aboutsummaryrefslogtreecommitdiffstats
path: root/roms/edk2/MdePkg/Library/BaseOrderedCollectionRedBlackTreeLib/BaseOrderedCollectionRedBlackTreeLib.c
diff options
context:
space:
mode:
Diffstat (limited to 'roms/edk2/MdePkg/Library/BaseOrderedCollectionRedBlackTreeLib/BaseOrderedCollectionRedBlackTreeLib.c')
-rw-r--r--roms/edk2/MdePkg/Library/BaseOrderedCollectionRedBlackTreeLib/BaseOrderedCollectionRedBlackTreeLib.c1448
1 files changed, 1448 insertions, 0 deletions
diff --git a/roms/edk2/MdePkg/Library/BaseOrderedCollectionRedBlackTreeLib/BaseOrderedCollectionRedBlackTreeLib.c b/roms/edk2/MdePkg/Library/BaseOrderedCollectionRedBlackTreeLib/BaseOrderedCollectionRedBlackTreeLib.c
new file mode 100644
index 000000000..650a76148
--- /dev/null
+++ b/roms/edk2/MdePkg/Library/BaseOrderedCollectionRedBlackTreeLib/BaseOrderedCollectionRedBlackTreeLib.c
@@ -0,0 +1,1448 @@
+/** @file
+ An OrderedCollectionLib instance that provides a red-black tree
+ implementation, and allocates and releases tree nodes with
+ MemoryAllocationLib.
+
+ This library instance is useful when a fast associative container is needed.
+ Worst case time complexity is O(log n) for Find(), Next(), Prev(), Min(),
+ Max(), Insert(), and Delete(), where "n" is the number of elements in the
+ tree. Complete ordered traversal takes O(n) time.
+
+ The implementation is also useful as a fast priority queue.
+
+ Copyright (C) 2014, Red Hat, Inc.
+ Copyright (c) 2014, Intel Corporation. All rights reserved.<BR>
+
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+**/
+
+#include <Library/OrderedCollectionLib.h>
+#include <Library/DebugLib.h>
+#include <Library/MemoryAllocationLib.h>
+
+typedef enum {
+ RedBlackTreeRed,
+ RedBlackTreeBlack
+} RED_BLACK_TREE_COLOR;
+
+//
+// Incomplete types and convenience typedefs are present in the library class
+// header. Beside completing the types, we introduce typedefs here that reflect
+// the implementation closely.
+//
+typedef ORDERED_COLLECTION RED_BLACK_TREE;
+typedef ORDERED_COLLECTION_ENTRY RED_BLACK_TREE_NODE;
+typedef ORDERED_COLLECTION_USER_COMPARE RED_BLACK_TREE_USER_COMPARE;
+typedef ORDERED_COLLECTION_KEY_COMPARE RED_BLACK_TREE_KEY_COMPARE;
+
+struct ORDERED_COLLECTION {
+ RED_BLACK_TREE_NODE *Root;
+ RED_BLACK_TREE_USER_COMPARE UserStructCompare;
+ RED_BLACK_TREE_KEY_COMPARE KeyCompare;
+};
+
+struct ORDERED_COLLECTION_ENTRY {
+ VOID *UserStruct;
+ RED_BLACK_TREE_NODE *Parent;
+ RED_BLACK_TREE_NODE *Left;
+ RED_BLACK_TREE_NODE *Right;
+ RED_BLACK_TREE_COLOR Color;
+};
+
+
+/**
+ Retrieve the user structure linked by the specified tree node.
+
+ Read-only operation.
+
+ @param[in] Node Pointer to the tree node whose associated user structure we
+ want to retrieve. The caller is responsible for passing a
+ non-NULL argument.
+
+ @return Pointer to user structure linked by Node.
+**/
+VOID *
+EFIAPI
+OrderedCollectionUserStruct (
+ IN CONST RED_BLACK_TREE_NODE *Node
+ )
+{
+ return Node->UserStruct;
+}
+
+/**
+ A slow function that asserts that the tree is a valid red-black tree, and
+ that it orders user structures correctly.
+
+ Read-only operation.
+
+ This function uses the stack for recursion and is not recommended for
+ "production use".
+
+ @param[in] Tree The tree to validate.
+**/
+VOID
+RedBlackTreeValidate (
+ IN CONST RED_BLACK_TREE *Tree
+ );
+
+
+/**
+ Allocate and initialize the RED_BLACK_TREE structure.
+
+ Allocation occurs via MemoryAllocationLib's AllocatePool() function.
+
+ @param[in] UserStructCompare This caller-provided function will be used to
+ order two user structures linked into the
+ tree, during the insertion procedure.
+
+ @param[in] KeyCompare This caller-provided function will be used to
+ order the standalone search key against user
+ structures linked into the tree, during the
+ lookup procedure.
+
+ @retval NULL If allocation failed.
+
+ @return Pointer to the allocated, initialized RED_BLACK_TREE structure,
+ otherwise.
+**/
+RED_BLACK_TREE *
+EFIAPI
+OrderedCollectionInit (
+ IN RED_BLACK_TREE_USER_COMPARE UserStructCompare,
+ IN RED_BLACK_TREE_KEY_COMPARE KeyCompare
+ )
+{
+ RED_BLACK_TREE *Tree;
+
+ Tree = AllocatePool (sizeof *Tree);
+ if (Tree == NULL) {
+ return NULL;
+ }
+
+ Tree->Root = NULL;
+ Tree->UserStructCompare = UserStructCompare;
+ Tree->KeyCompare = KeyCompare;
+
+ if (FeaturePcdGet (PcdValidateOrderedCollection)) {
+ RedBlackTreeValidate (Tree);
+ }
+ return Tree;
+}
+
+
+/**
+ Check whether the tree is empty (has no nodes).
+
+ Read-only operation.
+
+ @param[in] Tree The tree to check for emptiness.
+
+ @retval TRUE The tree is empty.
+
+ @retval FALSE The tree is not empty.
+**/
+BOOLEAN
+EFIAPI
+OrderedCollectionIsEmpty (
+ IN CONST RED_BLACK_TREE *Tree
+ )
+{
+ return (BOOLEAN)(Tree->Root == NULL);
+}
+
+
+/**
+ Uninitialize and release an empty RED_BLACK_TREE structure.
+
+ Read-write operation.
+
+ Release occurs via MemoryAllocationLib's FreePool() function.
+
+ It is the caller's responsibility to delete all nodes from the tree before
+ calling this function.
+
+ @param[in] Tree The empty tree to uninitialize and release.
+**/
+VOID
+EFIAPI
+OrderedCollectionUninit (
+ IN RED_BLACK_TREE *Tree
+ )
+{
+ ASSERT (OrderedCollectionIsEmpty (Tree));
+ FreePool (Tree);
+}
+
+
+/**
+ Look up the tree node that links the user structure that matches the
+ specified standalone key.
+
+ Read-only operation.
+
+ @param[in] Tree The tree to search for StandaloneKey.
+
+ @param[in] StandaloneKey The key to locate among the user structures linked
+ into Tree. StandaloneKey will be passed to
+ Tree->KeyCompare().
+
+ @retval NULL StandaloneKey could not be found.
+
+ @return The tree node that links to the user structure matching
+ StandaloneKey, otherwise.
+**/
+RED_BLACK_TREE_NODE *
+EFIAPI
+OrderedCollectionFind (
+ IN CONST RED_BLACK_TREE *Tree,
+ IN CONST VOID *StandaloneKey
+ )
+{
+ RED_BLACK_TREE_NODE *Node;
+
+ Node = Tree->Root;
+ while (Node != NULL) {
+ INTN Result;
+
+ Result = Tree->KeyCompare (StandaloneKey, Node->UserStruct);
+ if (Result == 0) {
+ break;
+ }
+ Node = (Result < 0) ? Node->Left : Node->Right;
+ }
+ return Node;
+}
+
+
+/**
+ Find the tree node of the minimum user structure stored in the tree.
+
+ Read-only operation.
+
+ @param[in] Tree The tree to return the minimum node of. The user structure
+ linked by the minimum node compares less than all other user
+ structures in the tree.
+
+ @retval NULL If Tree is empty.
+
+ @return The tree node that links the minimum user structure, otherwise.
+**/
+RED_BLACK_TREE_NODE *
+EFIAPI
+OrderedCollectionMin (
+ IN CONST RED_BLACK_TREE *Tree
+ )
+{
+ RED_BLACK_TREE_NODE *Node;
+
+ Node = Tree->Root;
+ if (Node == NULL) {
+ return NULL;
+ }
+ while (Node->Left != NULL) {
+ Node = Node->Left;
+ }
+ return Node;
+}
+
+
+/**
+ Find the tree node of the maximum user structure stored in the tree.
+
+ Read-only operation.
+
+ @param[in] Tree The tree to return the maximum node of. The user structure
+ linked by the maximum node compares greater than all other
+ user structures in the tree.
+
+ @retval NULL If Tree is empty.
+
+ @return The tree node that links the maximum user structure, otherwise.
+**/
+RED_BLACK_TREE_NODE *
+EFIAPI
+OrderedCollectionMax (
+ IN CONST RED_BLACK_TREE *Tree
+ )
+{
+ RED_BLACK_TREE_NODE *Node;
+
+ Node = Tree->Root;
+ if (Node == NULL) {
+ return NULL;
+ }
+ while (Node->Right != NULL) {
+ Node = Node->Right;
+ }
+ return Node;
+}
+
+
+/**
+ Get the tree node of the least user structure that is greater than the one
+ linked by Node.
+
+ Read-only operation.
+
+ @param[in] Node The node to get the successor node of.
+
+ @retval NULL If Node is NULL, or Node is the maximum node of its containing
+ tree (ie. Node has no successor node).
+
+ @return The tree node linking the least user structure that is greater
+ than the one linked by Node, otherwise.
+**/
+RED_BLACK_TREE_NODE *
+EFIAPI
+OrderedCollectionNext (
+ IN CONST RED_BLACK_TREE_NODE *Node
+ )
+{
+ RED_BLACK_TREE_NODE *Walk;
+ CONST RED_BLACK_TREE_NODE *Child;
+
+ if (Node == NULL) {
+ return NULL;
+ }
+
+ //
+ // If Node has a right subtree, then the successor is the minimum node of
+ // that subtree.
+ //
+ Walk = Node->Right;
+ if (Walk != NULL) {
+ while (Walk->Left != NULL) {
+ Walk = Walk->Left;
+ }
+ return Walk;
+ }
+
+ //
+ // Otherwise we have to ascend as long as we're our parent's right child (ie.
+ // ascending to the left).
+ //
+ Child = Node;
+ Walk = Child->Parent;
+ while (Walk != NULL && Child == Walk->Right) {
+ Child = Walk;
+ Walk = Child->Parent;
+ }
+ return Walk;
+}
+
+
+/**
+ Get the tree node of the greatest user structure that is less than the one
+ linked by Node.
+
+ Read-only operation.
+
+ @param[in] Node The node to get the predecessor node of.
+
+ @retval NULL If Node is NULL, or Node is the minimum node of its containing
+ tree (ie. Node has no predecessor node).
+
+ @return The tree node linking the greatest user structure that is less
+ than the one linked by Node, otherwise.
+**/
+RED_BLACK_TREE_NODE *
+EFIAPI
+OrderedCollectionPrev (
+ IN CONST RED_BLACK_TREE_NODE *Node
+ )
+{
+ RED_BLACK_TREE_NODE *Walk;
+ CONST RED_BLACK_TREE_NODE *Child;
+
+ if (Node == NULL) {
+ return NULL;
+ }
+
+ //
+ // If Node has a left subtree, then the predecessor is the maximum node of
+ // that subtree.
+ //
+ Walk = Node->Left;
+ if (Walk != NULL) {
+ while (Walk->Right != NULL) {
+ Walk = Walk->Right;
+ }
+ return Walk;
+ }
+
+ //
+ // Otherwise we have to ascend as long as we're our parent's left child (ie.
+ // ascending to the right).
+ //
+ Child = Node;
+ Walk = Child->Parent;
+ while (Walk != NULL && Child == Walk->Left) {
+ Child = Walk;
+ Walk = Child->Parent;
+ }
+ return Walk;
+}
+
+
+/**
+ Rotate tree nodes around Pivot to the right.
+
+ Parent Parent
+ | |
+ Pivot LeftChild
+ / . . \_
+ LeftChild Node1 ---> Node2 Pivot
+ . \ / .
+ Node2 LeftRightChild LeftRightChild Node1
+
+ The ordering Node2 < LeftChild < LeftRightChild < Pivot < Node1 is kept
+ intact. Parent (if any) is either at the left extreme or the right extreme of
+ this ordering, and that relation is also kept intact.
+
+ Edges marked with a dot (".") don't change during rotation.
+
+ Internal read-write operation.
+
+ @param[in,out] Pivot The tree node to rotate other nodes right around. It
+ is the caller's responsibility to ensure that
+ Pivot->Left is not NULL.
+
+ @param[out] NewRoot If Pivot has a parent node on input, then the
+ function updates Pivot's original parent on output
+ according to the rotation, and NewRoot is not
+ accessed.
+
+ If Pivot has no parent node on input (ie. Pivot is
+ the root of the tree), then the function stores the
+ new root node of the tree in NewRoot.
+**/
+VOID
+RedBlackTreeRotateRight (
+ IN OUT RED_BLACK_TREE_NODE *Pivot,
+ OUT RED_BLACK_TREE_NODE **NewRoot
+ )
+{
+ RED_BLACK_TREE_NODE *Parent;
+ RED_BLACK_TREE_NODE *LeftChild;
+ RED_BLACK_TREE_NODE *LeftRightChild;
+
+ Parent = Pivot->Parent;
+ LeftChild = Pivot->Left;
+ LeftRightChild = LeftChild->Right;
+
+ Pivot->Left = LeftRightChild;
+ if (LeftRightChild != NULL) {
+ LeftRightChild->Parent = Pivot;
+ }
+ LeftChild->Parent = Parent;
+ if (Parent == NULL) {
+ *NewRoot = LeftChild;
+ } else {
+ if (Pivot == Parent->Left) {
+ Parent->Left = LeftChild;
+ } else {
+ Parent->Right = LeftChild;
+ }
+ }
+ LeftChild->Right = Pivot;
+ Pivot->Parent = LeftChild;
+}
+
+
+/**
+ Rotate tree nodes around Pivot to the left.
+
+ Parent Parent
+ | |
+ Pivot RightChild
+ . \ / .
+ Node1 RightChild ---> Pivot Node2
+ /. . \_
+ RightLeftChild Node2 Node1 RightLeftChild
+
+ The ordering Node1 < Pivot < RightLeftChild < RightChild < Node2 is kept
+ intact. Parent (if any) is either at the left extreme or the right extreme of
+ this ordering, and that relation is also kept intact.
+
+ Edges marked with a dot (".") don't change during rotation.
+
+ Internal read-write operation.
+
+ @param[in,out] Pivot The tree node to rotate other nodes left around. It
+ is the caller's responsibility to ensure that
+ Pivot->Right is not NULL.
+
+ @param[out] NewRoot If Pivot has a parent node on input, then the
+ function updates Pivot's original parent on output
+ according to the rotation, and NewRoot is not
+ accessed.
+
+ If Pivot has no parent node on input (ie. Pivot is
+ the root of the tree), then the function stores the
+ new root node of the tree in NewRoot.
+**/
+VOID
+RedBlackTreeRotateLeft (
+ IN OUT RED_BLACK_TREE_NODE *Pivot,
+ OUT RED_BLACK_TREE_NODE **NewRoot
+ )
+{
+ RED_BLACK_TREE_NODE *Parent;
+ RED_BLACK_TREE_NODE *RightChild;
+ RED_BLACK_TREE_NODE *RightLeftChild;
+
+ Parent = Pivot->Parent;
+ RightChild = Pivot->Right;
+ RightLeftChild = RightChild->Left;
+
+ Pivot->Right = RightLeftChild;
+ if (RightLeftChild != NULL) {
+ RightLeftChild->Parent = Pivot;
+ }
+ RightChild->Parent = Parent;
+ if (Parent == NULL) {
+ *NewRoot = RightChild;
+ } else {
+ if (Pivot == Parent->Left) {
+ Parent->Left = RightChild;
+ } else {
+ Parent->Right = RightChild;
+ }
+ }
+ RightChild->Left = Pivot;
+ Pivot->Parent = RightChild;
+}
+
+
+/**
+ Insert (link) a user structure into the tree.
+
+ Read-write operation.
+
+ This function allocates the new tree node with MemoryAllocationLib's
+ AllocatePool() function.
+
+ @param[in,out] Tree The tree to insert UserStruct into.
+
+ @param[out] Node The meaning of this optional, output-only
+ parameter depends on the return value of the
+ function.
+
+ When insertion is successful (RETURN_SUCCESS),
+ Node is set on output to the new tree node that
+ now links UserStruct.
+
+ When insertion fails due to lack of memory
+ (RETURN_OUT_OF_RESOURCES), Node is not changed.
+
+ When insertion fails due to key collision (ie.
+ another user structure is already in the tree that
+ compares equal to UserStruct), with return value
+ RETURN_ALREADY_STARTED, then Node is set on output
+ to the node that links the colliding user
+ structure. This enables "find-or-insert" in one
+ function call, or helps with later removal of the
+ colliding element.
+
+ @param[in] UserStruct The user structure to link into the tree.
+ UserStruct is ordered against in-tree user
+ structures with the Tree->UserStructCompare()
+ function.
+
+ @retval RETURN_SUCCESS Insertion successful. A new tree node has
+ been allocated, linking UserStruct. The new
+ tree node is reported back in Node (if the
+ caller requested it).
+
+ Existing RED_BLACK_TREE_NODE pointers into
+ Tree remain valid. For example, on-going
+ iterations in the caller can continue with
+ OrderedCollectionNext() /
+ OrderedCollectionPrev(), and they will
+ return the new node at some point if user
+ structure order dictates it.
+
+ @retval RETURN_OUT_OF_RESOURCES AllocatePool() failed to allocate memory for
+ the new tree node. The tree has not been
+ changed. Existing RED_BLACK_TREE_NODE
+ pointers into Tree remain valid.
+
+ @retval RETURN_ALREADY_STARTED A user structure has been found in the tree
+ that compares equal to UserStruct. The node
+ linking the colliding user structure is
+ reported back in Node (if the caller
+ requested it). The tree has not been
+ changed. Existing RED_BLACK_TREE_NODE
+ pointers into Tree remain valid.
+**/
+RETURN_STATUS
+EFIAPI
+OrderedCollectionInsert (
+ IN OUT RED_BLACK_TREE *Tree,
+ OUT RED_BLACK_TREE_NODE **Node OPTIONAL,
+ IN VOID *UserStruct
+ )
+{
+ RED_BLACK_TREE_NODE *Tmp;
+ RED_BLACK_TREE_NODE *Parent;
+ INTN Result;
+ RETURN_STATUS Status;
+ RED_BLACK_TREE_NODE *NewRoot;
+
+ Tmp = Tree->Root;
+ Parent = NULL;
+ Result = 0;
+
+ //
+ // First look for a collision, saving the last examined node for the case
+ // when there's no collision.
+ //
+ while (Tmp != NULL) {
+ Result = Tree->UserStructCompare (UserStruct, Tmp->UserStruct);
+ if (Result == 0) {
+ break;
+ }
+ Parent = Tmp;
+ Tmp = (Result < 0) ? Tmp->Left : Tmp->Right;
+ }
+
+ if (Tmp != NULL) {
+ if (Node != NULL) {
+ *Node = Tmp;
+ }
+ Status = RETURN_ALREADY_STARTED;
+ goto Done;
+ }
+
+ //
+ // no collision, allocate a new node
+ //
+ Tmp = AllocatePool (sizeof *Tmp);
+ if (Tmp == NULL) {
+ Status = RETURN_OUT_OF_RESOURCES;
+ goto Done;
+ }
+ if (Node != NULL) {
+ *Node = Tmp;
+ }
+
+ //
+ // reference the user structure from the node
+ //
+ Tmp->UserStruct = UserStruct;
+
+ //
+ // Link the node as a child to the correct side of the parent.
+ // If there's no parent, the new node is the root node in the tree.
+ //
+ Tmp->Parent = Parent;
+ Tmp->Left = NULL;
+ Tmp->Right = NULL;
+ if (Parent == NULL) {
+ Tree->Root = Tmp;
+ Tmp->Color = RedBlackTreeBlack;
+ Status = RETURN_SUCCESS;
+ goto Done;
+ }
+ if (Result < 0) {
+ Parent->Left = Tmp;
+ } else {
+ Parent->Right = Tmp;
+ }
+ Tmp->Color = RedBlackTreeRed;
+
+ //
+ // Red-black tree properties:
+ //
+ // #1 Each node is either red or black (RED_BLACK_TREE_NODE.Color).
+ //
+ // #2 Each leaf (ie. a pseudo-node pointed-to by a NULL valued
+ // RED_BLACK_TREE_NODE.Left or RED_BLACK_TREE_NODE.Right field) is black.
+ //
+ // #3 Each red node has two black children.
+ //
+ // #4 For any node N, and for any leaves L1 and L2 reachable from N, the
+ // paths N..L1 and N..L2 contain the same number of black nodes.
+ //
+ // #5 The root node is black.
+ //
+ // By replacing a leaf with a red node above, only property #3 may have been
+ // broken. (Note that this is the only edge across which property #3 might
+ // not hold in the entire tree.) Restore property #3.
+ //
+
+ NewRoot = Tree->Root;
+ while (Tmp != NewRoot && Parent->Color == RedBlackTreeRed) {
+ RED_BLACK_TREE_NODE *GrandParent;
+ RED_BLACK_TREE_NODE *Uncle;
+
+ //
+ // Tmp is not the root node. Tmp is red. Tmp's parent is red. (Breaking
+ // property #3.)
+ //
+ // Due to property #5, Tmp's parent cannot be the root node, hence Tmp's
+ // grandparent exists.
+ //
+ // Tmp's grandparent is black, because property #3 is only broken between
+ // Tmp and Tmp's parent.
+ //
+ GrandParent = Parent->Parent;
+
+ if (Parent == GrandParent->Left) {
+ Uncle = GrandParent->Right;
+ if (Uncle != NULL && Uncle->Color == RedBlackTreeRed) {
+ //
+ // GrandParent (black)
+ // / \_
+ // Parent (red) Uncle (red)
+ // |
+ // Tmp (red)
+ //
+
+ Parent->Color = RedBlackTreeBlack;
+ Uncle->Color = RedBlackTreeBlack;
+ GrandParent->Color = RedBlackTreeRed;
+
+ //
+ // GrandParent (red)
+ // / \_
+ // Parent (black) Uncle (black)
+ // |
+ // Tmp (red)
+ //
+ // We restored property #3 between Tmp and Tmp's parent, without
+ // breaking property #4. However, we may have broken property #3
+ // between Tmp's grandparent and Tmp's great-grandparent (if any), so
+ // repeat the loop for Tmp's grandparent.
+ //
+ // If Tmp's grandparent has no parent, then the loop will terminate,
+ // and we will have broken property #5, by coloring the root red. We'll
+ // restore property #5 after the loop, without breaking any others.
+ //
+ Tmp = GrandParent;
+ Parent = Tmp->Parent;
+ } else {
+ //
+ // Tmp's uncle is black (satisfied by the case too when Tmp's uncle is
+ // NULL, see property #2).
+ //
+
+ if (Tmp == Parent->Right) {
+ //
+ // GrandParent (black): D
+ // / \_
+ // Parent (red): A Uncle (black): E
+ // \_
+ // Tmp (red): B
+ // \_
+ // black: C
+ //
+ // Rotate left, pivoting on node A. This keeps the breakage of
+ // property #3 in the same spot, and keeps other properties intact
+ // (because both Tmp and its parent are red).
+ //
+ Tmp = Parent;
+ RedBlackTreeRotateLeft (Tmp, &NewRoot);
+ Parent = Tmp->Parent;
+
+ //
+ // With the rotation we reached the same configuration as if Tmp had
+ // been a left child to begin with.
+ //
+ // GrandParent (black): D
+ // / \_
+ // Parent (red): B Uncle (black): E
+ // / \_
+ // Tmp (red): A black: C
+ //
+ ASSERT (GrandParent == Parent->Parent);
+ }
+
+ Parent->Color = RedBlackTreeBlack;
+ GrandParent->Color = RedBlackTreeRed;
+
+ //
+ // Property #3 is now restored, but we've broken property #4. Namely,
+ // paths going through node E now see a decrease in black count, while
+ // paths going through node B don't.
+ //
+ // GrandParent (red): D
+ // / \_
+ // Parent (black): B Uncle (black): E
+ // / \_
+ // Tmp (red): A black: C
+ //
+
+ RedBlackTreeRotateRight (GrandParent, &NewRoot);
+
+ //
+ // Property #4 has been restored for node E, and preserved for others.
+ //
+ // Parent (black): B
+ // / \_
+ // Tmp (red): A [GrandParent] (red): D
+ // / \_
+ // black: C [Uncle] (black): E
+ //
+ // This configuration terminates the loop because Tmp's parent is now
+ // black.
+ //
+ }
+ } else {
+ //
+ // Symmetrical to the other branch.
+ //
+ Uncle = GrandParent->Left;
+ if (Uncle != NULL && Uncle->Color == RedBlackTreeRed) {
+ Parent->Color = RedBlackTreeBlack;
+ Uncle->Color = RedBlackTreeBlack;
+ GrandParent->Color = RedBlackTreeRed;
+ Tmp = GrandParent;
+ Parent = Tmp->Parent;
+ } else {
+ if (Tmp == Parent->Left) {
+ Tmp = Parent;
+ RedBlackTreeRotateRight (Tmp, &NewRoot);
+ Parent = Tmp->Parent;
+ ASSERT (GrandParent == Parent->Parent);
+ }
+ Parent->Color = RedBlackTreeBlack;
+ GrandParent->Color = RedBlackTreeRed;
+ RedBlackTreeRotateLeft (GrandParent, &NewRoot);
+ }
+ }
+ }
+
+ NewRoot->Color = RedBlackTreeBlack;
+ Tree->Root = NewRoot;
+ Status = RETURN_SUCCESS;
+
+Done:
+ if (FeaturePcdGet (PcdValidateOrderedCollection)) {
+ RedBlackTreeValidate (Tree);
+ }
+ return Status;
+}
+
+
+/**
+ Check if a node is black, allowing for leaf nodes (see property #2).
+
+ This is a convenience shorthand.
+
+ param[in] Node The node to check. Node may be NULL, corresponding to a leaf.
+
+ @return If Node is NULL or colored black.
+**/
+BOOLEAN
+NodeIsNullOrBlack (
+ IN CONST RED_BLACK_TREE_NODE *Node
+ )
+{
+ return (BOOLEAN)(Node == NULL || Node->Color == RedBlackTreeBlack);
+}
+
+
+/**
+ Delete a node from the tree, unlinking the associated user structure.
+
+ Read-write operation.
+
+ @param[in,out] Tree The tree to delete Node from.
+
+ @param[in] Node The tree node to delete from Tree. The caller is
+ responsible for ensuring that Node belongs to
+ Tree, and that Node is non-NULL and valid. Node is
+ typically an earlier return value, or output
+ parameter, of:
+
+ - OrderedCollectionFind(), for deleting a node by
+ user structure key,
+
+ - OrderedCollectionMin() / OrderedCollectionMax(),
+ for deleting the minimum / maximum node,
+
+ - OrderedCollectionNext() /
+ OrderedCollectionPrev(), for deleting a node
+ found during an iteration,
+
+ - OrderedCollectionInsert() with return value
+ RETURN_ALREADY_STARTED, for deleting a node
+ whose linked user structure caused collision
+ during insertion.
+
+ Given a non-empty Tree, Tree->Root is also a valid
+ Node argument (typically used for simplicity in
+ loops that empty the tree completely).
+
+ Node is released with MemoryAllocationLib's
+ FreePool() function.
+
+ Existing RED_BLACK_TREE_NODE pointers (ie.
+ iterators) *different* from Node remain valid. For
+ example:
+
+ - OrderedCollectionNext() /
+ OrderedCollectionPrev() iterations in the caller
+ can be continued from Node, if
+ OrderedCollectionNext() or
+ OrderedCollectionPrev() is called on Node
+ *before* OrderedCollectionDelete() is. That is,
+ fetch the successor / predecessor node first,
+ then delete Node.
+
+ - On-going iterations in the caller that would
+ have otherwise returned Node at some point, as
+ dictated by user structure order, will correctly
+ reflect the absence of Node after
+ OrderedCollectionDelete() is called
+ mid-iteration.
+
+ @param[out] UserStruct If the caller provides this optional output-only
+ parameter, then on output it is set to the user
+ structure originally linked by Node (which is now
+ freed).
+
+ This is a convenience that may save the caller a
+ OrderedCollectionUserStruct() invocation before
+ calling OrderedCollectionDelete(), in order to
+ retrieve the user structure being unlinked.
+**/
+VOID
+EFIAPI
+OrderedCollectionDelete (
+ IN OUT RED_BLACK_TREE *Tree,
+ IN RED_BLACK_TREE_NODE *Node,
+ OUT VOID **UserStruct OPTIONAL
+ )
+{
+ RED_BLACK_TREE_NODE *NewRoot;
+ RED_BLACK_TREE_NODE *OrigLeftChild;
+ RED_BLACK_TREE_NODE *OrigRightChild;
+ RED_BLACK_TREE_NODE *OrigParent;
+ RED_BLACK_TREE_NODE *Child;
+ RED_BLACK_TREE_NODE *Parent;
+ RED_BLACK_TREE_COLOR ColorOfUnlinked;
+
+ NewRoot = Tree->Root;
+ OrigLeftChild = Node->Left,
+ OrigRightChild = Node->Right,
+ OrigParent = Node->Parent;
+
+ if (UserStruct != NULL) {
+ *UserStruct = Node->UserStruct;
+ }
+
+ //
+ // After this block, no matter which branch we take:
+ // - Child will point to the unique (or NULL) original child of the node that
+ // we will have unlinked,
+ // - Parent will point to the *position* of the original parent of the node
+ // that we will have unlinked.
+ //
+ if (OrigLeftChild == NULL || OrigRightChild == NULL) {
+ //
+ // Node has at most one child. We can connect that child (if any) with
+ // Node's parent (if any), unlinking Node. This will preserve ordering
+ // because the subtree rooted in Node's child (if any) remains on the same
+ // side of Node's parent (if any) that Node was before.
+ //
+ Parent = OrigParent;
+ Child = (OrigLeftChild != NULL) ? OrigLeftChild : OrigRightChild;
+ ColorOfUnlinked = Node->Color;
+
+ if (Child != NULL) {
+ Child->Parent = Parent;
+ }
+ if (OrigParent == NULL) {
+ NewRoot = Child;
+ } else {
+ if (Node == OrigParent->Left) {
+ OrigParent->Left = Child;
+ } else {
+ OrigParent->Right = Child;
+ }
+ }
+ } else {
+ //
+ // Node has two children. We unlink Node's successor, and then link it into
+ // Node's place, keeping Node's original color. This preserves ordering
+ // because:
+ // - Node's left subtree is less than Node, hence less than Node's
+ // successor.
+ // - Node's right subtree is greater than Node. Node's successor is the
+ // minimum of that subtree, hence Node's successor is less than Node's
+ // right subtree with its minimum removed.
+ // - Node's successor is in Node's subtree, hence it falls on the same side
+ // of Node's parent as Node itself. The relinking doesn't change this
+ // relation.
+ //
+ RED_BLACK_TREE_NODE *ToRelink;
+
+ ToRelink = OrigRightChild;
+ if (ToRelink->Left == NULL) {
+ //
+ // OrigRightChild itself is Node's successor, it has no left child:
+ //
+ // OrigParent
+ // |
+ // Node: B
+ // / \_
+ // OrigLeftChild: A OrigRightChild: E <--- Parent, ToRelink
+ // \_
+ // F <--- Child
+ //
+ Parent = OrigRightChild;
+ Child = OrigRightChild->Right;
+ } else {
+ do {
+ ToRelink = ToRelink->Left;
+ } while (ToRelink->Left != NULL);
+
+ //
+ // Node's successor is the minimum of OrigRightChild's proper subtree:
+ //
+ // OrigParent
+ // |
+ // Node: B
+ // / \_
+ // OrigLeftChild: A OrigRightChild: E <--- Parent
+ // /
+ // C <--- ToRelink
+ // \_
+ // D <--- Child
+ Parent = ToRelink->Parent;
+ Child = ToRelink->Right;
+
+ //
+ // Unlink Node's successor (ie. ToRelink):
+ //
+ // OrigParent
+ // |
+ // Node: B
+ // / \_
+ // OrigLeftChild: A OrigRightChild: E <--- Parent
+ // /
+ // D <--- Child
+ //
+ // C <--- ToRelink
+ //
+ Parent->Left = Child;
+ if (Child != NULL) {
+ Child->Parent = Parent;
+ }
+
+ //
+ // We start to link Node's unlinked successor into Node's place:
+ //
+ // OrigParent
+ // |
+ // Node: B C <--- ToRelink
+ // / \_
+ // OrigLeftChild: A OrigRightChild: E <--- Parent
+ // /
+ // D <--- Child
+ //
+ //
+ //
+ ToRelink->Right = OrigRightChild;
+ OrigRightChild->Parent = ToRelink;
+ }
+
+ //
+ // The rest handles both cases, attaching ToRelink (Node's original
+ // successor) to OrigLeftChild and OrigParent.
+ //
+ // Parent,
+ // OrigParent ToRelink OrigParent
+ // | | |
+ // Node: B | Node: B Parent
+ // v |
+ // OrigRightChild: E C <--- ToRelink |
+ // / \ / \ v
+ // OrigLeftChild: A F OrigLeftChild: A OrigRightChild: E
+ // ^ /
+ // | D <--- Child
+ // Child
+ //
+ ToRelink->Left = OrigLeftChild;
+ OrigLeftChild->Parent = ToRelink;
+
+ //
+ // Node's color must be preserved in Node's original place.
+ //
+ ColorOfUnlinked = ToRelink->Color;
+ ToRelink->Color = Node->Color;
+
+ //
+ // Finish linking Node's unlinked successor into Node's place.
+ //
+ // Parent,
+ // Node: B ToRelink Node: B
+ // |
+ // OrigParent | OrigParent Parent
+ // | v | |
+ // OrigRightChild: E C <--- ToRelink |
+ // / \ / \ v
+ // OrigLeftChild: A F OrigLeftChild: A OrigRightChild: E
+ // ^ /
+ // | D <--- Child
+ // Child
+ //
+ ToRelink->Parent = OrigParent;
+ if (OrigParent == NULL) {
+ NewRoot = ToRelink;
+ } else {
+ if (Node == OrigParent->Left) {
+ OrigParent->Left = ToRelink;
+ } else {
+ OrigParent->Right = ToRelink;
+ }
+ }
+ }
+
+ FreePool (Node);
+
+ //
+ // If the node that we unlinked from its original spot (ie. Node itself, or
+ // Node's successor), was red, then we broke neither property #3 nor property
+ // #4: we didn't create any red-red edge between Child and Parent, and we
+ // didn't change the black count on any path.
+ //
+ if (ColorOfUnlinked == RedBlackTreeBlack) {
+ //
+ // However, if the unlinked node was black, then we have to transfer its
+ // "black-increment" to its unique child (pointed-to by Child), lest we
+ // break property #4 for its ancestors.
+ //
+ // If Child is red, we can simply color it black. If Child is black
+ // already, we can't technically transfer a black-increment to it, due to
+ // property #1.
+ //
+ // In the following loop we ascend searching for a red node to color black,
+ // or until we reach the root (in which case we can drop the
+ // black-increment). Inside the loop body, Child has a black value of 2,
+ // transitorily breaking property #1 locally, but maintaining property #4
+ // globally.
+ //
+ // Rotations in the loop preserve property #4.
+ //
+ while (Child != NewRoot && NodeIsNullOrBlack (Child)) {
+ RED_BLACK_TREE_NODE *Sibling;
+ RED_BLACK_TREE_NODE *LeftNephew;
+ RED_BLACK_TREE_NODE *RightNephew;
+
+ if (Child == Parent->Left) {
+ Sibling = Parent->Right;
+ //
+ // Sibling can never be NULL (ie. a leaf).
+ //
+ // If Sibling was NULL, then the black count on the path from Parent to
+ // Sibling would equal Parent's black value, plus 1 (due to property
+ // #2). Whereas the black count on the path from Parent to any leaf via
+ // Child would be at least Parent's black value, plus 2 (due to Child's
+ // black value of 2). This would clash with property #4.
+ //
+ // (Sibling can be black of course, but it has to be an internal node.
+ // Internality allows Sibling to have children, bumping the black
+ // counts of paths that go through it.)
+ //
+ ASSERT (Sibling != NULL);
+ if (Sibling->Color == RedBlackTreeRed) {
+ //
+ // Sibling's red color implies its children (if any), node C and node
+ // E, are black (property #3). It also implies that Parent is black.
+ //
+ // grandparent grandparent
+ // | |
+ // Parent,b:B b:D
+ // / \ / \_
+ // Child,2b:A Sibling,r:D ---> Parent,r:B b:E
+ // /\ /\_
+ // b:C b:E Child,2b:A Sibling,b:C
+ //
+ Sibling->Color = RedBlackTreeBlack;
+ Parent->Color = RedBlackTreeRed;
+ RedBlackTreeRotateLeft (Parent, &NewRoot);
+ Sibling = Parent->Right;
+ //
+ // Same reasoning as above.
+ //
+ ASSERT (Sibling != NULL);
+ }
+
+ //
+ // Sibling is black, and not NULL. (Ie. Sibling is a black internal
+ // node.)
+ //
+ ASSERT (Sibling->Color == RedBlackTreeBlack);
+ LeftNephew = Sibling->Left;
+ RightNephew = Sibling->Right;
+ if (NodeIsNullOrBlack (LeftNephew) &&
+ NodeIsNullOrBlack (RightNephew)) {
+ //
+ // In this case we can "steal" one black value from Child and Sibling
+ // each, and pass it to Parent. "Stealing" means that Sibling (black
+ // value 1) becomes red, Child (black value 2) becomes singly-black,
+ // and Parent will have to be examined if it can eat the
+ // black-increment.
+ //
+ // Sibling is allowed to become red because both of its children are
+ // black (property #3).
+ //
+ // grandparent Parent
+ // | |
+ // Parent,x:B Child,x:B
+ // / \ / \_
+ // Child,2b:A Sibling,b:D ---> b:A r:D
+ // /\ /\_
+ // LeftNephew,b:C RightNephew,b:E b:C b:E
+ //
+ Sibling->Color = RedBlackTreeRed;
+ Child = Parent;
+ Parent = Parent->Parent;
+ //
+ // Continue ascending.
+ //
+ } else {
+ //
+ // At least one nephew is red.
+ //
+ if (NodeIsNullOrBlack (RightNephew)) {
+ //
+ // Since the right nephew is black, the left nephew is red. Due to
+ // property #3, LeftNephew has two black children, hence node E is
+ // black.
+ //
+ // Together with the rotation, this enables us to color node F red
+ // (because property #3 will be satisfied). We flip node D to black
+ // to maintain property #4.
+ //
+ // grandparent grandparent
+ // | |
+ // Parent,x:B Parent,x:B
+ // /\ /\_
+ // Child,2b:A Sibling,b:F ---> Child,2b:A Sibling,b:D
+ // /\ / \_
+ // LeftNephew,r:D RightNephew,b:G b:C RightNephew,r:F
+ // /\ /\_
+ // b:C b:E b:E b:G
+ //
+ LeftNephew->Color = RedBlackTreeBlack;
+ Sibling->Color = RedBlackTreeRed;
+ RedBlackTreeRotateRight (Sibling, &NewRoot);
+ Sibling = Parent->Right;
+ RightNephew = Sibling->Right;
+ //
+ // These operations ensure that...
+ //
+ }
+ //
+ // ... RightNephew is definitely red here, plus Sibling is (still)
+ // black and non-NULL.
+ //
+ ASSERT (RightNephew != NULL);
+ ASSERT (RightNephew->Color == RedBlackTreeRed);
+ ASSERT (Sibling != NULL);
+ ASSERT (Sibling->Color == RedBlackTreeBlack);
+ //
+ // In this case we can flush the extra black-increment immediately,
+ // restoring property #1 for Child (node A): we color RightNephew
+ // (node E) from red to black.
+ //
+ // In order to maintain property #4, we exchange colors between
+ // Parent and Sibling (nodes B and D), and rotate left around Parent
+ // (node B). The transformation doesn't change the black count
+ // increase incurred by each partial path, eg.
+ // - ascending from node A: 2 + x == 1 + 1 + x
+ // - ascending from node C: y + 1 + x == y + 1 + x
+ // - ascending from node E: 0 + 1 + x == 1 + x
+ //
+ // The color exchange is valid, because even if x stands for red,
+ // both children of node D are black after the transformation
+ // (preserving property #3).
+ //
+ // grandparent grandparent
+ // | |
+ // Parent,x:B x:D
+ // / \ / \_
+ // Child,2b:A Sibling,b:D ---> b:B b:E
+ // / \ / \_
+ // y:C RightNephew,r:E b:A y:C
+ //
+ //
+ Sibling->Color = Parent->Color;
+ Parent->Color = RedBlackTreeBlack;
+ RightNephew->Color = RedBlackTreeBlack;
+ RedBlackTreeRotateLeft (Parent, &NewRoot);
+ Child = NewRoot;
+ //
+ // This terminates the loop.
+ //
+ }
+ } else {
+ //
+ // Mirrors the other branch.
+ //
+ Sibling = Parent->Left;
+ ASSERT (Sibling != NULL);
+ if (Sibling->Color == RedBlackTreeRed) {
+ Sibling->Color = RedBlackTreeBlack;
+ Parent->Color = RedBlackTreeRed;
+ RedBlackTreeRotateRight (Parent, &NewRoot);
+ Sibling = Parent->Left;
+ ASSERT (Sibling != NULL);
+ }
+
+ ASSERT (Sibling->Color == RedBlackTreeBlack);
+ RightNephew = Sibling->Right;
+ LeftNephew = Sibling->Left;
+ if (NodeIsNullOrBlack (RightNephew) &&
+ NodeIsNullOrBlack (LeftNephew)) {
+ Sibling->Color = RedBlackTreeRed;
+ Child = Parent;
+ Parent = Parent->Parent;
+ } else {
+ if (NodeIsNullOrBlack (LeftNephew)) {
+ RightNephew->Color = RedBlackTreeBlack;
+ Sibling->Color = RedBlackTreeRed;
+ RedBlackTreeRotateLeft (Sibling, &NewRoot);
+ Sibling = Parent->Left;
+ LeftNephew = Sibling->Left;
+ }
+ ASSERT (LeftNephew != NULL);
+ ASSERT (LeftNephew->Color == RedBlackTreeRed);
+ ASSERT (Sibling != NULL);
+ ASSERT (Sibling->Color == RedBlackTreeBlack);
+ Sibling->Color = Parent->Color;
+ Parent->Color = RedBlackTreeBlack;
+ LeftNephew->Color = RedBlackTreeBlack;
+ RedBlackTreeRotateRight (Parent, &NewRoot);
+ Child = NewRoot;
+ }
+ }
+ }
+
+ if (Child != NULL) {
+ Child->Color = RedBlackTreeBlack;
+ }
+ }
+
+ Tree->Root = NewRoot;
+
+ if (FeaturePcdGet (PcdValidateOrderedCollection)) {
+ RedBlackTreeValidate (Tree);
+ }
+}
+
+
+/**
+ Recursively check the red-black tree properties #1 to #4 on a node.
+
+ @param[in] Node The root of the subtree to validate.
+
+ @retval The black-height of Node's parent.
+**/
+UINT32
+RedBlackTreeRecursiveCheck (
+ IN CONST RED_BLACK_TREE_NODE *Node
+ )
+{
+ UINT32 LeftHeight;
+ UINT32 RightHeight;
+
+ //
+ // property #2
+ //
+ if (Node == NULL) {
+ return 1;
+ }
+
+ //
+ // property #1
+ //
+ ASSERT (Node->Color == RedBlackTreeRed || Node->Color == RedBlackTreeBlack);
+
+ //
+ // property #3
+ //
+ if (Node->Color == RedBlackTreeRed) {
+ ASSERT (NodeIsNullOrBlack (Node->Left));
+ ASSERT (NodeIsNullOrBlack (Node->Right));
+ }
+
+ //
+ // property #4
+ //
+ LeftHeight = RedBlackTreeRecursiveCheck (Node->Left);
+ RightHeight = RedBlackTreeRecursiveCheck (Node->Right);
+ ASSERT (LeftHeight == RightHeight);
+
+ return (Node->Color == RedBlackTreeBlack) + LeftHeight;
+}
+
+
+/**
+ A slow function that asserts that the tree is a valid red-black tree, and
+ that it orders user structures correctly.
+
+ Read-only operation.
+
+ This function uses the stack for recursion and is not recommended for
+ "production use".
+
+ @param[in] Tree The tree to validate.
+**/
+VOID
+RedBlackTreeValidate (
+ IN CONST RED_BLACK_TREE *Tree
+ )
+{
+ UINT32 BlackHeight;
+ UINT32 ForwardCount;
+ UINT32 BackwardCount;
+ CONST RED_BLACK_TREE_NODE *Last;
+ CONST RED_BLACK_TREE_NODE *Node;
+
+ DEBUG ((DEBUG_VERBOSE, "%a: Tree=%p\n", __FUNCTION__, Tree));
+
+ //
+ // property #5
+ //
+ ASSERT (NodeIsNullOrBlack (Tree->Root));
+
+ //
+ // check the other properties
+ //
+ BlackHeight = RedBlackTreeRecursiveCheck (Tree->Root) - 1;
+
+ //
+ // forward ordering
+ //
+ Last = OrderedCollectionMin (Tree);
+ ForwardCount = (Last != NULL);
+ for (Node = OrderedCollectionNext (Last); Node != NULL;
+ Node = OrderedCollectionNext (Last)) {
+ ASSERT (Tree->UserStructCompare (Last->UserStruct, Node->UserStruct) < 0);
+ Last = Node;
+ ++ForwardCount;
+ }
+
+ //
+ // backward ordering
+ //
+ Last = OrderedCollectionMax (Tree);
+ BackwardCount = (Last != NULL);
+ for (Node = OrderedCollectionPrev (Last); Node != NULL;
+ Node = OrderedCollectionPrev (Last)) {
+ ASSERT (Tree->UserStructCompare (Last->UserStruct, Node->UserStruct) > 0);
+ Last = Node;
+ ++BackwardCount;
+ }
+
+ ASSERT (ForwardCount == BackwardCount);
+
+ DEBUG ((DEBUG_VERBOSE, "%a: Tree=%p BlackHeight=%Ld Count=%Ld\n",
+ __FUNCTION__, Tree, (INT64)BlackHeight, (INT64)ForwardCount));
+}