+ hwaddr p;
+
+ p = base + KERNEL_ARGS_ADDR;
+ /* ATAG_CORE */
+ WRITE_WORD(p, 5);
+ WRITE_WORD(p, 0x54410001);
+ WRITE_WORD(p, 1);
+ WRITE_WORD(p, 0x1000);
+ WRITE_WORD(p, 0);
+ /* ATAG_MEM */
+ /* TODO: handle multiple chips on one ATAG list */
+ WRITE_WORD(p, 4);
+ WRITE_WORD(p, 0x54410002);
+ WRITE_WORD(p, info->ram_size);
+ WRITE_WORD(p, info->loader_start);
+ if (initrd_size) {
+ /* ATAG_INITRD2 */
+ WRITE_WORD(p, 4);
+ WRITE_WORD(p, 0x54420005);
+ WRITE_WORD(p, info->initrd_start);
+ WRITE_WORD(p, initrd_size);
+ }
+ if (info->kernel_cmdline && *info->kernel_cmdline) {
+ /* ATAG_CMDLINE */
+ int cmdline_size;
+
+ cmdline_size = strlen(info->kernel_cmdline);
+ address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
+ info->kernel_cmdline, cmdline_size + 1);
+ cmdline_size = (cmdline_size >> 2) + 1;
+ WRITE_WORD(p, cmdline_size + 2);
+ WRITE_WORD(p, 0x54410009);
+ p += cmdline_size * 4;
+ }
+ if (info->atag_board) {
+ /* ATAG_BOARD */
+ int atag_board_len;
+ uint8_t atag_board_buf[0x1000];
+
+ atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
+ WRITE_WORD(p, (atag_board_len + 8) >> 2);
+ WRITE_WORD(p, 0x414f4d50);
+ address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
+ atag_board_buf, atag_board_len);
+ p += atag_board_len;
+ }
+ /* ATAG_END */
+ WRITE_WORD(p, 0);
+ WRITE_WORD(p, 0);
+}
+
+static void set_kernel_args_old(const struct arm_boot_info *info,
+ AddressSpace *as)
+{
+ hwaddr p;
+ const char *s;
+ int initrd_size = info->initrd_size;
+ hwaddr base = info->loader_start;
+
+ /* see linux/include/asm-arm/setup.h */
+ p = base + KERNEL_ARGS_ADDR;
+ /* page_size */
+ WRITE_WORD(p, 4096);
+ /* nr_pages */
+ WRITE_WORD(p, info->ram_size / 4096);
+ /* ramdisk_size */
+ WRITE_WORD(p, 0);
+#define FLAG_READONLY 1
+#define FLAG_RDLOAD 4
+#define FLAG_RDPROMPT 8
+ /* flags */
+ WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
+ /* rootdev */
+ WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
+ /* video_num_cols */
+ WRITE_WORD(p, 0);
+ /* video_num_rows */
+ WRITE_WORD(p, 0);
+ /* video_x */
+ WRITE_WORD(p, 0);
+ /* video_y */
+ WRITE_WORD(p, 0);
+ /* memc_control_reg */
+ WRITE_WORD(p, 0);
+ /* unsigned char sounddefault */
+ /* unsigned char adfsdrives */
+ /* unsigned char bytes_per_char_h */
+ /* unsigned char bytes_per_char_v */
+ WRITE_WORD(p, 0);
+ /* pages_in_bank[4] */
+ WRITE_WORD(p, 0);
+ WRITE_WORD(p, 0);
+ WRITE_WORD(p, 0);
+ WRITE_WORD(p, 0);
+ /* pages_in_vram */
+ WRITE_WORD(p, 0);
+ /* initrd_start */
+ if (initrd_size) {
+ WRITE_WORD(p, info->initrd_start);
+ } else {
+ WRITE_WORD(p, 0);
+ }
+ /* initrd_size */
+ WRITE_WORD(p, initrd_size);
+ /* rd_start */
+ WRITE_WORD(p, 0);
+ /* system_rev */
+ WRITE_WORD(p, 0);
+ /* system_serial_low */
+ WRITE_WORD(p, 0);
+ /* system_serial_high */
+ WRITE_WORD(p, 0);
+ /* mem_fclk_21285 */
+ WRITE_WORD(p, 0);
+ /* zero unused fields */
+ while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
+ WRITE_WORD(p, 0);
+ }
+ s = info->kernel_cmdline;
+ if (s) {
+ address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
+ } else {
+ WRITE_WORD(p, 0);
+ }
+}
+
+static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
+ uint32_t scells, hwaddr mem_len,
+ int numa_node_id)
+{
+ char *nodename;
+ int ret;
+
+ nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
+ qemu_fdt_add_subnode(fdt, nodename);
+ qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
+ ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
+ scells, mem_len);
+ if (ret < 0) {
+ goto out;
+ }
+
+ /* only set the NUMA ID if it is specified */
+ if (numa_node_id >= 0) {
+ ret = qemu_fdt_setprop_cell(fdt, nodename,
+ "numa-node-id", numa_node_id);
+ }
+out:
+ g_free(nodename);
+ return ret;
+}
+
+static void fdt_add_psci_node(void *fdt)
+{
+ uint32_t cpu_suspend_fn;
+ uint32_t cpu_off_fn;
+ uint32_t cpu_on_fn;
+ uint32_t migrate_fn;
+ ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
+ const char *psci_method;
+ int64_t psci_conduit;
+ int rc;
+
+ psci_conduit = object_property_get_int(OBJECT(armcpu),
+ "psci-conduit",
+ &error_abort);
+ switch (psci_conduit) {
+ case QEMU_PSCI_CONDUIT_DISABLED:
+ return;
+ case QEMU_PSCI_CONDUIT_HVC:
+ psci_method = "hvc";
+ break;
+ case QEMU_PSCI_CONDUIT_SMC:
+ psci_method = "smc";
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ /*
+ * If /psci node is present in provided DTB, assume that no fixup
+ * is necessary and all PSCI configuration should be taken as-is
+ */
+ rc = fdt_path_offset(fdt, "/psci");
+ if (rc >= 0) {
+ return;
+ }
+
+ qemu_fdt_add_subnode(fdt, "/psci");
+ if (armcpu->psci_version == 2) {
+ const char comp[] = "arm,psci-0.2\0arm,psci";
+ qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
+
+ cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
+ if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
+ cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
+ cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
+ migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
+ } else {
+ cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
+ cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
+ migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
+ }
+ } else {
+ qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
+
+ cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
+ cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
+ cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
+ migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
+ }
+
+ /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
+ * to the instruction that should be used to invoke PSCI functions.
+ * However, the device tree binding uses 'method' instead, so that is
+ * what we should use here.
+ */
+ qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
+
+ qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
+ qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
+ qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
+ qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
+}
+
+int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
+ hwaddr addr_limit, AddressSpace *as, MachineState *ms)
+{
+ void *fdt = NULL;
+ int size, rc, n = 0;
+ uint32_t acells, scells;
+ unsigned int i;
+ hwaddr mem_base, mem_len;
+ char **node_path;
+ Error *err = NULL;
+
+ if (binfo->dtb_filename) {
+ char *filename;
+ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
+ if (!filename) {
+ fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
+ goto fail;
+ }
+
+ fdt = load_device_tree(filename, &size);
+ if (!fdt) {
+ fprintf(stderr, "Couldn't open dtb file %s\n", filename);
+ g_free(filename);
+ goto fail;
+ }
+ g_free(filename);
+ } else {
+ fdt = binfo->get_dtb(binfo, &size);
+ if (!fdt) {
+ fprintf(stderr, "Board was unable to create a dtb blob\n");
+ goto fail;
+ }
+ }
+
+ if (addr_limit > addr && size > (addr_limit - addr)) {
+ /* Installing the device tree blob at addr would exceed addr_limit.
+ * Whether this constitutes failure is up to the caller to decide,
+ * so just return 0 as size, i.e., no error.
+ */
+ g_free(fdt);
+ return 0;
+ }
+
+ acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
+ NULL, &error_fatal);
+ scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
+ NULL, &error_fatal);
+ if (acells == 0 || scells == 0) {
+ fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
+ goto fail;
+ }
+
+ if (scells < 2 && binfo->ram_size >= 4 * GiB) {
+ /* This is user error so deserves a friendlier error message
+ * than the failure of setprop_sized_cells would provide
+ */
+ fprintf(stderr, "qemu: dtb file not compatible with "
+ "RAM size > 4GB\n");
+ goto fail;
+ }
+
+ /* nop all root nodes matching /memory or /memory@unit-address */
+ node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
+ if (err) {
+ error_report_err(err);
+ goto fail;
+ }
+ while (node_path[n]) {
+ if (g_str_has_prefix(node_path[n], "/memory")) {
+ qemu_fdt_nop_node(fdt, node_path[n]);
+ }
+ n++;
+ }
+ g_strfreev(node_path);
+
+ /*
+ * We drop all the memory nodes which correspond to empty NUMA nodes
+ * from the device tree, because the Linux NUMA binding document
+ * states they should not be generated. Linux will get the NUMA node
+ * IDs of the empty NUMA nodes from the distance map if they are needed.
+ * This means QEMU users may be obliged to provide command lines which
+ * configure distance maps when the empty NUMA node IDs are needed and
+ * Linux's default distance map isn't sufficient.
+ */
+ if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
+ mem_base = binfo->loader_start;
+ for (i = 0; i < ms->numa_state->num_nodes; i++) {
+ mem_len = ms->numa_state->nodes[i].node_mem;
+ if (!mem_len) {
+ continue;
+ }
+
+ rc = fdt_add_memory_node(fdt, acells, mem_base,
+ scells, mem_len, i);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
+ mem_base);
+ goto fail;
+ }
+
+ mem_base += mem_len;
+ }
+ } else {
+ rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
+ scells, binfo->ram_size, -1);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
+ binfo->loader_start);
+ goto fail;
+ }
+ }
+
+ rc = fdt_path_offset(fdt, "/chosen");
+ if (rc < 0) {
+ qemu_fdt_add_subnode(fdt, "/chosen");
+ }
+
+ if (ms->kernel_cmdline && *ms->kernel_cmdline) {
+ rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
+ ms->kernel_cmdline);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /chosen/bootargs\n");
+ goto fail;
+ }
+ }
+
+ if (binfo->initrd_size) {
+ rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
+ binfo->initrd_start);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
+ goto fail;
+ }
+
+ rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
+ binfo->initrd_start + binfo->initrd_size);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
+ goto fail;
+ }
+ }
+
+ fdt_add_psci_node(fdt);
+
+ if (binfo->modify_dtb) {
+ binfo->modify_dtb(binfo, fdt);
+ }
+
+ qemu_fdt_dumpdtb(fdt, size);
+
+ /* Put the DTB into the memory map as a ROM image: this will ensure
+ * the DTB is copied again upon reset, even if addr points into RAM.
+ */
+ rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
+
+ g_free(fdt);
+
+ return size;
+
+fail:
+ g_free(fdt);
+ return -1;
+}
+
+static void do_cpu_reset(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+ CPUState *cs = CPU(cpu);
+ CPUARMState *env = &cpu->env;
+ const struct arm_boot_info *info = env->boot_info;
+
+ cpu_reset(cs);
+ if (info) {
+ if (!info->is_linux) {
+ int i;
+ /* Jump to the entry point. */
+ uint64_t entry = info->entry;
+
+ switch (info->endianness) {
+ case ARM_ENDIANNESS_LE:
+ env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
+ for (i = 1; i < 4; ++i) {
+ env->cp15.sctlr_el[i] &= ~SCTLR_EE;
+ }
+ env->uncached_cpsr &= ~CPSR_E;
+ break;
+ case ARM_ENDIANNESS_BE8:
+ env->cp15.sctlr_el[1] |= SCTLR_E0E;
+ for (i = 1; i < 4; ++i) {
+ env->cp15.sctlr_el[i] |= SCTLR_EE;
+ }
+ env->uncached_cpsr |= CPSR_E;
+ break;
+ case ARM_ENDIANNESS_BE32:
+ env->cp15.sctlr_el[1] |= SCTLR_B;
+ break;
+ case ARM_ENDIANNESS_UNKNOWN:
+ break; /* Board's decision */
+ default:
+ g_assert_not_reached();
+ }
+
+ cpu_set_pc(cs, entry);
+ } else {
+ /* If we are booting Linux then we need to check whether we are
+ * booting into secure or non-secure state and adjust the state
+ * accordingly. Out of reset, ARM is defined to be in secure state
+ * (SCR.NS = 0), we change that here if non-secure boot has been
+ * requested.
+ */
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ /* AArch64 is defined to come out of reset into EL3 if enabled.
+ * If we are booting Linux then we need to adjust our EL as
+ * Linux expects us to be in EL2 or EL1. AArch32 resets into
+ * SVC, which Linux expects, so no privilege/exception level to
+ * adjust.
+ */
+ if (env->aarch64) {
+ env->cp15.scr_el3 |= SCR_RW;
+ if (arm_feature(env, ARM_FEATURE_EL2)) {
+ env->cp15.hcr_el2 |= HCR_RW;
+ env->pstate = PSTATE_MODE_EL2h;
+ } else {
+ env->pstate = PSTATE_MODE_EL1h;
+ }
+ if (cpu_isar_feature(aa64_pauth, cpu)) {
+ env->cp15.scr_el3 |= SCR_API | SCR_APK;
+ }
+ if (cpu_isar_feature(aa64_mte, cpu)) {
+ env->cp15.scr_el3 |= SCR_ATA;
+ }
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ env->cp15.cptr_el[3] |= CPTR_EZ;
+ }
+ /* AArch64 kernels never boot in secure mode */
+ assert(!info->secure_boot);
+ /* This hook is only supported for AArch32 currently:
+ * bootloader_aarch64[] will not call the hook, and
+ * the code above has already dropped us into EL2 or EL1.
+ */
+ assert(!info->secure_board_setup);
+ }
+
+ if (arm_feature(env, ARM_FEATURE_EL2)) {
+ /* If we have EL2 then Linux expects the HVC insn to work */
+ env->cp15.scr_el3 |= SCR_HCE;
+ }
+
+ /* Set to non-secure if not a secure boot */
+ if (!info->secure_boot &&
+ (cs != first_cpu || !info->secure_board_setup)) {
+ /* Linux expects non-secure state */
+ env->cp15.scr_el3 |= SCR_NS;
+ /* Set NSACR.{CP11,CP10} so NS can access the FPU */
+ env->cp15.nsacr |= 3 << 10;
+ }
+ }
+
+ if (!env->aarch64 && !info->secure_boot &&
+ arm_feature(env, ARM_FEATURE_EL2)) {
+ /*
+ * This is an AArch32 boot not to Secure state, and
+ * we have Hyp mode available, so boot the kernel into
+ * Hyp mode. This is not how the CPU comes out of reset,
+ * so we need to manually put it there.
+ */
+ cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
+ }
+
+ if (cs == first_cpu) {
+ AddressSpace *as = arm_boot_address_space(cpu, info);
+
+ cpu_set_pc(cs, info->loader_start);
+
+ if (!have_dtb(info)) {
+ if (old_param) {
+ set_kernel_args_old(info, as);
+ } else {
+ set_kernel_args(info, as);
+ }
+ }
+ } else {
+ info->secondary_cpu_reset_hook(cpu, info);
+ }
+ }
+ arm_rebuild_hflags(env);
+ }
+}
+
+/**
+ * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
+ * by key.
+ * @fw_cfg: The firmware config instance to store the data in.
+ * @size_key: The firmware config key to store the size of the loaded
+ * data under, with fw_cfg_add_i32().
+ * @data_key: The firmware config key to store the loaded data under,
+ * with fw_cfg_add_bytes().
+ * @image_name: The name of the image file to load. If it is NULL, the
+ * function returns without doing anything.
+ * @try_decompress: Whether the image should be decompressed (gunzipped) before
+ * adding it to fw_cfg. If decompression fails, the image is
+ * loaded as-is.
+ *
+ * In case of failure, the function prints an error message to stderr and the
+ * process exits with status 1.
+ */
+static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
+ uint16_t data_key, const char *image_name,
+ bool try_decompress)
+{
+ size_t size = -1;
+ uint8_t *data;
+
+ if (image_name == NULL) {
+ return;
+ }
+
+ if (try_decompress) {
+ size = load_image_gzipped_buffer(image_name,
+ LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
+ }
+
+ if (size == (size_t)-1) {
+ gchar *contents;
+ gsize length;
+
+ if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
+ error_report("failed to load \"%s\"", image_name);
+ exit(1);
+ }
+ size = length;
+ data = (uint8_t *)contents;
+ }
+
+ fw_cfg_add_i32(fw_cfg, size_key, size);
+ fw_cfg_add_bytes(fw_cfg, data_key, data, size);
+}
+
+static int do_arm_linux_init(Object *obj, void *opaque)
+{
+ if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
+ ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
+ ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
+ struct arm_boot_info *info = opaque;
+
+ if (albifc->arm_linux_init) {
+ albifc->arm_linux_init(albif, info->secure_boot);
+ }
+ }
+ return 0;
+}
+
+static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
+ uint64_t *lowaddr, uint64_t *highaddr,
+ int elf_machine, AddressSpace *as)
+{
+ bool elf_is64;
+ union {
+ Elf32_Ehdr h32;
+ Elf64_Ehdr h64;
+ } elf_header;
+ int data_swab = 0;
+ bool big_endian;
+ int64_t ret = -1;
+ Error *err = NULL;
+
+
+ load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
+ if (err) {
+ error_free(err);
+ return ret;
+ }
+
+ if (elf_is64) {
+ big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
+ info->endianness = big_endian ? ARM_ENDIANNESS_BE8
+ : ARM_ENDIANNESS_LE;
+ } else {
+ big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
+ if (big_endian) {
+ if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
+ info->endianness = ARM_ENDIANNESS_BE8;
+ } else {
+ info->endianness = ARM_ENDIANNESS_BE32;
+ /* In BE32, the CPU has a different view of the per-byte
+ * address map than the rest of the system. BE32 ELF files
+ * are organised such that they can be programmed through
+ * the CPU's per-word byte-reversed view of the world. QEMU
+ * however loads ELF files independently of the CPU. So
+ * tell the ELF loader to byte reverse the data for us.
+ */
+ data_swab = 2;
+ }
+ } else {
+ info->endianness = ARM_ENDIANNESS_LE;
+ }
+ }
+
+ ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
+ pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
+ 1, data_swab, as);
+ if (ret <= 0) {
+ /* The header loaded but the image didn't */
+ exit(1);
+ }
+
+ return ret;
+}
+
+static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
+ hwaddr *entry, AddressSpace *as)
+{
+ hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
+ uint64_t kernel_size = 0;
+ uint8_t *buffer;
+ int size;
+
+ /* On aarch64, it's the bootloader's job to uncompress the kernel. */
+ size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
+ &buffer);
+
+ if (size < 0) {
+ gsize len;
+
+ /* Load as raw file otherwise */
+ if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
+ return -1;
+ }
+ size = len;
+ }
+
+ /* check the arm64 magic header value -- very old kernels may not have it */
+ if (size > ARM64_MAGIC_OFFSET + 4 &&
+ memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
+ uint64_t hdrvals[2];
+
+ /* The arm64 Image header has text_offset and image_size fields at 8 and
+ * 16 bytes into the Image header, respectively. The text_offset field
+ * is only valid if the image_size is non-zero.
+ */
+ memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
+
+ kernel_size = le64_to_cpu(hdrvals[1]);
+
+ if (kernel_size != 0) {
+ kernel_load_offset = le64_to_cpu(hdrvals[0]);
+
+ /*
+ * We write our startup "bootloader" at the very bottom of RAM,
+ * so that bit can't be used for the image. Luckily the Image
+ * format specification is that the image requests only an offset
+ * from a 2MB boundary, not an absolute load address. So if the
+ * image requests an offset that might mean it overlaps with the
+ * bootloader, we can just load it starting at 2MB+offset rather
+ * than 0MB + offset.
+ */
+ if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
+ kernel_load_offset += 2 * MiB;
+ }
+ }
+ }
+
+ /*
+ * Kernels before v3.17 don't populate the image_size field, and
+ * raw images have no header. For those our best guess at the size
+ * is the size of the Image file itself.
+ */
+ if (kernel_size == 0) {
+ kernel_size = size;
+ }
+
+ *entry = mem_base + kernel_load_offset;
+ rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
+
+ g_free(buffer);
+
+ return kernel_size;
+}
+
+static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
+ struct arm_boot_info *info)
+{
+ /* Set up for a direct boot of a kernel image file. */
+ CPUState *cs;
+ AddressSpace *as = arm_boot_address_space(cpu, info);
+ int kernel_size;
+ int initrd_size;
+ int is_linux = 0;
+ uint64_t elf_entry;
+ /* Addresses of first byte used and first byte not used by the image */
+ uint64_t image_low_addr = 0, image_high_addr = 0;
+ int elf_machine;
+ hwaddr entry;
+ static const ARMInsnFixup *primary_loader;
+ uint64_t ram_end = info->loader_start + info->ram_size;
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ primary_loader = bootloader_aarch64;
+ elf_machine = EM_AARCH64;
+ } else {
+ primary_loader = bootloader;
+ if (!info->write_board_setup) {
+ primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
+ }
+ elf_machine = EM_ARM;
+ }
+
+ if (!info->secondary_cpu_reset_hook) {
+ info->secondary_cpu_reset_hook = default_reset_secondary;
+ }
+ if (!info->write_secondary_boot) {
+ info->write_secondary_boot = default_write_secondary;
+ }
+
+ if (info->nb_cpus == 0)
+ info->nb_cpus = 1;
+
+ /* Assume that raw images are linux kernels, and ELF images are not. */
+ kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
+ &image_high_addr, elf_machine, as);
+ if (kernel_size > 0 && have_dtb(info)) {
+ /*
+ * If there is still some room left at the base of RAM, try and put
+ * the DTB there like we do for images loaded with -bios or -pflash.
+ */
+ if (image_low_addr > info->loader_start
+ || image_high_addr < info->loader_start) {
+ /*
+ * Set image_low_addr as address limit for arm_load_dtb if it may be
+ * pointing into RAM, otherwise pass '0' (no limit)
+ */
+ if (image_low_addr < info->loader_start) {
+ image_low_addr = 0;
+ }
+ info->dtb_start = info->loader_start;
+ info->dtb_limit = image_low_addr;
+ }
+ }
+ entry = elf_entry;
+ if (kernel_size < 0) {
+ uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
+ kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
+ &is_linux, NULL, NULL, as);
+ if (kernel_size >= 0) {
+ image_low_addr = loadaddr;
+ image_high_addr = image_low_addr + kernel_size;
+ }
+ }
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
+ kernel_size = load_aarch64_image(info->kernel_filename,
+ info->loader_start, &entry, as);
+ is_linux = 1;
+ if (kernel_size >= 0) {
+ image_low_addr = entry;
+ image_high_addr = image_low_addr + kernel_size;
+ }
+ } else if (kernel_size < 0) {
+ /* 32-bit ARM */
+ entry = info->loader_start + KERNEL_LOAD_ADDR;
+ kernel_size = load_image_targphys_as(info->kernel_filename, entry,
+ ram_end - KERNEL_LOAD_ADDR, as);
+ is_linux = 1;
+ if (kernel_size >= 0) {
+ image_low_addr = entry;
+ image_high_addr = image_low_addr + kernel_size;
+ }
+ }
+ if (kernel_size < 0) {
+ error_report("could not load kernel '%s'", info->kernel_filename);
+ exit(1);
+ }
+
+ if (kernel_size > info->ram_size) {
+ error_report("kernel '%s' is too large to fit in RAM "
+ "(kernel size %d, RAM size %" PRId64 ")",
+ info->kernel_filename, kernel_size, info->ram_size);
+ exit(1);
+ }
+
+ info->entry = entry;
+
+ /*
+ * We want to put the initrd far enough into RAM that when the
+ * kernel is uncompressed it will not clobber the initrd. However
+ * on boards without much RAM we must ensure that we still leave
+ * enough room for a decent sized initrd, and on boards with large
+ * amounts of RAM we must avoid the initrd being so far up in RAM
+ * that it is outside lowmem and inaccessible to the kernel.
+ * So for boards with less than 256MB of RAM we put the initrd
+ * halfway into RAM, and for boards with 256MB of RAM or more we put
+ * the initrd at 128MB.
+ * We also refuse to put the initrd somewhere that will definitely
+ * overlay the kernel we just loaded, though for kernel formats which
+ * don't tell us their exact size (eg self-decompressing 32-bit kernels)
+ * we might still make a bad choice here.
+ */
+ info->initrd_start = info->loader_start +
+ MIN(info->ram_size / 2, 128 * MiB);
+ if (image_high_addr) {
+ info->initrd_start = MAX(info->initrd_start, image_high_addr);
+ }
+ info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
+
+ if (is_linux) {
+ uint32_t fixupcontext[FIXUP_MAX];
+
+ if (info->initrd_filename) {
+
+ if (info->initrd_start >= ram_end) {
+ error_report("not enough space after kernel to load initrd");
+ exit(1);
+ }
+
+ initrd_size = load_ramdisk_as(info->initrd_filename,
+ info->initrd_start,
+ ram_end - info->initrd_start, as);
+ if (initrd_size < 0) {
+ initrd_size = load_image_targphys_as(info->initrd_filename,
+ info->initrd_start,
+ ram_end -
+ info->initrd_start,
+ as);
+ }
+ if (initrd_size < 0) {
+ error_report("could not load initrd '%s'",
+ info->initrd_filename);
+ exit(1);
+ }
+ if (info->initrd_start + initrd_size > ram_end) {
+ error_report("could not load initrd '%s': "
+ "too big to fit into RAM after the kernel",
+ info->initrd_filename);
+ exit(1);
+ }
+ } else {
+ initrd_size = 0;
+ }
+ info->initrd_size = initrd_size;
+
+ fixupcontext[FIXUP_BOARDID] = info->board_id;
+ fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
+
+ /*
+ * for device tree boot, we pass the DTB directly in r2. Otherwise
+ * we point to the kernel args.
+ */
+ if (have_dtb(info)) {
+ hwaddr align;
+
+ if (elf_machine == EM_AARCH64) {
+ /*
+ * Some AArch64 kernels on early bootup map the fdt region as
+ *
+ * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
+ *
+ * Let's play safe and prealign it to 2MB to give us some space.
+ */
+ align = 2 * MiB;
+ } else {
+ /*
+ * Some 32bit kernels will trash anything in the 4K page the
+ * initrd ends in, so make sure the DTB isn't caught up in that.
+ */
+ align = 4 * KiB;
+ }
+
+ /* Place the DTB after the initrd in memory with alignment. */
+ info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
+ align);
+ if (info->dtb_start >= ram_end) {
+ error_report("Not enough space for DTB after kernel/initrd");
+ exit(1);
+ }
+ fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
+ fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
+ } else {
+ fixupcontext[FIXUP_ARGPTR_LO] =
+ info->loader_start + KERNEL_ARGS_ADDR;
+ fixupcontext[FIXUP_ARGPTR_HI] =
+ (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
+ if (info->ram_size >= 4 * GiB) {
+ error_report("RAM size must be less than 4GB to boot"
+ " Linux kernel using ATAGS (try passing a device tree"
+ " using -dtb)");
+ exit(1);
+ }
+ }
+ fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
+ fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
+
+ write_bootloader("bootloader", info->loader_start,
+ primary_loader, fixupcontext, as);
+
+ if (info->nb_cpus > 1) {
+ info->write_secondary_boot(cpu, info);
+ }
+ if (info->write_board_setup) {
+ info->write_board_setup(cpu, info);
+ }
+
+ /*
+ * Notify devices which need to fake up firmware initialization
+ * that we're doing a direct kernel boot.
+ */
+ object_child_foreach_recursive(object_get_root(),
+ do_arm_linux_init, info);
+ }
+ info->is_linux = is_linux;
+
+ for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
+ ARM_CPU(cs)->env.boot_info = info;
+ }
+}
+
+static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
+{
+ /* Set up for booting firmware (which might load a kernel via fw_cfg) */
+
+ if (have_dtb(info)) {
+ /*
+ * If we have a device tree blob, but no kernel to supply it to (or
+ * the kernel is supposed to be loaded by the bootloader), copy the
+ * DTB to the base of RAM for the bootloader to pick up.
+ */
+ info->dtb_start = info->loader_start;
+ }
+
+ if (info->kernel_filename) {
+ FWCfgState *fw_cfg;
+ bool try_decompressing_kernel;
+
+ fw_cfg = fw_cfg_find();
+
+ if (!fw_cfg) {
+ error_report("This machine type does not support loading both "
+ "a guest firmware/BIOS image and a guest kernel at "
+ "the same time. You should change your QEMU command "
+ "line to specify one or the other, but not both.");
+ exit(1);
+ }
+
+ try_decompressing_kernel = arm_feature(&cpu->env,
+ ARM_FEATURE_AARCH64);
+
+ /*
+ * Expose the kernel, the command line, and the initrd in fw_cfg.
+ * We don't process them here at all, it's all left to the
+ * firmware.
+ */
+ load_image_to_fw_cfg(fw_cfg,
+ FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
+ info->kernel_filename,
+ try_decompressing_kernel);
+ load_image_to_fw_cfg(fw_cfg,
+ FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
+ info->initrd_filename, false);
+
+ if (info->kernel_cmdline) {
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
+ strlen(info->kernel_cmdline) + 1);
+ fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
+ info->kernel_cmdline);
+ }
+ }
+
+ /*
+ * We will start from address 0 (typically a boot ROM image) in the
+ * same way as hardware. Leave env->boot_info NULL, so that
+ * do_cpu_reset() knows it does not need to alter the PC on reset.
+ */
+}
+
+void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
+{
+ CPUState *cs;
+ AddressSpace *as = arm_boot_address_space(cpu, info);
+
+ /*
+ * CPU objects (unlike devices) are not automatically reset on system
+ * reset, so we must always register a handler to do so. If we're
+ * actually loading a kernel, the handler is also responsible for
+ * arranging that we start it correctly.
+ */
+ for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
+ qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
+ }
+
+ /*
+ * The board code is not supposed to set secure_board_setup unless
+ * running its code in secure mode is actually possible, and KVM
+ * doesn't support secure.
+ */
+ assert(!(info->secure_board_setup && kvm_enabled()));
+ info->kernel_filename = ms->kernel_filename;
+ info->kernel_cmdline = ms->kernel_cmdline;
+ info->initrd_filename = ms->initrd_filename;
+ info->dtb_filename = ms->dtb;
+ info->dtb_limit = 0;
+
+ /* Load the kernel. */
+ if (!info->kernel_filename || info->firmware_loaded) {
+ arm_setup_firmware_boot(cpu, info);
+ } else {
+ arm_setup_direct_kernel_boot(cpu, info);
+ }
+
+ if (!info->skip_dtb_autoload && have_dtb(info)) {
+ if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
+ exit(1);
+ }
+ }
+}
+
+static const TypeInfo arm_linux_boot_if_info = {
+ .name = TYPE_ARM_LINUX_BOOT_IF,
+ .parent = TYPE_INTERFACE,
+ .class_size = sizeof(ARMLinuxBootIfClass),
+};
+
+static void arm_linux_boot_register_types(void)
+{
+ type_register_static(&arm_linux_boot_if_info);
+}
+
+type_init(arm_linux_boot_register_types)