1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
|
/** @file
An OrderedCollectionLib instance that provides a red-black tree
implementation, and allocates and releases tree nodes with
MemoryAllocationLib.
This library instance is useful when a fast associative container is needed.
Worst case time complexity is O(log n) for Find(), Next(), Prev(), Min(),
Max(), Insert(), and Delete(), where "n" is the number of elements in the
tree. Complete ordered traversal takes O(n) time.
The implementation is also useful as a fast priority queue.
Copyright (C) 2014, Red Hat, Inc.
Copyright (c) 2014, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/OrderedCollectionLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
typedef enum {
RedBlackTreeRed,
RedBlackTreeBlack
} RED_BLACK_TREE_COLOR;
//
// Incomplete types and convenience typedefs are present in the library class
// header. Beside completing the types, we introduce typedefs here that reflect
// the implementation closely.
//
typedef ORDERED_COLLECTION RED_BLACK_TREE;
typedef ORDERED_COLLECTION_ENTRY RED_BLACK_TREE_NODE;
typedef ORDERED_COLLECTION_USER_COMPARE RED_BLACK_TREE_USER_COMPARE;
typedef ORDERED_COLLECTION_KEY_COMPARE RED_BLACK_TREE_KEY_COMPARE;
struct ORDERED_COLLECTION {
RED_BLACK_TREE_NODE *Root;
RED_BLACK_TREE_USER_COMPARE UserStructCompare;
RED_BLACK_TREE_KEY_COMPARE KeyCompare;
};
struct ORDERED_COLLECTION_ENTRY {
VOID *UserStruct;
RED_BLACK_TREE_NODE *Parent;
RED_BLACK_TREE_NODE *Left;
RED_BLACK_TREE_NODE *Right;
RED_BLACK_TREE_COLOR Color;
};
/**
Retrieve the user structure linked by the specified tree node.
Read-only operation.
@param[in] Node Pointer to the tree node whose associated user structure we
want to retrieve. The caller is responsible for passing a
non-NULL argument.
@return Pointer to user structure linked by Node.
**/
VOID *
EFIAPI
OrderedCollectionUserStruct (
IN CONST RED_BLACK_TREE_NODE *Node
)
{
return Node->UserStruct;
}
/**
A slow function that asserts that the tree is a valid red-black tree, and
that it orders user structures correctly.
Read-only operation.
This function uses the stack for recursion and is not recommended for
"production use".
@param[in] Tree The tree to validate.
**/
VOID
RedBlackTreeValidate (
IN CONST RED_BLACK_TREE *Tree
);
/**
Allocate and initialize the RED_BLACK_TREE structure.
Allocation occurs via MemoryAllocationLib's AllocatePool() function.
@param[in] UserStructCompare This caller-provided function will be used to
order two user structures linked into the
tree, during the insertion procedure.
@param[in] KeyCompare This caller-provided function will be used to
order the standalone search key against user
structures linked into the tree, during the
lookup procedure.
@retval NULL If allocation failed.
@return Pointer to the allocated, initialized RED_BLACK_TREE structure,
otherwise.
**/
RED_BLACK_TREE *
EFIAPI
OrderedCollectionInit (
IN RED_BLACK_TREE_USER_COMPARE UserStructCompare,
IN RED_BLACK_TREE_KEY_COMPARE KeyCompare
)
{
RED_BLACK_TREE *Tree;
Tree = AllocatePool (sizeof *Tree);
if (Tree == NULL) {
return NULL;
}
Tree->Root = NULL;
Tree->UserStructCompare = UserStructCompare;
Tree->KeyCompare = KeyCompare;
if (FeaturePcdGet (PcdValidateOrderedCollection)) {
RedBlackTreeValidate (Tree);
}
return Tree;
}
/**
Check whether the tree is empty (has no nodes).
Read-only operation.
@param[in] Tree The tree to check for emptiness.
@retval TRUE The tree is empty.
@retval FALSE The tree is not empty.
**/
BOOLEAN
EFIAPI
OrderedCollectionIsEmpty (
IN CONST RED_BLACK_TREE *Tree
)
{
return (BOOLEAN)(Tree->Root == NULL);
}
/**
Uninitialize and release an empty RED_BLACK_TREE structure.
Read-write operation.
Release occurs via MemoryAllocationLib's FreePool() function.
It is the caller's responsibility to delete all nodes from the tree before
calling this function.
@param[in] Tree The empty tree to uninitialize and release.
**/
VOID
EFIAPI
OrderedCollectionUninit (
IN RED_BLACK_TREE *Tree
)
{
ASSERT (OrderedCollectionIsEmpty (Tree));
FreePool (Tree);
}
/**
Look up the tree node that links the user structure that matches the
specified standalone key.
Read-only operation.
@param[in] Tree The tree to search for StandaloneKey.
@param[in] StandaloneKey The key to locate among the user structures linked
into Tree. StandaloneKey will be passed to
Tree->KeyCompare().
@retval NULL StandaloneKey could not be found.
@return The tree node that links to the user structure matching
StandaloneKey, otherwise.
**/
RED_BLACK_TREE_NODE *
EFIAPI
OrderedCollectionFind (
IN CONST RED_BLACK_TREE *Tree,
IN CONST VOID *StandaloneKey
)
{
RED_BLACK_TREE_NODE *Node;
Node = Tree->Root;
while (Node != NULL) {
INTN Result;
Result = Tree->KeyCompare (StandaloneKey, Node->UserStruct);
if (Result == 0) {
break;
}
Node = (Result < 0) ? Node->Left : Node->Right;
}
return Node;
}
/**
Find the tree node of the minimum user structure stored in the tree.
Read-only operation.
@param[in] Tree The tree to return the minimum node of. The user structure
linked by the minimum node compares less than all other user
structures in the tree.
@retval NULL If Tree is empty.
@return The tree node that links the minimum user structure, otherwise.
**/
RED_BLACK_TREE_NODE *
EFIAPI
OrderedCollectionMin (
IN CONST RED_BLACK_TREE *Tree
)
{
RED_BLACK_TREE_NODE *Node;
Node = Tree->Root;
if (Node == NULL) {
return NULL;
}
while (Node->Left != NULL) {
Node = Node->Left;
}
return Node;
}
/**
Find the tree node of the maximum user structure stored in the tree.
Read-only operation.
@param[in] Tree The tree to return the maximum node of. The user structure
linked by the maximum node compares greater than all other
user structures in the tree.
@retval NULL If Tree is empty.
@return The tree node that links the maximum user structure, otherwise.
**/
RED_BLACK_TREE_NODE *
EFIAPI
OrderedCollectionMax (
IN CONST RED_BLACK_TREE *Tree
)
{
RED_BLACK_TREE_NODE *Node;
Node = Tree->Root;
if (Node == NULL) {
return NULL;
}
while (Node->Right != NULL) {
Node = Node->Right;
}
return Node;
}
/**
Get the tree node of the least user structure that is greater than the one
linked by Node.
Read-only operation.
@param[in] Node The node to get the successor node of.
@retval NULL If Node is NULL, or Node is the maximum node of its containing
tree (ie. Node has no successor node).
@return The tree node linking the least user structure that is greater
than the one linked by Node, otherwise.
**/
RED_BLACK_TREE_NODE *
EFIAPI
OrderedCollectionNext (
IN CONST RED_BLACK_TREE_NODE *Node
)
{
RED_BLACK_TREE_NODE *Walk;
CONST RED_BLACK_TREE_NODE *Child;
if (Node == NULL) {
return NULL;
}
//
// If Node has a right subtree, then the successor is the minimum node of
// that subtree.
//
Walk = Node->Right;
if (Walk != NULL) {
while (Walk->Left != NULL) {
Walk = Walk->Left;
}
return Walk;
}
//
// Otherwise we have to ascend as long as we're our parent's right child (ie.
// ascending to the left).
//
Child = Node;
Walk = Child->Parent;
while (Walk != NULL && Child == Walk->Right) {
Child = Walk;
Walk = Child->Parent;
}
return Walk;
}
/**
Get the tree node of the greatest user structure that is less than the one
linked by Node.
Read-only operation.
@param[in] Node The node to get the predecessor node of.
@retval NULL If Node is NULL, or Node is the minimum node of its containing
tree (ie. Node has no predecessor node).
@return The tree node linking the greatest user structure that is less
than the one linked by Node, otherwise.
**/
RED_BLACK_TREE_NODE *
EFIAPI
OrderedCollectionPrev (
IN CONST RED_BLACK_TREE_NODE *Node
)
{
RED_BLACK_TREE_NODE *Walk;
CONST RED_BLACK_TREE_NODE *Child;
if (Node == NULL) {
return NULL;
}
//
// If Node has a left subtree, then the predecessor is the maximum node of
// that subtree.
//
Walk = Node->Left;
if (Walk != NULL) {
while (Walk->Right != NULL) {
Walk = Walk->Right;
}
return Walk;
}
//
// Otherwise we have to ascend as long as we're our parent's left child (ie.
// ascending to the right).
//
Child = Node;
Walk = Child->Parent;
while (Walk != NULL && Child == Walk->Left) {
Child = Walk;
Walk = Child->Parent;
}
return Walk;
}
/**
Rotate tree nodes around Pivot to the right.
Parent Parent
| |
Pivot LeftChild
/ . . \_
LeftChild Node1 ---> Node2 Pivot
. \ / .
Node2 LeftRightChild LeftRightChild Node1
The ordering Node2 < LeftChild < LeftRightChild < Pivot < Node1 is kept
intact. Parent (if any) is either at the left extreme or the right extreme of
this ordering, and that relation is also kept intact.
Edges marked with a dot (".") don't change during rotation.
Internal read-write operation.
@param[in,out] Pivot The tree node to rotate other nodes right around. It
is the caller's responsibility to ensure that
Pivot->Left is not NULL.
@param[out] NewRoot If Pivot has a parent node on input, then the
function updates Pivot's original parent on output
according to the rotation, and NewRoot is not
accessed.
If Pivot has no parent node on input (ie. Pivot is
the root of the tree), then the function stores the
new root node of the tree in NewRoot.
**/
VOID
RedBlackTreeRotateRight (
IN OUT RED_BLACK_TREE_NODE *Pivot,
OUT RED_BLACK_TREE_NODE **NewRoot
)
{
RED_BLACK_TREE_NODE *Parent;
RED_BLACK_TREE_NODE *LeftChild;
RED_BLACK_TREE_NODE *LeftRightChild;
Parent = Pivot->Parent;
LeftChild = Pivot->Left;
LeftRightChild = LeftChild->Right;
Pivot->Left = LeftRightChild;
if (LeftRightChild != NULL) {
LeftRightChild->Parent = Pivot;
}
LeftChild->Parent = Parent;
if (Parent == NULL) {
*NewRoot = LeftChild;
} else {
if (Pivot == Parent->Left) {
Parent->Left = LeftChild;
} else {
Parent->Right = LeftChild;
}
}
LeftChild->Right = Pivot;
Pivot->Parent = LeftChild;
}
/**
Rotate tree nodes around Pivot to the left.
Parent Parent
| |
Pivot RightChild
. \ / .
Node1 RightChild ---> Pivot Node2
/. . \_
RightLeftChild Node2 Node1 RightLeftChild
The ordering Node1 < Pivot < RightLeftChild < RightChild < Node2 is kept
intact. Parent (if any) is either at the left extreme or the right extreme of
this ordering, and that relation is also kept intact.
Edges marked with a dot (".") don't change during rotation.
Internal read-write operation.
@param[in,out] Pivot The tree node to rotate other nodes left around. It
is the caller's responsibility to ensure that
Pivot->Right is not NULL.
@param[out] NewRoot If Pivot has a parent node on input, then the
function updates Pivot's original parent on output
according to the rotation, and NewRoot is not
accessed.
If Pivot has no parent node on input (ie. Pivot is
the root of the tree), then the function stores the
new root node of the tree in NewRoot.
**/
VOID
RedBlackTreeRotateLeft (
IN OUT RED_BLACK_TREE_NODE *Pivot,
OUT RED_BLACK_TREE_NODE **NewRoot
)
{
RED_BLACK_TREE_NODE *Parent;
RED_BLACK_TREE_NODE *RightChild;
RED_BLACK_TREE_NODE *RightLeftChild;
Parent = Pivot->Parent;
RightChild = Pivot->Right;
RightLeftChild = RightChild->Left;
Pivot->Right = RightLeftChild;
if (RightLeftChild != NULL) {
RightLeftChild->Parent = Pivot;
}
RightChild->Parent = Parent;
if (Parent == NULL) {
*NewRoot = RightChild;
} else {
if (Pivot == Parent->Left) {
Parent->Left = RightChild;
} else {
Parent->Right = RightChild;
}
}
RightChild->Left = Pivot;
Pivot->Parent = RightChild;
}
/**
Insert (link) a user structure into the tree.
Read-write operation.
This function allocates the new tree node with MemoryAllocationLib's
AllocatePool() function.
@param[in,out] Tree The tree to insert UserStruct into.
@param[out] Node The meaning of this optional, output-only
parameter depends on the return value of the
function.
When insertion is successful (RETURN_SUCCESS),
Node is set on output to the new tree node that
now links UserStruct.
When insertion fails due to lack of memory
(RETURN_OUT_OF_RESOURCES), Node is not changed.
When insertion fails due to key collision (ie.
another user structure is already in the tree that
compares equal to UserStruct), with return value
RETURN_ALREADY_STARTED, then Node is set on output
to the node that links the colliding user
structure. This enables "find-or-insert" in one
function call, or helps with later removal of the
colliding element.
@param[in] UserStruct The user structure to link into the tree.
UserStruct is ordered against in-tree user
structures with the Tree->UserStructCompare()
function.
@retval RETURN_SUCCESS Insertion successful. A new tree node has
been allocated, linking UserStruct. The new
tree node is reported back in Node (if the
caller requested it).
Existing RED_BLACK_TREE_NODE pointers into
Tree remain valid. For example, on-going
iterations in the caller can continue with
OrderedCollectionNext() /
OrderedCollectionPrev(), and they will
return the new node at some point if user
structure order dictates it.
@retval RETURN_OUT_OF_RESOURCES AllocatePool() failed to allocate memory for
the new tree node. The tree has not been
changed. Existing RED_BLACK_TREE_NODE
pointers into Tree remain valid.
@retval RETURN_ALREADY_STARTED A user structure has been found in the tree
that compares equal to UserStruct. The node
linking the colliding user structure is
reported back in Node (if the caller
requested it). The tree has not been
changed. Existing RED_BLACK_TREE_NODE
pointers into Tree remain valid.
**/
RETURN_STATUS
EFIAPI
OrderedCollectionInsert (
IN OUT RED_BLACK_TREE *Tree,
OUT RED_BLACK_TREE_NODE **Node OPTIONAL,
IN VOID *UserStruct
)
{
RED_BLACK_TREE_NODE *Tmp;
RED_BLACK_TREE_NODE *Parent;
INTN Result;
RETURN_STATUS Status;
RED_BLACK_TREE_NODE *NewRoot;
Tmp = Tree->Root;
Parent = NULL;
Result = 0;
//
// First look for a collision, saving the last examined node for the case
// when there's no collision.
//
while (Tmp != NULL) {
Result = Tree->UserStructCompare (UserStruct, Tmp->UserStruct);
if (Result == 0) {
break;
}
Parent = Tmp;
Tmp = (Result < 0) ? Tmp->Left : Tmp->Right;
}
if (Tmp != NULL) {
if (Node != NULL) {
*Node = Tmp;
}
Status = RETURN_ALREADY_STARTED;
goto Done;
}
//
// no collision, allocate a new node
//
Tmp = AllocatePool (sizeof *Tmp);
if (Tmp == NULL) {
Status = RETURN_OUT_OF_RESOURCES;
goto Done;
}
if (Node != NULL) {
*Node = Tmp;
}
//
// reference the user structure from the node
//
Tmp->UserStruct = UserStruct;
//
// Link the node as a child to the correct side of the parent.
// If there's no parent, the new node is the root node in the tree.
//
Tmp->Parent = Parent;
Tmp->Left = NULL;
Tmp->Right = NULL;
if (Parent == NULL) {
Tree->Root = Tmp;
Tmp->Color = RedBlackTreeBlack;
Status = RETURN_SUCCESS;
goto Done;
}
if (Result < 0) {
Parent->Left = Tmp;
} else {
Parent->Right = Tmp;
}
Tmp->Color = RedBlackTreeRed;
//
// Red-black tree properties:
//
// #1 Each node is either red or black (RED_BLACK_TREE_NODE.Color).
//
// #2 Each leaf (ie. a pseudo-node pointed-to by a NULL valued
// RED_BLACK_TREE_NODE.Left or RED_BLACK_TREE_NODE.Right field) is black.
//
// #3 Each red node has two black children.
//
// #4 For any node N, and for any leaves L1 and L2 reachable from N, the
// paths N..L1 and N..L2 contain the same number of black nodes.
//
// #5 The root node is black.
//
// By replacing a leaf with a red node above, only property #3 may have been
// broken. (Note that this is the only edge across which property #3 might
// not hold in the entire tree.) Restore property #3.
//
NewRoot = Tree->Root;
while (Tmp != NewRoot && Parent->Color == RedBlackTreeRed) {
RED_BLACK_TREE_NODE *GrandParent;
RED_BLACK_TREE_NODE *Uncle;
//
// Tmp is not the root node. Tmp is red. Tmp's parent is red. (Breaking
// property #3.)
//
// Due to property #5, Tmp's parent cannot be the root node, hence Tmp's
// grandparent exists.
//
// Tmp's grandparent is black, because property #3 is only broken between
// Tmp and Tmp's parent.
//
GrandParent = Parent->Parent;
if (Parent == GrandParent->Left) {
Uncle = GrandParent->Right;
if (Uncle != NULL && Uncle->Color == RedBlackTreeRed) {
//
// GrandParent (black)
// / \_
// Parent (red) Uncle (red)
// |
// Tmp (red)
//
Parent->Color = RedBlackTreeBlack;
Uncle->Color = RedBlackTreeBlack;
GrandParent->Color = RedBlackTreeRed;
//
// GrandParent (red)
// / \_
// Parent (black) Uncle (black)
// |
// Tmp (red)
//
// We restored property #3 between Tmp and Tmp's parent, without
// breaking property #4. However, we may have broken property #3
// between Tmp's grandparent and Tmp's great-grandparent (if any), so
// repeat the loop for Tmp's grandparent.
//
// If Tmp's grandparent has no parent, then the loop will terminate,
// and we will have broken property #5, by coloring the root red. We'll
// restore property #5 after the loop, without breaking any others.
//
Tmp = GrandParent;
Parent = Tmp->Parent;
} else {
//
// Tmp's uncle is black (satisfied by the case too when Tmp's uncle is
// NULL, see property #2).
//
if (Tmp == Parent->Right) {
//
// GrandParent (black): D
// / \_
// Parent (red): A Uncle (black): E
// \_
// Tmp (red): B
// \_
// black: C
//
// Rotate left, pivoting on node A. This keeps the breakage of
// property #3 in the same spot, and keeps other properties intact
// (because both Tmp and its parent are red).
//
Tmp = Parent;
RedBlackTreeRotateLeft (Tmp, &NewRoot);
Parent = Tmp->Parent;
//
// With the rotation we reached the same configuration as if Tmp had
// been a left child to begin with.
//
// GrandParent (black): D
// / \_
// Parent (red): B Uncle (black): E
// / \_
// Tmp (red): A black: C
//
ASSERT (GrandParent == Parent->Parent);
}
Parent->Color = RedBlackTreeBlack;
GrandParent->Color = RedBlackTreeRed;
//
// Property #3 is now restored, but we've broken property #4. Namely,
// paths going through node E now see a decrease in black count, while
// paths going through node B don't.
//
// GrandParent (red): D
// / \_
// Parent (black): B Uncle (black): E
// / \_
// Tmp (red): A black: C
//
RedBlackTreeRotateRight (GrandParent, &NewRoot);
//
// Property #4 has been restored for node E, and preserved for others.
//
// Parent (black): B
// / \_
// Tmp (red): A [GrandParent] (red): D
// / \_
// black: C [Uncle] (black): E
//
// This configuration terminates the loop because Tmp's parent is now
// black.
//
}
} else {
//
// Symmetrical to the other branch.
//
Uncle = GrandParent->Left;
if (Uncle != NULL && Uncle->Color == RedBlackTreeRed) {
Parent->Color = RedBlackTreeBlack;
Uncle->Color = RedBlackTreeBlack;
GrandParent->Color = RedBlackTreeRed;
Tmp = GrandParent;
Parent = Tmp->Parent;
} else {
if (Tmp == Parent->Left) {
Tmp = Parent;
RedBlackTreeRotateRight (Tmp, &NewRoot);
Parent = Tmp->Parent;
ASSERT (GrandParent == Parent->Parent);
}
Parent->Color = RedBlackTreeBlack;
GrandParent->Color = RedBlackTreeRed;
RedBlackTreeRotateLeft (GrandParent, &NewRoot);
}
}
}
NewRoot->Color = RedBlackTreeBlack;
Tree->Root = NewRoot;
Status = RETURN_SUCCESS;
Done:
if (FeaturePcdGet (PcdValidateOrderedCollection)) {
RedBlackTreeValidate (Tree);
}
return Status;
}
/**
Check if a node is black, allowing for leaf nodes (see property #2).
This is a convenience shorthand.
param[in] Node The node to check. Node may be NULL, corresponding to a leaf.
@return If Node is NULL or colored black.
**/
BOOLEAN
NodeIsNullOrBlack (
IN CONST RED_BLACK_TREE_NODE *Node
)
{
return (BOOLEAN)(Node == NULL || Node->Color == RedBlackTreeBlack);
}
/**
Delete a node from the tree, unlinking the associated user structure.
Read-write operation.
@param[in,out] Tree The tree to delete Node from.
@param[in] Node The tree node to delete from Tree. The caller is
responsible for ensuring that Node belongs to
Tree, and that Node is non-NULL and valid. Node is
typically an earlier return value, or output
parameter, of:
- OrderedCollectionFind(), for deleting a node by
user structure key,
- OrderedCollectionMin() / OrderedCollectionMax(),
for deleting the minimum / maximum node,
- OrderedCollectionNext() /
OrderedCollectionPrev(), for deleting a node
found during an iteration,
- OrderedCollectionInsert() with return value
RETURN_ALREADY_STARTED, for deleting a node
whose linked user structure caused collision
during insertion.
Given a non-empty Tree, Tree->Root is also a valid
Node argument (typically used for simplicity in
loops that empty the tree completely).
Node is released with MemoryAllocationLib's
FreePool() function.
Existing RED_BLACK_TREE_NODE pointers (ie.
iterators) *different* from Node remain valid. For
example:
- OrderedCollectionNext() /
OrderedCollectionPrev() iterations in the caller
can be continued from Node, if
OrderedCollectionNext() or
OrderedCollectionPrev() is called on Node
*before* OrderedCollectionDelete() is. That is,
fetch the successor / predecessor node first,
then delete Node.
- On-going iterations in the caller that would
have otherwise returned Node at some point, as
dictated by user structure order, will correctly
reflect the absence of Node after
OrderedCollectionDelete() is called
mid-iteration.
@param[out] UserStruct If the caller provides this optional output-only
parameter, then on output it is set to the user
structure originally linked by Node (which is now
freed).
This is a convenience that may save the caller a
OrderedCollectionUserStruct() invocation before
calling OrderedCollectionDelete(), in order to
retrieve the user structure being unlinked.
**/
VOID
EFIAPI
OrderedCollectionDelete (
IN OUT RED_BLACK_TREE *Tree,
IN RED_BLACK_TREE_NODE *Node,
OUT VOID **UserStruct OPTIONAL
)
{
RED_BLACK_TREE_NODE *NewRoot;
RED_BLACK_TREE_NODE *OrigLeftChild;
RED_BLACK_TREE_NODE *OrigRightChild;
RED_BLACK_TREE_NODE *OrigParent;
RED_BLACK_TREE_NODE *Child;
RED_BLACK_TREE_NODE *Parent;
RED_BLACK_TREE_COLOR ColorOfUnlinked;
NewRoot = Tree->Root;
OrigLeftChild = Node->Left,
OrigRightChild = Node->Right,
OrigParent = Node->Parent;
if (UserStruct != NULL) {
*UserStruct = Node->UserStruct;
}
//
// After this block, no matter which branch we take:
// - Child will point to the unique (or NULL) original child of the node that
// we will have unlinked,
// - Parent will point to the *position* of the original parent of the node
// that we will have unlinked.
//
if (OrigLeftChild == NULL || OrigRightChild == NULL) {
//
// Node has at most one child. We can connect that child (if any) with
// Node's parent (if any), unlinking Node. This will preserve ordering
// because the subtree rooted in Node's child (if any) remains on the same
// side of Node's parent (if any) that Node was before.
//
Parent = OrigParent;
Child = (OrigLeftChild != NULL) ? OrigLeftChild : OrigRightChild;
ColorOfUnlinked = Node->Color;
if (Child != NULL) {
Child->Parent = Parent;
}
if (OrigParent == NULL) {
NewRoot = Child;
} else {
if (Node == OrigParent->Left) {
OrigParent->Left = Child;
} else {
OrigParent->Right = Child;
}
}
} else {
//
// Node has two children. We unlink Node's successor, and then link it into
// Node's place, keeping Node's original color. This preserves ordering
// because:
// - Node's left subtree is less than Node, hence less than Node's
// successor.
// - Node's right subtree is greater than Node. Node's successor is the
// minimum of that subtree, hence Node's successor is less than Node's
// right subtree with its minimum removed.
// - Node's successor is in Node's subtree, hence it falls on the same side
// of Node's parent as Node itself. The relinking doesn't change this
// relation.
//
RED_BLACK_TREE_NODE *ToRelink;
ToRelink = OrigRightChild;
if (ToRelink->Left == NULL) {
//
// OrigRightChild itself is Node's successor, it has no left child:
//
// OrigParent
// |
// Node: B
// / \_
// OrigLeftChild: A OrigRightChild: E <--- Parent, ToRelink
// \_
// F <--- Child
//
Parent = OrigRightChild;
Child = OrigRightChild->Right;
} else {
do {
ToRelink = ToRelink->Left;
} while (ToRelink->Left != NULL);
//
// Node's successor is the minimum of OrigRightChild's proper subtree:
//
// OrigParent
// |
// Node: B
// / \_
// OrigLeftChild: A OrigRightChild: E <--- Parent
// /
// C <--- ToRelink
// \_
// D <--- Child
Parent = ToRelink->Parent;
Child = ToRelink->Right;
//
// Unlink Node's successor (ie. ToRelink):
//
// OrigParent
// |
// Node: B
// / \_
// OrigLeftChild: A OrigRightChild: E <--- Parent
// /
// D <--- Child
//
// C <--- ToRelink
//
Parent->Left = Child;
if (Child != NULL) {
Child->Parent = Parent;
}
//
// We start to link Node's unlinked successor into Node's place:
//
// OrigParent
// |
// Node: B C <--- ToRelink
// / \_
// OrigLeftChild: A OrigRightChild: E <--- Parent
// /
// D <--- Child
//
//
//
ToRelink->Right = OrigRightChild;
OrigRightChild->Parent = ToRelink;
}
//
// The rest handles both cases, attaching ToRelink (Node's original
// successor) to OrigLeftChild and OrigParent.
//
// Parent,
// OrigParent ToRelink OrigParent
// | | |
// Node: B | Node: B Parent
// v |
// OrigRightChild: E C <--- ToRelink |
// / \ / \ v
// OrigLeftChild: A F OrigLeftChild: A OrigRightChild: E
// ^ /
// | D <--- Child
// Child
//
ToRelink->Left = OrigLeftChild;
OrigLeftChild->Parent = ToRelink;
//
// Node's color must be preserved in Node's original place.
//
ColorOfUnlinked = ToRelink->Color;
ToRelink->Color = Node->Color;
//
// Finish linking Node's unlinked successor into Node's place.
//
// Parent,
// Node: B ToRelink Node: B
// |
// OrigParent | OrigParent Parent
// | v | |
// OrigRightChild: E C <--- ToRelink |
// / \ / \ v
// OrigLeftChild: A F OrigLeftChild: A OrigRightChild: E
// ^ /
// | D <--- Child
// Child
//
ToRelink->Parent = OrigParent;
if (OrigParent == NULL) {
NewRoot = ToRelink;
} else {
if (Node == OrigParent->Left) {
OrigParent->Left = ToRelink;
} else {
OrigParent->Right = ToRelink;
}
}
}
FreePool (Node);
//
// If the node that we unlinked from its original spot (ie. Node itself, or
// Node's successor), was red, then we broke neither property #3 nor property
// #4: we didn't create any red-red edge between Child and Parent, and we
// didn't change the black count on any path.
//
if (ColorOfUnlinked == RedBlackTreeBlack) {
//
// However, if the unlinked node was black, then we have to transfer its
// "black-increment" to its unique child (pointed-to by Child), lest we
// break property #4 for its ancestors.
//
// If Child is red, we can simply color it black. If Child is black
// already, we can't technically transfer a black-increment to it, due to
// property #1.
//
// In the following loop we ascend searching for a red node to color black,
// or until we reach the root (in which case we can drop the
// black-increment). Inside the loop body, Child has a black value of 2,
// transitorily breaking property #1 locally, but maintaining property #4
// globally.
//
// Rotations in the loop preserve property #4.
//
while (Child != NewRoot && NodeIsNullOrBlack (Child)) {
RED_BLACK_TREE_NODE *Sibling;
RED_BLACK_TREE_NODE *LeftNephew;
RED_BLACK_TREE_NODE *RightNephew;
if (Child == Parent->Left) {
Sibling = Parent->Right;
//
// Sibling can never be NULL (ie. a leaf).
//
// If Sibling was NULL, then the black count on the path from Parent to
// Sibling would equal Parent's black value, plus 1 (due to property
// #2). Whereas the black count on the path from Parent to any leaf via
// Child would be at least Parent's black value, plus 2 (due to Child's
// black value of 2). This would clash with property #4.
//
// (Sibling can be black of course, but it has to be an internal node.
// Internality allows Sibling to have children, bumping the black
// counts of paths that go through it.)
//
ASSERT (Sibling != NULL);
if (Sibling->Color == RedBlackTreeRed) {
//
// Sibling's red color implies its children (if any), node C and node
// E, are black (property #3). It also implies that Parent is black.
//
// grandparent grandparent
// | |
// Parent,b:B b:D
// / \ / \_
// Child,2b:A Sibling,r:D ---> Parent,r:B b:E
// /\ /\_
// b:C b:E Child,2b:A Sibling,b:C
//
Sibling->Color = RedBlackTreeBlack;
Parent->Color = RedBlackTreeRed;
RedBlackTreeRotateLeft (Parent, &NewRoot);
Sibling = Parent->Right;
//
// Same reasoning as above.
//
ASSERT (Sibling != NULL);
}
//
// Sibling is black, and not NULL. (Ie. Sibling is a black internal
// node.)
//
ASSERT (Sibling->Color == RedBlackTreeBlack);
LeftNephew = Sibling->Left;
RightNephew = Sibling->Right;
if (NodeIsNullOrBlack (LeftNephew) &&
NodeIsNullOrBlack (RightNephew)) {
//
// In this case we can "steal" one black value from Child and Sibling
// each, and pass it to Parent. "Stealing" means that Sibling (black
// value 1) becomes red, Child (black value 2) becomes singly-black,
// and Parent will have to be examined if it can eat the
// black-increment.
//
// Sibling is allowed to become red because both of its children are
// black (property #3).
//
// grandparent Parent
// | |
// Parent,x:B Child,x:B
// / \ / \_
// Child,2b:A Sibling,b:D ---> b:A r:D
// /\ /\_
// LeftNephew,b:C RightNephew,b:E b:C b:E
//
Sibling->Color = RedBlackTreeRed;
Child = Parent;
Parent = Parent->Parent;
//
// Continue ascending.
//
} else {
//
// At least one nephew is red.
//
if (NodeIsNullOrBlack (RightNephew)) {
//
// Since the right nephew is black, the left nephew is red. Due to
// property #3, LeftNephew has two black children, hence node E is
// black.
//
// Together with the rotation, this enables us to color node F red
// (because property #3 will be satisfied). We flip node D to black
// to maintain property #4.
//
// grandparent grandparent
// | |
// Parent,x:B Parent,x:B
// /\ /\_
// Child,2b:A Sibling,b:F ---> Child,2b:A Sibling,b:D
// /\ / \_
// LeftNephew,r:D RightNephew,b:G b:C RightNephew,r:F
// /\ /\_
// b:C b:E b:E b:G
//
LeftNephew->Color = RedBlackTreeBlack;
Sibling->Color = RedBlackTreeRed;
RedBlackTreeRotateRight (Sibling, &NewRoot);
Sibling = Parent->Right;
RightNephew = Sibling->Right;
//
// These operations ensure that...
//
}
//
// ... RightNephew is definitely red here, plus Sibling is (still)
// black and non-NULL.
//
ASSERT (RightNephew != NULL);
ASSERT (RightNephew->Color == RedBlackTreeRed);
ASSERT (Sibling != NULL);
ASSERT (Sibling->Color == RedBlackTreeBlack);
//
// In this case we can flush the extra black-increment immediately,
// restoring property #1 for Child (node A): we color RightNephew
// (node E) from red to black.
//
// In order to maintain property #4, we exchange colors between
// Parent and Sibling (nodes B and D), and rotate left around Parent
// (node B). The transformation doesn't change the black count
// increase incurred by each partial path, eg.
// - ascending from node A: 2 + x == 1 + 1 + x
// - ascending from node C: y + 1 + x == y + 1 + x
// - ascending from node E: 0 + 1 + x == 1 + x
//
// The color exchange is valid, because even if x stands for red,
// both children of node D are black after the transformation
// (preserving property #3).
//
// grandparent grandparent
// | |
// Parent,x:B x:D
// / \ / \_
// Child,2b:A Sibling,b:D ---> b:B b:E
// / \ / \_
// y:C RightNephew,r:E b:A y:C
//
//
Sibling->Color = Parent->Color;
Parent->Color = RedBlackTreeBlack;
RightNephew->Color = RedBlackTreeBlack;
RedBlackTreeRotateLeft (Parent, &NewRoot);
Child = NewRoot;
//
// This terminates the loop.
//
}
} else {
//
// Mirrors the other branch.
//
Sibling = Parent->Left;
ASSERT (Sibling != NULL);
if (Sibling->Color == RedBlackTreeRed) {
Sibling->Color = RedBlackTreeBlack;
Parent->Color = RedBlackTreeRed;
RedBlackTreeRotateRight (Parent, &NewRoot);
Sibling = Parent->Left;
ASSERT (Sibling != NULL);
}
ASSERT (Sibling->Color == RedBlackTreeBlack);
RightNephew = Sibling->Right;
LeftNephew = Sibling->Left;
if (NodeIsNullOrBlack (RightNephew) &&
NodeIsNullOrBlack (LeftNephew)) {
Sibling->Color = RedBlackTreeRed;
Child = Parent;
Parent = Parent->Parent;
} else {
if (NodeIsNullOrBlack (LeftNephew)) {
RightNephew->Color = RedBlackTreeBlack;
Sibling->Color = RedBlackTreeRed;
RedBlackTreeRotateLeft (Sibling, &NewRoot);
Sibling = Parent->Left;
LeftNephew = Sibling->Left;
}
ASSERT (LeftNephew != NULL);
ASSERT (LeftNephew->Color == RedBlackTreeRed);
ASSERT (Sibling != NULL);
ASSERT (Sibling->Color == RedBlackTreeBlack);
Sibling->Color = Parent->Color;
Parent->Color = RedBlackTreeBlack;
LeftNephew->Color = RedBlackTreeBlack;
RedBlackTreeRotateRight (Parent, &NewRoot);
Child = NewRoot;
}
}
}
if (Child != NULL) {
Child->Color = RedBlackTreeBlack;
}
}
Tree->Root = NewRoot;
if (FeaturePcdGet (PcdValidateOrderedCollection)) {
RedBlackTreeValidate (Tree);
}
}
/**
Recursively check the red-black tree properties #1 to #4 on a node.
@param[in] Node The root of the subtree to validate.
@retval The black-height of Node's parent.
**/
UINT32
RedBlackTreeRecursiveCheck (
IN CONST RED_BLACK_TREE_NODE *Node
)
{
UINT32 LeftHeight;
UINT32 RightHeight;
//
// property #2
//
if (Node == NULL) {
return 1;
}
//
// property #1
//
ASSERT (Node->Color == RedBlackTreeRed || Node->Color == RedBlackTreeBlack);
//
// property #3
//
if (Node->Color == RedBlackTreeRed) {
ASSERT (NodeIsNullOrBlack (Node->Left));
ASSERT (NodeIsNullOrBlack (Node->Right));
}
//
// property #4
//
LeftHeight = RedBlackTreeRecursiveCheck (Node->Left);
RightHeight = RedBlackTreeRecursiveCheck (Node->Right);
ASSERT (LeftHeight == RightHeight);
return (Node->Color == RedBlackTreeBlack) + LeftHeight;
}
/**
A slow function that asserts that the tree is a valid red-black tree, and
that it orders user structures correctly.
Read-only operation.
This function uses the stack for recursion and is not recommended for
"production use".
@param[in] Tree The tree to validate.
**/
VOID
RedBlackTreeValidate (
IN CONST RED_BLACK_TREE *Tree
)
{
UINT32 BlackHeight;
UINT32 ForwardCount;
UINT32 BackwardCount;
CONST RED_BLACK_TREE_NODE *Last;
CONST RED_BLACK_TREE_NODE *Node;
DEBUG ((DEBUG_VERBOSE, "%a: Tree=%p\n", __FUNCTION__, Tree));
//
// property #5
//
ASSERT (NodeIsNullOrBlack (Tree->Root));
//
// check the other properties
//
BlackHeight = RedBlackTreeRecursiveCheck (Tree->Root) - 1;
//
// forward ordering
//
Last = OrderedCollectionMin (Tree);
ForwardCount = (Last != NULL);
for (Node = OrderedCollectionNext (Last); Node != NULL;
Node = OrderedCollectionNext (Last)) {
ASSERT (Tree->UserStructCompare (Last->UserStruct, Node->UserStruct) < 0);
Last = Node;
++ForwardCount;
}
//
// backward ordering
//
Last = OrderedCollectionMax (Tree);
BackwardCount = (Last != NULL);
for (Node = OrderedCollectionPrev (Last); Node != NULL;
Node = OrderedCollectionPrev (Last)) {
ASSERT (Tree->UserStructCompare (Last->UserStruct, Node->UserStruct) > 0);
Last = Node;
++BackwardCount;
}
ASSERT (ForwardCount == BackwardCount);
DEBUG ((DEBUG_VERBOSE, "%a: Tree=%p BlackHeight=%Ld Count=%Ld\n",
__FUNCTION__, Tree, (INT64)BlackHeight, (INT64)ForwardCount));
}
|